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A cloud-supported coverage control scheme is proposed for
multi-agent, persistent surveillance missions. This approach
decouples assignment from motion planning operations in a
modular framework. Coverage assignments and surveillance
parameters are managed on the cloud, and transmitted to
mobile agents via unplanned and asynchronous exchanges.
These updates promote load-balancing, while also allow-
ing effective pairing with typical path planners. Namely,
when paired with a planner satisfying mild assumptions, the
scheme ensures that (i) coverage regions remain connected
and collectively cover the environment, (ii) regions may go
uncovered only over bounded intervals, (iii) collisions (sens-
ing overlaps) are avoided, and (iv) for time-invariant event
likelihoods, a Pareto optimal configuration is produced in fi-
nite time. The scheme is illustrated in simulated missions.

1 Introduction
1.1 Cloud-Supported Multi-Agent Surveillance

Autonomous sensors are used in many modern surveil-
lance missions, including search and rescue [1], environmen-
tal monitoring [2], and military reconnaissance [3]. Such
missions often require agents to periodically exchange data
with a central cloud (repository) and, when operating in non-
ideal environments or under hardware limitations, these po-
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tentially sporadic exchanges may be the only means of shar-
ing real-time information across agents. For example, au-
tonomous underwater vehicles are virtually isolated due to
difficulties in underwater data transfer, and rely on periodic
surfacing to communicate with a tower [4]. Other applica-
tions that may have this constraint include data mules that pe-
riodically visit ground robots [5], and supervisory missions
that require unmanned vehicles to send data to a remotely lo-
cated operator [6]. Such scenarios require robust and flexible
frameworks for real-time autonomous coordination.

Single-agent surveillance strategies range from simple
a priori tour construction [7] to more complex methods in-
volving Markov chains [8], optimization [9], or Fourier anal-
ysis [10]. However, it is not straightforward to generalize
single-agent approaches for multi-agent missions: Naive ap-
proaches where each agent follows an independent policy of-
ten result in poor performance and introduce collision risks,
while other generalizations may require joint optimizations
that are intractable for even modestly sized problems [11].
Distributed control can sometimes alleviate scaling issues;
however, such setups typically rely on ideal peer-to-peer data
transfer making them ill-posed in many cloud-based setups.

In contrast, decomposition-based approaches to multi-
agent surveillance, which decouple the assignment and rout-
ing problem by dividing the agent workspace, are popular
in practice as they offer a straightforward, modular frame-
work to reasonably accomplish surveillance goals, despite
sacrificing optimality. However, in cloud-based architectures
that rely solely on agent-cloud exchanges for real-time data
transfer, implementation of such an approach is not straight-
forward using existing approaches to dynamic workspace de-
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Fig. 1. When complete or pairwise coverage updates are impossi-
ble, two updates are required to move from the left-most to the right-
most configuration. The red region is updated first, introducing a
collision (redundant sensing) risk.

composition. Indeed, in this case, updated mission informa-
tion is only relayed to one agent at a time, rendering tradi-
tional partitioning schemes, which rely on complete or pair-
wise coverage updates, impossible, and existing strategies
that utilize single-agent updates, e.g., [12], may introduce
undesirable configurations or collision-risks (Fig. 1).

This work extends existing literature by introducing a
cloud-supported, decomposition-based framework for multi-
agent persistent surveillance that promotes effective cover-
age without introducing collision (redundant sensing) risks
and without requiring ideal or pre-planned data exchanges.
As such, the proposed framework allows agents to effec-
tively respond to changes in the environment (spatial event
likelihood) without having to be collected and re-deployed
due to the inability to transmit data to all agents simultane-
ously. That is, when mission goals (captured by the event
likelihood) change after agents are already in the field, the
cloud incrementally relays the updated information through
sporadic exchanges with individual agents, driving them to a
new coverage configuration without introducing undesirable
intermediate states. This framework also allows the cloud to
act as a data fusion center if necessary, dynamically combin-
ing local sensory information collected by individual agents.

1.2 Related Literature
Multi-agent coverage control problems have generated

extensive research. Typical strategies involve optimiza-
tion [13], auctions [14], meta-heuristics [15], potential
fields [16], Markov decision processes [17], among oth-
ers [18]. Of particular relevance is multi-agent persistent
surveillance (monitoring), in which a sensor team is tasked
with continual surveillance of some region, requiring subre-
gions to be visited multiple (or infinitely many) times to min-
imize a cost, e.g., the time between visits or the likelihood of
detecting events [11]. Persistent surveillance is a generaliza-
tion of patrolling, where agents follow closed tours to pro-
tect or supervise an environment. Most current solutions to
patrolling problems utilize operations research, non-learning
multi-agent systems, and multi-agent learning [19]; however,
formulations are often one-dimensional and solutions usually
reduce to “back and forth” motions that do not readily extend
to general scenarios, e.g., [20].

The framework herein employs a type of workspace
decomposition in constructing solutions to the multi-agent
problem. In the context of general robotic applications,
the term workspace decomposition refers to any number of
strategies that are employed in order to represent a com-
plex workspace or solution space in a simpler, often lower-

dimensional form. For robotic motion planning involving
obstacles, this often involves the representation of the free
configuration space in a graphical or modular form that cap-
tures essential connectivity properties, e.g., typical roadmap
and cellular decomposition planning methods take this ap-
proach [21, 22]. In multi-agent applications, workspace de-
composition methods can also be used to reduce the com-
plexity of a problem through the assignment of sub-tasks
to individual agents, i.e., for task assignment [23]. This is
the approach taken herein to reduce the multi-agent prob-
lem into a set of single-agent problems. Since the assign-
ment problem is often difficult to solve (it has been shown
to be NP-hard in some domains [23]), multi-agent planning
solutions based on this type of assignment usually lead to
sub-optimal solutions. Despite this drawback, assignment-
based approaches remain popular in practice due to their sim-
plicity and scalability [11]. Outside of workspace decom-
position, other strategies for reducing multi-agent planning
problems into a set of single-agent problems include naive
approaches, where each agent independently determines its
own actions by locally solving a complete problem over
the full workspace, and, provided sufficiently reliable sens-
ing and data-transfer capabilities, distributed approaches, in
which agents each solve a sub-problem based on information
shared over a communication network [24].

For planar persistent surveillance, decomposition-based
approaches typically consist of two primary components:
partitioning and single-agent routing. The most common ap-
proaches to optimal partitioning in convex environments are
based on Voronoi partitions [25], and effective schemes ex-
ist for constructing centroidal Voronoi, equitable, or other
types of optimal partitions under communication, sensing,
and workload constraints [26–28]. Non-convex workspaces
are typically addressed by representing the environment as
a graph, on which a number of graph partitioning schemes
can be used [29]. In robotics, discrete partitioning is often
considered under communication constraints, e.g., pairwise
gossip [30] or asynchronous one-to-base station communi-
cation [12]. Our proposed scheme most closely mirrors [12],
in which agents communicate sporadically with a base sta-
tion; however, our approach employs additional logic to en-
sure the resultant coverage regions retain properties that are
consistent with effective, decomposition-based surveillance.

Single-agent path planners for persistent surveillance
typically operate on graphs [31, 32], and classical problems,
e.g., the Traveling Salesperson Problem [33], often play a
key role. Stochasticity can be introduced using tools such as
Markov chains [8]. Schemes for non-discrete spaces (open
subsets of Euclidean space), are less common. Here, strate-
gies include a priori construction of motion routines [34],
adaptation of static coverage strategies [35], the use of ran-
dom fields [36], and spectral decomposition [10]. The mod-
ular framework herein incorporates any single-agent planner
satisfying mild assumptions (see Section 5).

Remarkably few papers explicitly consider the impli-
cations of combining dynamic partitioning with continuous
routing for multi-agent persistent surveillance. Existing re-
search is mostly preliminary, considering ideal data transfer



and simplistic methods. The authors of [37] employ a sweep-
ing algorithm for partitioning and guide vehicle motion via
lawn-mower patterns, while [38] uses rectangular partitions
and a reactive routing policy which, in ideal cases, reduces to
spiral search patterns. The authors of [39] use slightly more
sophisticated partitioning in tandem with lawn-mower trajec-
tories. In [40], partitions are based on the statistical expecta-
tion of target presence, but ideal communication is assumed.
Others, e.g., [41], employ decomposition-based structures,
but focus on task-assignment without detailed treatment of
the combined assignment/routing protocol.

Our work uses a cloud-supported computational frame-
work. Cloud-based robotic infrastructures (cloud robotics)
have generated growing research interest, as they can pro-
vide many benefits to complex systems, such as the storage
and analysis of “big data,” the availability of parallel grid
computing, the potential for collective learning, and the uti-
lization of human computation [42]. In multi-agent systems,
cloud-supported schemes have been used for tasks such as
collective optimization [43], rendezvous [44], and coordi-
nated task-assignment [12]. Our use of the cloud-based ar-
chitecture is primarily motivated by supervisory systems in-
volving unmanned vehicles. Here, this architecture arises
naturally, since mobile agents are required to transmit sensor
data to a remotely located human operator for analysis (thus
requiring a central repository), and harsh operational envi-
ronments often prohibit reliance on peer-to-peer communi-
cation. However, the proposed framework is suitable for use
in any similar setup, and can also run in parallel with other
cloud-supported operations (e,g, data analysis, learning, etc.)
within complex missions.

1.3 Contributions
This work develops a cloud-supported, decomposition-

based, multi-agent coverage control framework for persistent
surveillance, which relies only on sporadic, unscheduled ex-
changes between agents and a central cloud for data transfer.
In particular, we develop a sophisticated partitioning and co-
ordination scheme that can be effectively paired with single-
agent trajectory planners. This naturally leads to the com-
plete, modular framework in which high-level coverage is
coordinated on the cloud and agent trajectories are generated
independently via on-board planners. We encompass realis-
tic constraints including restrictive communication, dynamic
environments, and non-parametric event likelihoods.

Specifically, our dynamic partitioning scheme only re-
quires agents to sporadically upload and download data from
the cloud. The cloud runs updates to govern region assign-
ments, while also manipulating high-level surveillance pa-
rameters. We prove that this update structure has many de-
sirable properties: coverage regions collectively form a con-
nected m-covering and evolve at a time-scale that allows for
appropriate agent reaction, no subregion remains uncovered
indefinitely, local likelihood functions have disjoint support,
among others. For certain cases, we show that the set of cov-
erage regions and associated generators converges to a Pareto
optimal pair in finite time. We show that the combination

of our partitioning scheme with a generic trajectory planner
ensures collision (sensing overlap) avoidance, provided the
planner obeys natural restrictions. Finally, we illustrate our
framework through numerical examples.

Our partitioning scheme is primarily motivated by [12];
however, the algorithms herein are explicitly designed to op-
erate within a multi-agent surveillance framework and intro-
duce additional logic parameters to evoke a set of desirable
geometric and temporal properties. Our proposed scheme
has the following advantages: First, our framework consid-
ers a modified cost function that uses subgraph distances to
maintain connectivity of intermediate coverage regions, en-
suring that agents can visit their entire assigned region with-
out entering another agent’s territory. Second, timing pa-
rameters are manipulated to provide inherent collision (re-
dundant sensing) avoidance when the scheme is paired with
low-level motion planners (Fig. 2). Third, our algorithms
explicitly manipulate local likelihood functions maintained
by the agents to guarantee that each has support within an
allowable region, promoting seamless and modular pairing
with any trajectory planner that uses the support of the event
likelihood to govern agent routes, e.g., [10]. The framework
has these features while simultaneously maintaining similar
convergence properties as the algorithms in [12].

For clarity and readability in what follows, we postpone
all theorem proofs until the Appendix.

2 Mission Overview and Solution Approach
A team of m mobile agents1, each equipped with an on-

board sensor, is tasked with persistently monitoring a non-
trivial, planar region of interest. The primary goal of the
mission is to collect sensor data about some dynamic event
or characteristic, e.g., an intruder. Collected data is period-
ically uploaded to the cloud. Agents must move within the
environment to obtain complete sensory information. Ide-
ally, agent motion should be coordinated so that:

1. the sensing workload is balanced across agents,
2. no subregion goes unobserved indefinitely,
3. agents never collide (have sensor overlap), and
4. the search is biased toward regions of greater interest.

To achieve these goals, we propose a decomposition-based
approach in which each agent’s motion is restricted to lie
within a dynamically assigned coverage region. The parti-
tioning component (operating on the cloud), defines these
coverage regions and provides high-level restrictions on
agent motion through the manipulation of surveillance pa-
rameters, while the trajectory planning component (oper-
ating on-board each agent) incrementally constructs agent
motion paths. We assume only asynchronous, cloud-agent
data transfer, i.e., agents sporadically exchange data with the
cloud, where inter-exchange times are not specified a priori,
but are subject to an upper bound.

Broadly, our framework operates as follows (Fig. 2). Ini-
tial coverage variables are communicated to the agents prior

1Each agent is uniquely paired with a coverage region, so the quantity m
represents both the number of agents and the number of regions.
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Fig. 2. Illustration of the proposed strategy. The partitioning compo-
nent (executed on the cloud) manages coverage regions and intro-
duces logic to prevent collisions, while the trajectory planning com-
ponent (executed onboard each agent) governs agent motion.

to deployment, i.e., relevant initial information is known to
each agent at the mission onset. Once in the field, agents
communicate sporadically with the cloud. During each
agent-cloud exchange, the cloud calculates a new coverage
region solely for the communicating agent, along with a set
of timing and surveillance parameters that serve to govern
the agent’s high-level motion behavior, and transmits the up-
date. The update algorithm also alters relevant global vari-
ables maintained on the cloud. Once the update completes,
the data-link is terminated and the agent follows the trajec-
tory found via its onboard planner. Notice that this structure
is a type of event-triggered control, since high-level updates
only occur in the event of an agent-cloud exchange.

3 Problem Setup
The cloud, as well as each agent, has its own local pro-

cessor. “Global” information is stored on the cloud, while
each agent only stores information pertinent to itself.

Convention 1. Subscripts i, j, or ` denote an entity or set
element relevant to agent i, j, or `, resp. The superscript ‘A’
denotes an entity that is stored by the agent’s local processor.

A storage summary is shown in Table 1. We expand on these,
and define other relevant mathematical constructs here.

3.1 Agent Dynamics
Each agent (sensor) i is a point mass that moves with

maximum possible speed si > 0. Define s := {si}m
i=1. Notice

that this setup allows heterogeneity with respect to speed,
i.e., agents can travel at different speeds.

3.2 Communication Protocol
Each agent periodically exchanges data with the cloud.

Assume the following:

1. each agent can identify itself to the cloud, and trans-
mit/receive data,

2. there is a lower bound ∆ > 0 on the time between any
two successive exchanges involving the cloud, and

3. there is an upper bound ∆ > 0 on the time between any
single agent’s successive exchanges with the cloud.

Assume that agent-cloud exchanges occur instantaneously,
and notice that condition 2 implies no two exchanges (in-
volving any agents) occur simultaneously2. Since computa-
tion time is typically small in comparison to inter-exchange
times and exchanges occur sporadically, these assumptions
are without significant loss of generality.

3.3 Environment
Consider a bounded surveillance environment as a finite

grid of disjoint, non-empty, simply-connected subregions.
We represent the grid as a weighted graph G(Q) := (Q,E),
where Q is the set of vertices (each representative of a unique
grid element), and E is the edge set comprised of undirected,
weighted edges {k1,k2} spanning vertices representing ad-
jacent3 grid elements. Let the weight associated to {k1,k2}
be some finite upper bound on the minimum travel distance
between any point in the grid element associated k1 to any
point in the grid element associated to k2 along a path that
does not leave the union of the two elements. Locations of
environmental obstacles and prohibited areas are known and
are not included in the graphical representation G(Q).

Consider Q′ ⊆ Q. A vertex k1 ∈ Q is adjacent to Q′

if k1 /∈ Q′ and there exists {k1,k2} ∈ E with k2 ∈ Q′. De-
fine G(Q′) := (Q′,E ′) as the subgraph of G(Q) induced by
the vertex set Q′. A path on G(Q′) between k1,kn ∈ Q′

is a sequence (k1,k2, . . . ,kn), where k1,k2, . . . ,kn ∈ Q′ and
{kr,kr+1} ∈ E ′ for r ∈ {1, . . . ,n−1}. We say Q′ is connected
if a path exists in G(Q′) between any k1,k2 ∈ Q′. Let dQ′ :
Q′×Q′→ R≥0∪{∞} be the standard distance on G(Q′), i.e.,
the length of a shortest weighted path in G(Q′) (if none ex-
ists, dQ′ takes value ∞). Notice that dQ(k1,k2) ≤ dQ′(k1,k2)
for any k1,k2 ∈ Q′. With slight abuse of notation, we also
let dQ′ denote the map dQ′ : Q′× 2Q′ → R≥0 ∪{∞}, where
dQ′(k,Q′′) is the length of a shortest weighted path in G(Q′)
between k and any vertex in Q′′.

3.4 Coverage Regions
An m-covering of Q is a family P := {Pi⊆Q}m

i=1 satisfy-
ing (i)

⋃m
i=1 Pi = Q, and (ii) Pi 6= /0 for all i. Define Covm(Q)

as the set of all possible m-coverings of Q. An m-partition
of Q is an m-covering that also satisfies (iii) Pi

⋂
Pj = /0 for

all i 6= j. An m-covering or m-partition P is connected if
each Pi is connected. In what follows, the cloud maintains
an m-covering P of Q, and surveillance responsibilities are
assigned by pairing each agent i with Pi ∈ P (called agent i’s
coverage region). Each agent maintains a copy PA

i of Pi. The
cloud also stores a set c := {ci ∈ Q}m

i=1 (ci is the generator
of Pi), and each agent i maintains a copy cA

i of ci.

3.5 Identifiers, Timers, and Auxiliary Variables
The proposed algorithms introduce logic and timing

variables to ensure an effective overall framework. To each
k ∈ Q, assign an identifier IDk ∈ {1, . . . ,m}. Define I D :=
{IDk}k∈Q, and let PI D := {PI D

i }m
i=1, where PI D

i := {k ∈ Q |

2Mathematically, the bound ∆ also prevents zeno behavior.
3Travel between the elements without leaving their union is possible.



IDk = i}. Notice PI D is an m-partition of Q. For each agent
i, define a timer Ti having dynamics Ṫi = −1 if Ti 6= 0, and
Ṫi = 0 otherwise. Define T := {Ti}m

i=1. Each agent i main-
tains a local timing variable τA

i . Even though τA
i plays a sim-

ilar role to Ti, note that τA
i is constant unless explicitly up-

dated, while Ti has autonomous dynamics. Next, the cloud
maintains a set ω := {ωi}m

i=1, where ωi is the time of agent i’s
most recent exchange with the cloud. Each agent maintains a
copy ωA

i of ωi. Finally, each agent stores a subset PA,pd
i ⊆ PA

i
which collects vertices that have recently been added to PA

i .

3.6 Likelihood Functions
The likelihood of a relevant event occurring within any

subset of the surveillance region is maintained on the cloud
in the form of a time-varying probability mass function4 Φ :
Q×R≥0 → R>0. For simplicity, assume that, at any t, the
instantaneous support, supp(Φ(·, t)), equals Q.

Define each agent’s local likelihood ΦA
i : Q× R≥0 →

R≥0 as the function that, loosely, represents the agent’s local
belief regarding events. Specifically, define

Φ
A
i (k, t) =


Φ(k, t),

if k ∈ PA
i and(

t−ωA
i ≥ τA

i or k /∈ PA,pd
i

)
,

0, otherwise.

(1)

The conditions defining ΦA
i are understood as follows: at

some time t, an element k∈Q only belongs to supp(ΦA
i (·, t))

if (i) k ∈ PA
i , and (ii) sufficient time has passed since k was

first added to PA
i , as determined by the parameters τA

i , ωA
i ,

and PA,pd
i . In general, each ΦA

i will be different5 from Φ.

Remark 1 (Global Data). If global knowledge of Φ is not
available instantaneously to agent i, ΦA

i can alternatively be
defined by replacing Φ(k, t) in (1) by Φ(k,ωA

i ). All subse-
quent theorems hold under this alternative definition.

Remark 2 (Data Storage). The cost of storing a graph as
an adjacency list is O(|Q|+ |E|). The generator set c, each
element of P, and the identifier set I D are stored as integral
vectors. The timer set T and the set ω are are stored as real
vectors, while Φ is stored as a time-varying real vector. Thus,
the cost of storage on the cloud is O(m|Q|+ |E|). Similarly,
each agent’s local storage cost is O(|Q|+ |E|).

4 Dynamic Coverage Update Scheme
Adopt following convention for the remaining analysis.

Convention 2. Suppose that:

1. min /0 := max /0 := 0, and
2. given a specific time instant, superscripts ‘-’ or ‘+’ refer

to a value before and after the instant in question, resp.

4Φ(·, t) is a probability mass function for any t.
5ΦA

i is not normalized and thus may not be a time-varying probability
mass function in a strict sense.

Table 1. Storage Summary

Stored on the Cloud

Variable Description

G(Q) Graphical representation of the environment

P m-covering of Q (P ∈ Covm(Q))

c Set of generators (c ∈ Qm)

I D Set of identifiers
(

I D ∈ {1, . . . ,m}|Q|
)

T Set of Timers
(
T ∈ Rm

≥0
)

ω Set of most recent exchange times
(
ω ∈ Rm

≥0
)

Φ Global likelihood (Φ : Q×R≥0→ R>0)

Stored by Agent i

Variable Description

G(Q) Graphical representation of the environment

PA
i Coverage region

(
PA

i ⊂ Q
)

cA
i Coverage region generator

(
cA

i ∈ Q
)

PA,pd
i Set of “recently added” vertices

(
PA,pd

i ⊆ PA
i

)
τA

i Local timing parameter
(
τA

i ∈ R
)

ωA
i Most recent exchange time

(
ωA

i ∈ R≥0
)

ΦA
i Local likelihood

(
ΦA

i : Q×R≥0→ R≥0
)

4.1 Additive Set
We start with a definition.

Definition 1 (Additive Set). Given k ∈ PI D
i , the additive

set Padd
i (k)⊆ Q is the largest connected subset satisfying:

1. PI D
i ⊆ Padd

i (k), and
2. for any h ∈ Padd

i (k)∩Pj, where j 6= i:

(a) Tj = 0, and
(b) 1

si
dPadd

i (k)(h,k)<
1
s j

dPj(h,c j).

The following characterizes well-posedness of Definition 1.

Proposition 1 (Well-Posedness). If PI D
i is connected

and disjoint from
⋃

j 6=i Pj, then Padd
i (k) exists and is unique

for any k ∈ PI D
i .

Proof. With the specified conditions, PI D
i is connected and

satisfies 1 and 2 in Definition 1; Padd
i (k) is the unique, maxi-

mally connected superset of PI D
i satisfying 1 and 2.

Under the conditions of Proposition 1, if h ∈ Padd
i (k), then

max{Tj | j 6= i,h ∈ Pj}= 0 and there is a path from k to h in
G(Padd

i (k)) that is shorter than the optimal path spanning c j
and h within G(Pj), for any j 6= i with h ∈ Pj.



4.2 Cloud-Supported Coverage Update
Define a cost function H : Qm × Covm(Q)× R≥0 →

R≥0∪{∞} by

H (c,P, t) = ∑
k∈Q

min
i

{
1
si

dPi(k,ci) |k ∈ Pi

}
Φ(k, t).

If (i) each agent is solely responsible for events within its
coverage region, and (ii) events occur proportionally to Φ,
then H (c,P, t) is understood as the expected time required
for an agent to reach a randomly occurring event from its
region generator at time t; related functions are studied
in [12,26,30]. Algorithm 1 defines the operations performed
on the cloud when agent i makes contact at time t0. Here,

Algorithm 1: Cloud-Supported Coverage Update

Data: t0, P, c, Φ, ω, ∆, ∆H, T , I D, s
Result: P, c, PA

i , cA
i , PA,pd

i , T , τA
i , ΦA

i , ω, ωA
i , I D

begin
% Initialize, remove regions others have claimed

1 Initialize P∗ = Ptest = P , c∗ = ctest = c
2 Set P∗i = Ptest

i = PI D
i

% If timer is non-zero and no regions have been
claimed since last update, perform trivial update

if Ti > 0 and P∗i = Pi then
3 Set τA

i = τA
i − t0 +ωi and ωA

i = ωi = t0
else

% Iterate through generator locations to find
a cost-minimizing configuration

for k ∈ PI D
i do

4 Set Ptest
i = Padd

i (k) and ctest
i = k

if H (ctest,Ptest, t0)< H (c∗,P∗, t0) then
5 Set P∗ = Ptest, c∗ = ctest

% Update timers and variables

6 Set PA,pd
i = P∗i \PI D

i
7 Call Alg. 2 and obtain output ΦA

i ,ω,T,τ
A
i

8 Set Pi = PA
i = P∗i , ci = cA

i = c∗i , ωA
i = ωi

9 for k ∈ Pi do Set IDk = i

10 return P, c, PA
i , cA

i , PA,pd
i , T , τA

i , ΦA
i , ω, ωA

i , I D

the input ∆H > 0 is a constant parameter6. Recall from Sec-
tion 3.3 that, given a vertex k and sets Q′′ ⊂ Q′, the value
dQ′(k,Q′′) represents the minimum time required to travel
from k to any node in the set Q′′. Therefore, the operations
in lines 1 and 2 of Algorithm 2 are implicitly max-min op-
erations that, intuitively, define upper bounds on the time re-
quired for the agents to vacate areas that have shifted as a

6∆H represents, loosely, the amount of time an agent must hold a vertex
before it can be reassigned. Precise characterization is in Section 4.3.

result of the update. Additional remarks to aid in reader un-
derstanding are given by the comments within the algorithms
(italicized tex preceded by a “%” character).

Algorithm 2: Timer Update

Data: t0, P, P∗, c∗, PA,pd
i , Φ, ω, ∆, ∆H, T , s

Result: ΦA
i ,ω,T,τ

A
i

begin
% Find the worst-case time required for agent i
to return to its remaining coverage region from
any node that was removed during the update.

1 ∆Bf
i := max

{
1
si

dPi

(
k,P∗i \P

A,pd
i

)
| k ∈ Pi\P∗i

}
% Find the worst-case time required for other
agents to vacate regions acquired by agent i, and
redefine timers to ensure communication

for Each j 6= i satisfying Pj ∩P∗i 6= /0 do
2 ∆Bf

j := max
{

1
s j

dPj (k,Pj\P∗i ) |k ∈ Pj ∩P∗i
}

3 Set Tj = ω j +∆− t0

% Select maximum and redefine variables

4 Find ∆Bf
max = max

j 6=i,Pj∩P∗i 6= /0

{ω j +∆+∆Bf
j − t0}

5 Redefine ∆Bf
max = max{∆Bf

max,∆
Bf
i }

6 Set Ti = ∆Bf
max +∆H, τA

i = ∆Bf
max, ωi = t0

7 Construct ΦA
i (Eq. (1)) with updated variables

8 return ΦA
i ,ω,T,τ

A
i

Consider the following initialization assumptions.

Assumption 1 (Initialization). The following properties
are satisfied when t = 0:

1. P is a connected m-partition of Q,
2. P = PI D , and
3. for all i ∈ {1, . . . ,m},

(a) Pi = PA
i ,

(b) ci = cA
i ∈ PA

i ,
(c) PA,pd

i = /0,
(d) Ti = ωi = ωA

i = 0, and
(e) τA

i =−∆H.

Notice 1 and 3b together imply that ci 6= c j for any j 6= i. Our
first result guarantees well-posedness of Algorithm 1.

Theorem 1 (Well-Posedness). Under Assumption 1, a
scheme in which, during each agent-cloud exchange, the
cloud executes Algorithm 1 to update relevant global and lo-
cal variables is well-posed. That is, operations required by
Algorithm 1 are well-posed at the time of execution.

Algorithm 1 does not ensure that coverage regions (ele-
ments of P) remain disjoint. It does, however, guarantee that
the m-covering P, the local coverage regions PA := {PA

i }m
i=1,



and the local likelihoods {ΦA
i }m

i=1 retain properties that are
consistent with a decomposition-based scheme. Namely, the
coverings P and PA maintain connectivity, and each ΦA

i has
support that is disjoint from that of all other local likelihoods,
yet evolves to provide reasonable global coverage. Further,
Algorithm 2 ensures that agents can “safely” vacate areas
that are reassigned before newly assigned agents enter. We
expand upon these ideas in the following two subsections.

4.3 Set Properties
The next result formalizes key set properties.

Theorem 2 (Set Properties). Suppose Assumption 1
holds, and that, during each agent-cloud exchange, the
cloud executes Algorithm 1 to update relevant global and
local variables. Then, the following hold at any time t ≥ 0:

1. PI D is a connected m-partition of Q,
2. P is a connected m-covering of Q,
3. ci ∈ Pi and ci 6= c j for any i 6= j,
4. supp(ΦA

i (·, t))⊆ Pi for any i, and
5.

⋂m
i=1 supp(Φ

A
i (·, t)) = /0.

When the cloud makes additions to an agent’s coverage re-
gion, newly added vertices are not immediately included in
the instantaneous support of the agent’s local likelihood. If
agent movement is restricted to lie within this support, the
delay temporarily prohibits exploration of newly added re-
gions, allowing time for other agents to vacate. Conversely,
when regions are removed from an agent’s coverage region,
Algorithm 1 ensures a “safe” path, i.e., a path with no colli-
sion risk, exists and persists long enough for the agent to va-
cate. Let d := maxi

1
si

∑{k1,k2}∈E dQ(k1,k2), and define agent
i’s prohibited region, Prohi(t), as the set of vertices not
belonging to the support of ΦA

i (·, t), i.e., Prohi(t) := {k ∈
Q |k /∈ supp(ΦA

i (·, t))}. We formalize this discussion here.

Theorem 3 (Coverage Quality). Suppose Assumption 1
holds, and that, during each agent-cloud exchange, the cloud
updates relevant global and local coverage variables via Al-
gorithm 1. Then, for any k ∈ Q and any t ≥ 0:

1. k belongs to at least one agent’s coverage region Pi,
2. if k ∈ Prohi(t)∩Pi for some i, then there exists t0 satis-

fying t < t0 < t +∆+d such that, for all t̄ ∈ [t0, t0 +∆H],
the vertex k belongs to the set Pi\Prohi(t̄), and

3. if k is removed from Pi at time t, then, for all

t̄ ∈
(

t, t +
1
si

dP−i

(
k,PI D,−

i

)]
,

we have

(a) PI D,−
i ⊆ Pi, and

(b) there exists a length-minimizing path on G(P−i )

from k into PI D,−
i , and all of the vertices along

any such path (except the terminal vertex) belong
to the set ProhID+

k
(t̄)\

⋃
j 6=ID+

k
Pj.

Theorems 2 and 3 allow Algorithm 1 to operate within a
decomposition-based framework to provide reasonable cov-
erage with inherent collision avoidance. Indeed, if agents
avoid prohibited regions, the theorems imply that each agent
(i) can visit its entire coverage region (connectedness), (ii)
allows adequate time for other agents to vacate reassigned
regions, and (iii) has a “safe” route into the remaining cover-
age region if its current location is removed during an update.

Remark 3 (Coverage Variables). If Assumption 1 holds
and updates are performed with Algorithm 1, then Pi = PA

i
and ci = cA

i for all i and all t. Thus, both Theorem 2 and
Theorem 3 are equivalently stated by replacing Pi with PA

i
and ci with cA

i in their respective theorem statement.

Remark 4 (Bounds). Theorem 3 holds if d is replaced by
any upper bound on the distance between two arbitrary ver-
tices within an arbitrary connected subgraph of G.

4.4 Convergence Properties
Our proposed strategy differs from [12] due to logic,

i.e., timing parameters, etc., that ensures effective opera-
tion within a decomposition-based framework. Note also
that H differs from previous partitioning cost functions
in [12, 26, 30], since it uses subgraph, rather than global
graph, distances. As such, convergence properties of the al-
gorithms herein do not follow readily from existing results.
Consider the following definition.

Definition 2 (Pareto Optimality). The pair (c,P) is
Pareto optimal at time t if

1. H (c,P, t)≤H (c̄,P, t) for any c̄ ∈ Qm, and
2. H (c,P, t)≤H (c, P̄, t) for any P̄ ∈ Covm(Q).

When Φ is time-invariant (and Assumption 1 holds), Algo-
rithm 1 produces finite-time convergence of coverage regions
and generators to a Pareto optimal pair. The limiting cover-
age regions are “optimal” in that they balance the sensing
load in a way that directly considers the event likelihood.
Further, the operation only requires sporadic and unplanned
agent-cloud exchanges. We formalize this result here.

Theorem 4 (Convergence). Suppose Assumption 1
holds and that, during each agent-cloud exchange, the cloud
updates relevant global and local coverage variables via
Algorithm 1. If Φ is time-invariant, i.e., Φ(·, t1) = Φ(·, t2)
for all t1, t2, then the m-covering P and the generators
c converge in finite time to an m-partition P∗ and a set
c∗, resp. The pair (c∗,P∗) is Pareto optimal at any time
following convergence.

Remark 5 (Weighted Voronoi Partitions). It can be
shown that Pareto optimality of (c∗,P∗) in Theorem 4 im-
plies that, following convergence, P∗ is a multiplicatively-
weighted Voronoi partition (generated by c∗, weighted
by s, subject to density Φ(·, t)) by standard definitions
(e.g., [12]). If the centroid set of each Pi is defined as
argminh∈Pi ∑k∈Pi dPi(k,h)Φ(k, t), then P∗ is also centroidal.



Our coverage scheme balances the sensing load in that it
updates coverage responsibilities in a way that locally min-
imizes the expected time required for an appropriate agent
to travel from its region generator to a randomly occurring
event within the environment. In essence, this serves to avoid
unreasonable configurations, e.g., configurations where one
agent is assigned responsibility of all important areas and
remaining agents are only given non-important regions. Fur-
ther, the update rules consider agent speeds, so faster agents
will generally be assigned larger (weighted by the likelihood)
coverage regions than slower agents. Similar strategies are
employed in traditional load-balancing algorithms that are
based on Voronoi partitions and operate over environments
with stochastic event likelihoods, e.g., [12, 26, 30].

Theorem 4 and Remark 5 provide a rigorous charac-
terization of the type of load balancing provided in the
static likelihood case. A few comments are in order. First,
Pareto optimal pairs (and multiplicatively-weighted, cen-
troidal Voronoi partitions) are non-unique. Theorem 4 only
guarantees that one possible Pareto optimal pair will be
found in the static likelihood case, and does not exclude the
existence of a lower-cost configuration. Second, the cov-
erage configurations produced by our algorithms may not
be equitable, i.e., the probability of events in each cover-
age region may vary across agents, even in the static case.
The development of a strategy that produces equitable parti-
tions within a similar cloud-supported architecture is an open
problem and an interesting area of future research.

5 Decomposition-Based Surveillance.
This section pairs the proposed partitioning framework

with a generic, single-vehicle trajectory planner, forming the
complete, multi-agent surveillance framework.

5.1 Complete Routing Algorithm
By Theorem 2, the support of each ΦA

i (i) lies entirely
within the coverage region PA

i , and (ii) is disjoint from the
support of other local likelihoods. By Theorem 3, (i) any
vertex can only go uncovered over bounded intervals, and (ii)
the parameter ∆H is a lower bound on the time that a recently
uncovered vertex must remain covered before it can become
uncovered again. These results suggest that an intelligent
routing scheme that carefully restricts motion according to
the instantaneous support of the local likelihood functions
could achieve adequate coverage while maintaining collision
avoidance. This motivates the following assumption.

Assumption 2 (Agent Motion). Each agent i has knowl-
edge of its position at any time t, and its on-board trajectory
planner operates under the following guidelines:

1. generated trajectories obey agent motion constraints,
2. trajectories are constructed incrementally and can be

altered in real-time, and
3. the agent is never directed to enter regions associated

with Prohi(t).

Each agent precisely traverses generated trajectories.

Note that condition 2 of Assumption 2 implies that the
agent is never directed to leave regions associated with PA

i .
Algorithm 3 presents the local protocol for Agent i. Here,
the on-board trajectory planner is used to continually up-
date agent trajectories as the mission progresses (line 1). As
such, the low-level characteristics of each individual agent’s
motion (i.e., the relation between the underlying likelihood
function, the coverage configuration, and the resultant trajec-
tory) depends on the particular planner employed.

Algorithm 3: Motion Protocol for Agent i

Data: G(Q), ΦA
i , PA

i , cA
i , PA,pd

i , τA
i , ωA

i
begin

while True do
1 Utilize on-board planner to update trajectory
2 Follow trajectory

if Data link with the cloud then
3 Set Ptest

i = PA
i

4 Obtain updated variables from the cloud
if Location lies within Ptest

i \PA
i then

5 Find shortest path in G(Ptest
i ) from

the currently occupied node into PA
i

while Agent i is outside PA
i do

6 Follow the aforementioned route

5.2 Collision Avoidance
Although Assumption 2 locally prevents agents from en-

tering prohibited regions, dynamic coverage updates can still
place an agent within its prohibited region if the vertex cor-
responding to its location is abruptly removed during an up-
date. If this happens, Algorithm 3 constructs a route from
the agent’s location back into a region where there is no col-
lision risk. With mild assumptions, this construction (i) is
well-defined, and (ii) does not present a transient collision
risk. We formalize this result here.

Theorem 5 (Collision Avoidance). Suppose Assump-
tions 1 and 2 hold, and that each agent’s initial position lies
within its initial coverage region Pi. If each agent’s motion
is locally governed according to Algorithm 3, where the
update in line 4 is calculated by the cloud via Algorithm 1,
then no two agents will ever collide.

Remark 6 (Agent Dynamics). We assume point mass
dynamics for simplicity. However, all theorems herein also
apply under alternative models, e.g., non-holonomic dynam-
ics, provided that the surveillance environment is discretized
so that (i) travel between adjacent grid elements is pos-
sible without leaving their union, (ii) agents can traverse
the aforementioned paths at maximum speed, and (iii) edge
weights accurately upper bound travel between adjacent re-
gions. Typically, these conditions can be met by choosing



discretization cells that are sufficiently large. For example,
under a Dubins vehicle model, choosing square cells whose
edge lengths are at least twice the minimum turning radius
of any of the vehicles is sufficient. If these conditions are not
met, Theorems 1, 2, 3, and 4 still apply, though Theorem 5 is
no longer guaranteed since more sophisticated logic would
be needed to ensure agent trajectories remain within the al-
lowable regions. The development of an algorithmic exten-
sion that would guarantee collision avoidance for general
non-holonomic vehicles is not straightforward and is left as
a topic of future research.

In practice, however, we note that even if Theorem 5
is not satisfied in a strict sense, implementation of the al-
gorithms herein within a decomposition-based scheme will
usually still provide a significantly reduced collision or re-
dundant sensing risk, provided that vehicles remain close to
the allowable regions specified by the updates.

6 Numerical Examples
This section presents numerical examples to illustrate

the proposed framework’s utility. In all examples, updates
are performed on the cloud via Algorithm 1 during each
agent-cloud exchange, and each agent’s local processor runs
the motion protocol in Algorithm 3. For incremental trajec-
tory construction (Algorithm 3, line 1), all examples use a
modified Spectral Multiscale Coverage (SMC) scheme [10],
which creates trajectories to mimic ergodic dynamics while
also locally constraining motion to lie outside of prohibited
regions. Notice this planner satisfies Assumption 2. Initial
region generators were selected randomly (enforcing non-
coincidence), and each agent was initially placed at its region
generator. The initial covering P was created by calculating a
weighted Voronoi partition, and remaining initial parameters
were chosen to satisfy Assumption 1. It is assumed that rele-
vant initial variables are uploaded to the agents’ local servers
prior to initial deployment, i.e., each agent has full knowl-
edge of relevant initial information at time 0. For each simu-
lation, randomly chosen agents sporadically exchanged data
with the cloud. Agent-cloud exchange times were randomly
chosen, subject to a maximum inter-exchange time ∆.

6.1 Time-Invariant Likelihood
Consider a 4 agent mission, executed over a 100 x 100

surveillance region that is subject to a time-invariant, Gaus-
sian likelihood centered near the bottom left corner. The re-
gion is divided into 400, 5 x 5 subregions. Regions are con-
sidered adjacent if they share a horizontal or vertical edge.
Here, each agent had a maximum speed of 1 unit distance
per unit time, and ∆ = 10 time units. Fig. 3 shows the evolu-
tion of the coverage regions for an example simulation run.
Agent trajectories are shown by the colored lines. Note that
Fig. 3 only shows each agent i’s active coverage region, i.e.,
Pi\Prohi(t). The family of active coverage regions does not
generally form an m-covering of Q; however, elements of
this family are connected and never intersect as a result of
inherent collision avoidance properties.

t = 0 t = 50 t = 150

t = 250 t = 350 t = 10000

Fig. 3. A 4 agent example mission over a static Gaussian likelihood.
Each agent’s position, past trajectory, and active coverage region are
shown with the colored triangle, line, and squares, resp.

The left plot in Fig. 4 depicts the maximum amount of
time that any grid square went uncovered, i.e. the grid square
did not belong to any agent’s active covering, during each of
50 simulation runs. Here, the maximum amount of time that
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Fig. 4. The maximum amount of time that any subregion went un-
covered in each of 50 simulation runs (left), and the value of the cost
H as a function of time, averaged over the same 50 runs (right).

any region went uncovered was 186 units, though the max-
imum for most trials was less than 75 units. This is well-
below the loose bound ∆+d = 770 predicted by Theorem 3
(see Remark 4). Note that this metric does not capture the
time between the agent’s actual visits to the grid-square, only
the length of intervals on which no agent was allowed to visit
the square. The time between visits is governed by the par-
ticular choice of trajectory planner and the parameter ∆H.

The right plot in Fig. 4 shows the mean values of the cost
function H , calculated over the same 50 simulations runs.
Here, error bars represent the range of cost values at select
points. The variance between runs is due to the stochastic
nature of the agent-cloud exchange patterns. Notice the cost
is non-increasing over time, eventually settling as the cov-
erage regions/generators reach their limiting configuration,
e.g., see Fig. 3. These configurations are each Pareto optimal
and form a multiplicatively-weighted Voronoi partition (Re-
mark 5). The resultant coverage assignments provide load-
balancing that takes into account the event likelihood. If the
low-level trajectory planner biases trajectories according to
the event likelihood, this results in desirable coverage proper-



ties. Under the modified SMC planner used here, the tempo-
ral distribution of agent locations closely resembles the spa-
tial likelihood distribution in the limit, as shown in Fig. 5.

Fig. 5. Comparison between the (time-invariant) event likelihood Φ

(left), and the proportion of time that some agent occupied each sub-
region after significant time has passed (10000 units) (right).

Further, during the simulation, no two agents ever oc-
cupied the same space due to the careful parameter manipu-
lations employed by Algorithm 1. Fig. 6 illustrates the logic
governing these manipulations through a simplistic example:
During the first update, the blue agent acquires some of the

Blue communicates 

with cloud
Red communicates, 

vacates region

Blue adds 

new regions

Fig. 6. Simplified example illustrating how Algorithm 1 manipulates
timing parameters to prevent agent collisions.

red agent’s coverage region. Rather than immediately adding
these regions to its active covering, the blue region waits until
sufficient time has passed to guarantee that the red agent has
updated and moved out of the reassigned regions. Under Al-
gorithm 3, once the red agent communicates with the cloud,
it immediately vacates the reassigned regions, after which the
blue agent can add the region to its active covering. This pro-
cedure guarantees that no two agents will never have over-
lapping active coverings and thus never collide (Theorem 5).
This same logic results in inherent collision prevention over
more complex scenarios.

We can also compare the coverage regions produced by
Algorithm 1 to those produced by the partitioning algorithm
in [12]. The two algorithms were simulated in parallel, per-
forming updates with the same randomly chosen agent-cloud
exchange orderings across the two conditions. The left and
the right plots in Fig. 7 show the mean coverage cost over 50
simulation runs, calculated using Hmin (defined in [12], Sec-
tion II-C) and H (Section 4.2), respectively (portions of the
curves extending above the axes indicate an infinite value).
The function Hmin is defined nearly identically to H , but
uses global graph distances, rather than subgraph distances.
It is clear that the evolution produced by the algorithm in [12]
converges to a final configuration slightly faster than that pro-
duced by Algorithm 1 whenever costs are quantified using

Hmin. However, when costs are calculated using H , the al-
gorithms in [12] produced intermediate configurations with
infinite cost, indicating disconnected regions, while Algo-
rithm 1 maintained connectivity. In contrast to [12], our
surveillance framework allows for complete coverage with-
out requiring the agents to leave their assigned regions, al-
lowing it to operate more effectively within a multi-agent
surveillance scheme.
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Algorithm from [12]

Fig. 7. Comparison of coverage cost between [12] and Algorithm 1.
Coverage costs are calculated with Hmin ( [12], Section II-C) on the
left and with H (Section 4.2) on right.

6.2 Time-Varying Likelihood
We now illustrate how the proposed coverage frame-

work reacts to changes in the underlying likelihood. Specifi-
cally, we study a particular type of time-varying likelihood in
which the spatial distribution only changes at discrete time-
points, i.e., Φ(k, ·) is piece-wise constant for any k ∈ Q.
This type of scenario is common in realistic missions, e.g.,
when the cloud’s estimate of the global likelihood is only
re-formulated if some agent’s sensor data indicates a dras-
tic change in the underlying landscape. For this purpose,
we adopt identical parameters as in the first example, with
the exception of the likelihood Φ, whose spatial distribution
abruptly switches at select time-points. If the switches are
sufficiently spaced in comparison to the rate of convergence,
then the coverage regions dynamically adjust to an optimal
configuration that is reflective of the current state. For ex-
ample, Fig. 9 shows the coverage region evolution after the
underlying likelihood undergoes a single switch between the
likelihoods in Fig. 8 at time t = 2000. In contrast, if the

Initial Likelihood Final Likelihood

Fig. 8. The initial and final likelihood Φ(·, t).

likelihood changes faster than the rate of convergence, cov-
erage regions are constantly in a transient state. Despite this,



t = 2000 t = 2100

t = 2200 t = 4000

Fig. 9. Coverage regions after the likelihood switches (see Fig. 8)

the proposed framework still provides some degree of load-
balancing. To illustrate, the left plot in Fig. 10 shows the
value of H during a simulation in which the underlying like-
lihood switches at 12 randomly chosen time-points over a
1000 unit horizon. Each switch re-defined the spatial like-
lihood as a Gaussian distribution centered at a randomly se-
lected location. Notice that the cost monotonically decreases
between the abrupt spikes caused by changes in the underly-
ing likelihood. A convergent state is never reached; however,
coverage regions quickly shift away from high-cost configu-
rations, as seen in the right plot of Fig. 10, which shows the
average percentage drop in the value of the cost H as a func-
tion of the number of non-trivial updates, i.e., updates that
did not execute of Algorithm 1, line 3, following an abrupt
switch in the likelihood. The percentage drop is calculated
with respect to the cost immediately following the most re-
cent switch. During the first nontrivial update, the cost drops
on average 21.8% of the initial post-switch value, indicating
a quick shift away from high-cost configurations.
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Fig. 10. Evolution of the cost H using a piecewise-constant likeli-
hood with 12 random switches (indicated by the stars)(left), and the
average percent decrease in H following each switch (right).

7 Conclusion
This work develops a cloud-supported, decomposition-

based, coverage control framework for multi-agent surveil-
lance. In particular, a dynamic partitioning strategy balances
the surveillance load across available agents, requiring only
sporadic and unplanned agent-cloud exchanges. The parti-
tioning update algorithm also manages high-level logic pa-
rameters to guarantee that the resulting coverage assignments
have geometric and temporal properties that are amenable
for combination with generic single vehicle trajectory plan-
ners. In certain cases, the proposed algorithms produce a
Pareto optimal configuration, while ensuring collision avoid-
ance throughout.

Future work should further relax communication as-
sumptions to reflect additional limitations, e.g., use of direc-
tional antennae for wireless transmission. Extensions to the
proposed algorithms to incorporate explicit area constraints
on coverage regions, as well as more general vehicle dy-
namics, should also be explored. Other areas of future re-
search include the combination of peer-to-peer and cloud-
based communication, performance comparisons between
specific trajectory planners when used within our framework,
e.g., those involving ergodic Markov chains, and further the-
oretical performance characterization.

Appendix: Proofs
Proposition 2 (Sets). Suppose Assumption 1 holds, and
that, at the time of each exchange occurring prior to a fixed
time t̄ ≥ 0, required algorithmic constructions are well-posed
so that the cloud can perform updates via Algorithm 1. Then,
for any k ∈ Q and any time t ≤ t̄:

1. k ∈ PIDk ,
2. k belongs to at most 2 elements of P,
3. if TIDk = 0, then k /∈ P̀ for any ` 6= IDk, and
4. if k ∈ Pj, j 6= IDk, then Pj ∩PI D

` = /0 for ` /∈ { j, IDk}

Proof. Fix t̄ ≥ 0, k ∈ Q. When t = 0, P = PI D is an m-
partition of Q, implying the proposition. Since k is not re-
moved from PIDk or added to any Pi with i 6= IDk until its
first reassignment, i.e., when IDk is changed, the proposi-
tion holds for all t prior to the first reassignment. Suppose
the proposition holds for all t prior to the pth reassignment,
which occurs at time t0. Suppose ID−k = j, ID+

k = i 6= j.
Alg. 1 defines PI D,+

i = P+
i = P+

ID+
k

. Thus, k ∈ P+
ID+

k
= P+

i and

remains in these sets until another reassignment. Thus, state-
ment 1 holds for all t prior to the p+1st reassignment. Now
note that, by Alg. 2, reassignment cannot occur at t0 unless
T−j = 0. By inductive assumption, statement 3 of the propo-
sition holds when t = t−0 , implying k /∈ P−` for any ` 6= j.
Upon reassignment, the timers Tj,Ti are modified such that
T+

j ,T+
i > ω

+
j +∆− t0. Since (i) IDk cannot change when

Tj > 0, and (ii) agent j exchanges data with the cloud and
removes k from Pj prior to time ω

+
j +∆, we deduce that k

solely belongs to Pj, Pi until the p+ 1st reassignment. Fur-
ther, for any t ≥ t+0 at which Ti = 0 and the p + 1st reas-



signment has not yet occurred, k ∈ Pi exclusively (addition
to other sets in P without reassignment is impossible). We
deduce statements 2 and 3 for any t prior to the p+ 1st re-
assignment. Finally, considering Alg. 2, it is straightforward
to show that T−j = 0 implies P−j = PI D,−

j (Tj = 0 only if the
most recent exchange that manipulated elements of PI D

j in-
volved agent j, after which Pj = PI D

j ). Further, (i) no agent
claims vertices from P+

j unless Tj = 0, and (ii) no vertex is
added to a coverage region without reassignment. As such,
Pj∩PI D

` = /0 for any ` /∈ { j, IDk = i} prior to another update
in which some other agent claims vertices from Pj. Extend-
ing this logic and noting the bound ∆, we deduce the same
result for any t prior to the p+1st reassignment of k. Noting
∆ once again, the proposition follows by induction.

Proof of Theorem 1. It suffices to show that Def. 1 is well-
posed (Prop. 1) whenever additive sets are required. We pro-
ceed by induction. When t = 0, PI D = P is a connected m-
partition of Q; thus, for any i, PI D

i ∩(
⋃

j 6=i Pj) = /0. The same
holds prior to the first agent-cloud exchange, so the first call
to Alg. 1 is well-posed. Now assume that, for all t prior to the
pth call to Alg. 1, (i) PI D is a connected m-partition of Q, and
(ii) if an exchange occurs that requires construction of Padd

i
(assume this also applies to the impending pth exchange),
then PI D

i ∩
(⋃

j 6=i Pj
)
= /0 immediately prior to the exchange.

This implies that Prop. 2 holds at any time t prior to the
p+ 1st exchange. Assume the pth exchange occurs at time
t0 and involves agent i. Recall that PI D,+ is an m-partition
of Q. To show PI D,+ is connected, first notice PI D,+

i =
P+

i . Since either P+
i = Padd

i (c+i ) (connected by Def. 1) or
PI D,+

i = PI D,−
i (connected by assumption), connectivity of

PI D,+
i follows. Now consider PI D

j , j 6= i. If T−j 6= 0, then

PI D,+
j = PI D,−

j is connected. Suppose T−j = 0 and PI D,+
j is

not connected. By Prop. 2, P+
j ∩PI D,+

` = /0 for any ` /∈ {i, j}.
Thus, there exists k1 ∈ PI D,+

j such that (i) k1 /∈ Padd
i (c+i ),

and (ii) any optimal path in G(P+
j ) spanning k1 and c+j con-

tains some k2 ∈ Padd
i (c+i ) = P+

i . Select one such path and
vertex k2. Without loss of generality, assume {k1,k2} ∈ E.
Def. 1 implies 1

si
dP+

i
(k2,c+i )<min{ 1

s`
dP+

`
(k2,c+` ) |` 6= i,k2 ∈

P+
` } and thus 1

si
dP+

i ∪{k1}(k1,c+i ) < 1
s j

dP+
j
(k1,c+j ). Since

T−j = 0 and ID−k1
= j, Prop. 2 implies 1

si
dP+

i ∪{k1}(k1,c+i ) <
1
s j

dP+
j
(k1,c+j ) = min{ 1

s`
dP+

`
(k1,c+` ) |` 6= i,k1 ∈ P+

` }, contra-

dicting k1 /∈ Padd
i (c+i ). Thus, PI D,+

j is connected. Invoking
Prop. 2 statement 3, the inductive assumption holds for all t
prior to the p+1st exchange, implying well-posedness.

Proof of Theorem 2.
Statement 1: The proof of Thm. 1 implies the statement.
Statement 2: P is an m-covering of Q since PI D is an m-
partition of Q, and PI D

i ⊆ Pi for any i (Prop. 2, statement
1). The covering P is connected, since Pi = PI D

i (connected
by statement 1) immediately following any agent-cloud ex-
change and is unchanged in between updates.
Statement 3: It suffices to show IDci = i for any t, i: this

would imply ci 6= c j for any i 6= j, and ci ∈ Pi (Prop. 2). Since
IDci = i for all i at t = 0, the same holds for any t prior to the
first agent-cloud exchange. Suppose IDci = i for all i (thus
ci 6= c j for any i 6= j) prior to the pth exchange. If agent i is the
pth communicating agent, lines 2, 9 of Alg. 1 imply ID+

c+i
= i.

Since dP−j
(c−j ,c

−
j ) = 0 for any j, we have c+j /∈ Padd

i (c+i ).

Thus, ID+
c+j

= j, and induction proves the statement.

Statements 4 and 5: Statement 4 follows from (1), noting
that PA

i = Pi. Statement 5 holds by assumption when t = 0.
Let k ∈ Q, and consider times when IDk changes (k is reas-
signed). Since supp(ΦA

j (·, t)) = Pj = PA
j for any j at t = 0,

statement 4 implies that, for any t prior to the first reassign-
ment, k belongs exclusively to supp(ΦA

IDk
(·, t)). Suppose

statement 5 holds for all t prior to the pth reassignment (oc-
curring at time t0), and ID−k = j, ID+

k = i 6= j. Then, T−j = 0
and k belongs exclusively to P−j when t = t−0 (Prop. 2). By

Alg. 1 and 2, k ∈ PA,pd,+
i and T+

i > ω
+
j + ∆− t0 ≥ τ

A,+
i .

Since supp(ΦA
i (·, t)) is unchanging over an interval of length

at least T+
i ≥ τ

A,+
i , (1) implies k /∈ supp(ΦA

i (·, t)) when
t ∈ [t+0 , t+0 + τ

A,+
i ]. Since k is reassigned when t = t0, k ∈

P+
i \P

I D,−
i and T+

j =ω
+
j +∆−t0. Agent j will communicate

with the cloud at some time t1 < t0+T+
j =ω

+
j +∆< t0+T+

i .
Thus, Ti > 0 when t = t1, and k is removed from both Pj and
supp(ΦA

j (·, t)). Thus, for all t > t0+τ
+
i and before the p+1st

reassignment, k belongs exclusively to supp(φi(·, t)).

Proof of Theorem 3. Thm. 2 implies statement 1.
Statement 2: For any i, (i) Ti = 0 when t = 0, and (ii)
1
si

dQ′(k1,k2) ≤ d for any connected Q′ ⊆ Q, k1,k2 ∈ Q′.
Thus, it is straightforward to show, for any i, t, we have the
bound Ti ≤ ∆+∆H +d. We show by induction that, for any
i, t, the bound τA

i − t +ωA
i ≤ Ti−∆H also holds: Ti = 0 and

τA
i =−∆H when t = 0 , so τA

i −t+ωA
i = τA

i ≤ Ti−∆H, and the
bound holds prior to the first cloud-agent exchange involving
any agent, since τA

i −t = τA
i −t+ωA

i ≤−∆H ≤ Ti−∆H at any
such time. Assume the bound holds prior to the pth exchange
(occuring at t = t0). Consider 2 cases: if agent i is the com-
municating agent, then τ

A,+
i − t +ωA

i = τ
+
i := T+

i −∆H; if
not, then τ

A,+
i = τ

A,−
i and either (i) T−i = T+

i implying the de-
sired bound, or (ii) T−i = 0 and τ

A,+
i − t0 +ω

A,+
i = τ

A,−
i − t +

ω
A,−
i ≤ T−i −∆H =−∆H ≤ (ωA,+

i +∆− t0)−∆H = T+
i −∆H.

This logic extends to all t prior to the p+ 1st exchange and
the desired bound follows by induction.

Using the aforementioned two bounds, we have τA
i +

ωA
i ≤ t+∆+d. Fix t and k ∈ Prohi(t)∩Pi. Then, k ∈ PA,+

i =

P+
i , k ∈ PA,pd,+

i , and t−ω
A,+
i < τ

A,+
i (‘+’ is with respect to

the fixed time t). Further, over the interval [t,ωA,+
i + τ

A,+
i ],

the vertex k is not reassigned, Pi is not augmented, and
τA

i is unchanged. Therefore, k /∈ Prohi(ω
A,+
i + τ

A,+
i ). Set-

ting t0 := ω
A,+
i + τ

A,+
i , we have t < t0 ≤ t + ∆+ d. Since

Ti ≥ τA
i + ∆H at time ω

A,+
i , k is not reassigned during the

interval [ωA,+
i ,ωA,+

i + T+
i ] ⊇ [ωA,+

i , t0 +∆H] ⊇ [t0, t0 +∆H].
Thus k ∈ Pi\Prohi(·) over the same time interval.
Statement 3: Fix t and suppose k ∈ P−i \P

+
i (in this proof,



‘+,−’ are with respect to t). Then, (i) IDk changed (k was
reassigned) at time t0 < t, (ii) agent i exchanges data with
the cloud at time t, and (iii) no exchanges involving agent
i occurred during the interval [t0, t). Upon reassignment at
time t0, Alg. 2 specifies that (i) Ti is reset to value ω

A,−
i +

∆− t0, thus PI D
i is unchanged over the interval [t0, t), (ii) k is

added to PA,pd
IDk

, and (iii) τA
IDk

, TIDk are given values of at least

ω̃ := max
k̃∈P−i \P

+
i

{
ω

A,−
i +∆+

1
si

dP−i

(
k̃,PI D,−

i

)
− t0

}
,

implying that PIDk , ProhIDk(·) are constant over the interval
(t0, ω̃]⊇ (t0, t + 1

si
dP−i

(k,PI D,−
i )]⊇ (t0, t].

Since coverage regions are connected and non-empty
(Thm. 2), and P−i ∩ PI D

` = /0 for any ` /∈ {i, ID+
k } on the

interval (t0, t] (Prop. 2), (i) there exists a path of length
dP−i

(k,PI D,−
i ) from k into PI D,−

i and every vertex along any

such path (except the terminal vertex) lies within P−i \P
+
i ,

and (ii) P−i \P
+
i ⊆ ProhID+

k
(·) over the interval (t0, ω̃]⊇ [t, t+

1
si

dP−i
(k,PI D,−

i )]. Since (i) each vertex belongs to at most

two coverage regions (Prop. 2), (ii) k ∈ P−i \P
+
i , and (iii) no

agent claims vertices within ProhID+
k
(·)∩PID+

k
when TID+

k
>

0, vertices along the path (excluding the terminal vertex) do
not belong to Pj with j 6= IDk over [t, t + 1

si
dP−i

(k,PI D,−
i )].

To complete the proof, Alg. 2 implies T+
i > 1

si
dP−i

(k,PI D,−
i ),

and thus PI D,−
i ⊆ PI D

i over [t, t + 1
si

dP−i
(k,PI D,−

i )].

Proposition 3 (Cost). Suppose Assumption 1 holds and
that, during each agent-cloud exchange, the cloud updates
relevant global and local coverage variables via Alg. 1. If
Φ(·, t1) = Φ(·, t2) for all t1, t2, then H (c,PI D , ·) = H (c,P, ·).

Proof. Since Φ is time-invariant, H (·, ·, t1) = H (·, ·, t2) for
any t1, t2. When t = 0, P = PI D and H (c,PI D ,0) =
H (c,P,0). The same is true prior to the first agent-cloud
exchange. Suppose that, prior to the pth exchange (occur-
ring at t = t0, involving agent i), we have H (c−,PI D,−, t0) =
H (c−,P−, t0). Recall that, for any j, Pj and PI D

j coin-
cide immediately following any exchange involving agent
j and, if agent j claims vertices from Pi, then Alg. 2 en-
sures that agent i exchanges data with the cloud before
additional vertices are claimed by other agents. Consid-
ering the pth update, this logic, along with Prop. 2, im-
plies that PI D,−

i ∩ P−j = /0, for all j 6= i. Noting that

c+i ∈ PI D,−
i , we deduce that any k ∈ PI D,−

i contributes
equivalently to H (c+,PI D,+, t0) and H (c+,P+, t0). If k ∈
Padd

i (c+i )\P
I D,−
i , then for any j 6= i such that k ∈ P+

j , we
have 1

si
dP+

i
(k,c+i ) <

1
s j

dP+
j
(k,c+j ) (Def. 1), implying k con-

tributes equivalently to H (c+,PI D,+, t0) and H (c+,P+, t0).
Now suppose k ∈ P+

j \P
+
i , where P+

j ∩ P+
i 6= /0. We show

that d
PI D,+

j
(c+j ,k) = dP+

j
(c+j ,k): if a length-minimizing path

in G(P+
j ) between c+j and k is also contained in G(PI D,+

j ),
the result is trivial. Suppose that every such minimum
length path leaves G(PI D,+

j ). By Prop. 2, every k̄ ∈ P+
j

must satisfy ID+
k̄ ∈ {i, j}. Thus, assume without loss of

generality that k is adjacent to P+
i . Let k ∈ P+

i be a ver-
tex that is adjacent to k and lies along a minimum-length
path in G(P+

j ) spanning c+j and k. Since k ∈ P+
i \P

I D,−
i ,

we have k ∈ Padd
i (c+i ) as constructed during the update, im-

plying 1
si

dP+
i
(k,c+i ) < min{ 1

s`
dP+

`
(k,c+` ) |` 6= i, k̄ ∈ P+

` } and

thus 1
si

dP+
i ∪{k}

(k,c+i ) <
1
s j

dP+
j
(k,c+j ). Since T−j = 0 and

ID−k = j, Prop. 2 implies 1
si

dP+
i ∪{k}

(k,c+i )<
1
s j

dP+
j
(k,c+j ) =

min{ 1
s`

dP+
`
(k,c+` ) |` 6= i,P+

` }, contradicting k /∈ Padd
i (c+i ) ⊂

P+
i . Thus, d

PI D,+
j

(c+j ,k) = dP+
j
(c+j ,k), which, by inductive

assumption, implies that k contributes equally to the value
of both H (c+,PI D,+, t0) and H (c+,P+, t0). We conclude
H (c+,PI D,+, t0) = H (c+,P+, t0). Since P, PI D , and c are
static between updates, the statement follows by induction.

Proof of Theorem 4. The cost H (c,P, t) is static in be-
tween agent-cloud exchanges, as P and c are unchanged.
Consider an exchange occurring at time t0 involving agent
i. By Prop. 3, we have H (c+,P+, t0) ≤ H (c−,PI D,−, t0) =
H (c−,P−, t0). Thus, the cost H (c,P, t) is non-increasing in
time. Since Covm(Q) is finite, there is some time t0 after
which the value of H is unchanging. Consider fixed t > t0 at
which some agent i exchanges data with the cloud. Since the
value of H is unchanging, Alg. 1 implies that PI D and c are
unchanged by the update. It follows that c and PI D converge
in finite time. Further, since PI D

i ⊆ Pi for any i (Prop. 2),
we have PI D,−

i = PI D,+
i = PI D,−

i ∪Padd
i (c+i ) = P+

i . By per-
sistence of exchanges imposed by ∆, this implies that after
some finite time, P and PI D are concurrent.

To prove Pareto optimality of the limiting configuration,
consider t0, such that for all t > t0, (c,P) is unchanging and
P is an m-partition of Q. Timers are only reset when P is
altered, so assume without loss of generality that Ti = 0 for
all i at any t > t0. Suppose agent i exchanges data with the
cloud at time t > t0. Alg. 1 implies that there is no k∈Pi such
that ∑h∈Pi dPi(h,k)Φ(h, t)<∑h∈Pi dPi(h,ci)Φ(h, t) (if not, the
cost is lowered by moving ci). Similarly, for k ∈ Pj with j 6= i
that is adjacent to Pi, we have 1

si
dPi∪{k}(ci,k) ≥ 1

s j
dPj(c j,k)

(if not, there exists k ∈ Padd
i (c+i )\P

−
i , contradicting conver-

gence). As such, for any i, there is no Q′ ⊂ Q\Pi such that
∑k∈Q′

1
si

dPi∪Q′(ci,k)< ∑k∈Q′min{ 1
s j

dPj(c j,k) |k ∈ Pj, j 6= i},
implying statement 2 of Def. 2.

Proof of Theorem 5. By Assumption 2, each agent’s lo-
cal trajectory planner never directs the agent into its prohib-
ited region, so if no agent-cloud exchange occurs that re-
moves the vertex corresponding to the relevant agent’s lo-
cation from its coverage region, then the statement is im-
mediate. Suppose, at some time t0, agent i, whose location
is associated with some k ∈ PA,−

i , exchanges data with the
cloud and k is removed, i.e., k /∈ PA,+

i . At time t+0 , agent i
executes lines 5 and 6 of Alg. 3. Thm. 3 ensures that (i) there



exists a path in G(PA,−
i ) between k and PI D,−

i , (ii) all ver-
tices along the path belong to ProhID+

k
(t̄)\

⋃
j 6=ID+

k
P+

j when-

ever t̄ ∈ (t0, t0+ 1
si

dPA,−
i

(k,PI D,−
i )], and (iii) PI D,−

i ⊆Pi :=PA
i

over the same interval. Thus, if agent i immediately moves
along the path, it will lie exclusively within ProhID+

k
(·) until

it reaches PA,+
i . It remains to show that the agent does not en-

ter Prohi(·)∩P+
i while traversing the aforementioned path.

Without loss of generality, consider the update at time t0 pre-
viously described. Since k is reassigned prior to the update,
we have Prohi(t−0 )∩P−i = /0 (vertices in Pi are not claimed
unless Ti = 0, implying t0−ω

A,−
i > τ

A,−
i ). By Prop. 2, we

deduce T+
ID+

k
> 0, so no vertices in PA,−

i ∩P+
ID+

k
can belong

to PA,pd,+
i , and no vertex on the constructed path belongs to

Prohi(t+0 ). Since T+
i > τ

A,+
i > 1

si
dPA,−

i
(k,PI D,−

i ), Prohi(·) is

constant over the interval (t0, t0 + 1
si

dPA,−
i

(k,PI D,−
i )].
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