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Polar Opinion Dynamics in Social Networks
Victor Amelkin†, Francesco Bullo‡, and Ambuj K. Singh†

Abstract—For decades, scientists have studied opinion forma-
tion in social networks, where information travels via word of
mouth. The particularly interesting case is when polar opinions—
Democrats vs. Republicans or iOS vs. Android—compete in the
network. The central problem is to design and analyze a model
that captures how polar opinions evolve in the real world.

In this work, we propose a general non-linear model of polar
opinion dynamics, rooted in several theories of sociology and
social psychology. The model’s key distinguishing trait is that, un-
like in the existing linear models, such as DeGroot and Friedkin-
Johnsen models, the individuals’ susceptibility to persuasion is a
function of their current opinions. For example, a person holding
a neutral opinion may be rather malleable, while “extremists”
may be strongly committed to their current beliefs. We also study
three specializations of our general model, whose susceptibility
functions correspond to different socio-psychological theories.

We provide a comprehensive theoretical analysis of our non-
linear models’ behavior using several tools from non-smooth
analysis of dynamical systems. To study convergence, we use
non-smooth max-min Lyapunov functions together with the gen-
eralized Invariance Principle. For our general model, we derive a
general sufficient condition for the convergence to consensus. For
the specialized models, we provide a full theoretical analysis of
their convergence—whether to consensus or disagreement. Our
results are rather general and easily apply to the analysis of other
non-linear models defined over directed networks, with Lyapunov
functions constructed out of convex components.

I. INTRODUCTION

The central goal of this work is modeling the evolution of
opinions of a group of people—the agents—connected in a
directed social network. We assume that the objective means
for opinion evaluation are limited, and the agents evaluate
their opinions by comparison with the opinions of others [25].
Thus, the process of opinion formation in a group is a network
process, where each agent’s opinion changes due to the agent’s
interaction with his or her neighbors in the network.

In particular, we focus on polar opinions, which describe
either degrees of proclivity toward one of two competing alter-
natives (e.g., Democrats vs. Republicans or iOS vs. Android)
or an attitude—from extreme unfavorable to neutral to extreme
favorable—toward a single issue (e.g., using nuclear power as
an energy source). We will use the terms opinion and attitude
interchangeably, and refer to them both as an agent’s state.
Our emphasis on polar opinions will manifest itself in that
the agents in our non-linear models will change their opinion-
adoption behavior as their opinions shift toward one or another
pole of the opinion spectrum.
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In what follows, we will review the main components
of an opinion dynamics model and connect them with the
existing theories of sociology and social psychology, preparing
a foundation upon which our models will be constructed.

Opinion formation via weighted averaging: The most
basic network model of opinion dynamics is the weighted
averaging model of DeGroot [21]:

x(t +1) =Wx(t),

where t is time, x(t) is a vector of agent states, and W is the
row-stochastic adjacency matrix of the social network, with
Wi j indicating the relative extent to which agent j influences
the opinion of agent i, or, alternatively, the relative share of
x j(t) in xi(t +1). According to this model, each agent forms
his or her opinion as a weighted average of all the opinions
available in the agent’s out-neighborhood in the network.

The appeal of DeGroot model stems from its consistency
with such theories of social psychology as social comparison
theory [25], cognitive dissonance theory [26], and balance
theory [13], [37], whose unifying idea is that the agents act to
achieve balance with other group members or, alternatively, to
relieve psychological discomfort from their disagreement with
others. However, one limitation of DeGroot model is that the
agents’ “behavior” does not change depending on the agent,
its current state—opinion or attitude—and the issue at hand.

Models with susceptibility to persuasion: At the very
least, the strength of an agent’s attachment to his or her
opinion depends on the extent to which the issue is important
to that agent and is representative of his or her values. Such a
dimension of the strength of attitude—a function of the agent
and the issue—has arisen in multiple studies under the names
of embeddedness [61], ego preoccupation and ego involve-
ment [2], [46], among others. Friedkin-Johnsen model [29]
addresses the limitation of DeGroot model by allowing the
agents to have different susceptibilities to persuasion:

x(t +1) = AWx(t)+(I−A)x(0),

where t, x(t) and W are defined as before, I is the identity
matrix, and A is a constant diagonal matrix whose diagonal
element Aii describes the extent to which agent i’s opinion
is affected by the opinions of other agents as opposed to
his or her own initial opinion. The diagonal elements of
matrix (I−A) are usually referred to as the agents’ degrees
of stubbornness. Friedkin-Johnsen model improves upon De-
Groot model not only in terms of the model’s interpretation,
but also in terms of the model’s behavior—while the typical
asymptotic behavior of DeGroot model in a “well-connected”
social network is the convergence to consensus, in case of
Friedkin-Johnsen model, agents usually disagree. The latter
behavior usually occurs in the real world [45].
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State-dependent susceptibility in linear models: The
“state-oblivious” definition of the agents’ constant suscep-
tibilities to persuasion of Friedkin-Johnsen model does not
capture another component of the agents’ strength of convic-
tion, known in social psychology as commitment [61], [2],
[49] or certainty [46], which is determined by each agent’s
attitude toward the issue. The dependency of susceptibility
to persuasion on the agents’ beliefs has been studied in the
context of Friedkin-Johnsen model [28], where the asymptotic
behavior of the model was empirically evaluated under several
definitions of susceptibility A(x(0)) as a function of the initial
opinions x(0) of the agents.

Among the existing theories of social psychology, there is
no agreement upon a single correct definition of susceptibility
A based on the agents’ beliefs. One factor that has arisen in
multiple studies as closely related to the strength of conviction
is the attitude extremity or polarity [47], [7], [61], [59], [54],
[22]. The conclusion that can be drawn from these works is
that extreme opinions are more resistant to change, possibly,
due to the preferential evaluation of attitude-congruent infor-
mation by the agents holding extreme opinions. Alternatively,
social comparison theory [25] suggests that, when the majority
of the agents hold a certain, say, neutral, opinion, establishing a
social norm, then the agents with opinions close to that norm
have relatively weaker tendencies to change their positions,
while the extreme opinions are unstable.

Existence of multiple alternative theories regarding the
factors determining the strength of the agents’ commitment
to their opinions is not surprising, particularly, because these
factors have been shown to be domain-specific [61]. Hence,
it is rational to either study the opinion formation process
under the most general definition of the strength of the agents’
attitudes or to use multiple definitions of the attitude strength
based on the existing socio-psychological theories. In this
work, we will study both the most general definition of
agent susceptibility as well as several specialized definitions
consistent with different socio-psychological theories.

State-dependent susceptibility in non-linear models: The
definition of susceptibility A as a function of the initial state
x(0) is beneficial in that it does not take away the model’s
linearity and, hence, allows application of the existing linear-
algebraic techniques to the formal analysis of the model’s
asymptotic behavior. However, definition of A as a function
of the current state x(t), while would make the model non-
linear, has at least two advantages. For one thing, the definition
A = A(x(t)) may be more appropriate when the evolution of
opinions is studied at a large time scale, as in the case when
a group of people is working on a year-long project, and
hardly anyone remembers what their opinions were a year ago.
For another thing, and more importantly, in several existing
studies [8], [63], [75], the agents’ attitudes are posited to be
“constructed on demand”, and, in particular, according to the
potentiated recruitment model [8], the strength of attitude is
an emergent property of the process of attitude construction
occurring when the attitude is recruited. Thus, in our models,
we adopt the definitions of agent susceptibility dependent on
the agents’ current states.

This work’s summary and contributions: In our work, we
propose novel non-linear models of polar opinion dynamics
and formally analyze their behavior. More specifically, we
make the following contributions.
(i) Novel Models: We propose a general non-linear model
of polar opinion dynamics, where the agents’ susceptibilities
to persuasion are general functions of the agents’ current
beliefs. Additionally, we propose three specialized instances
of the general model, having different definitions of agent
susceptibility A(x(t)) corresponding to different theories of
social psychology. The proposed models are novel in that
they capture more traits of the opinion formation process than
the existing models, and manifest a behavior unobserved in
their linear counterparts—we can generally observe either the
agents’ convergence to consensus or their persistent disagree-
ment, depending on the agents’ initial beliefs x(0).
(ii) Analysis of the General Model: For our general model of
polar opinion dynamics we prove a contraction property of its
trajectories, and provide a sufficient condition for the conver-
gence to consensus. That sufficient condition is rather general
and, roughly, states that convergence to consensus takes place
if the agents non-responsive to persuasion have identical states.
The latter entails that, quite naturally, a disagreement among
the agents may arise only if there are multiple agents having
different beliefs and unwilling to change them.
(iii) Analysis of the Specialized Models: We provide a com-
prehensive theoretical analysis of the asymptotic behavior
of our specialized models, characterizing all their states of
equilibrium—corresponding to either the states of consensus
or disagreement—through the analysis of certain partitions of
the network, and prove each model’s convergence. For the
cases when a model converges to a state of disagreement, we
provide an explicit expression for that limiting state, which
depends on the network’s structure as well as the beliefs and
locations of the agents non-responsive to persuasion, yet, does
not depend on the initial beliefs of the susceptible agents.
(iv) Novel Analysis of Convergence: The standard tools for
the analysis of convergence of non-linear continuous-time
models, such as Lyapunov’s Second Method and LaSalle
Invariance Principle, require existence of a smooth Lyapunov
function, which may not and, sometimes, provenly does not
exist [55] for a model defined over a directed network. In this
work, we use max-min non-smooth Lyapunov functions along
with several existing non-smooth analysis techniques to prove
convergence of our non-linear models. While such Lyapunov
functions have appeared in existing literature, to the best of our
knowledge, we are the first to provide a full formal analysis
of convergence of continuous-time non-linear systems defined
over directed networks using such functions together with the
generalized Invariance Principle.

Paper’s organization: Having motivated our work in Sec-
tion I, we proceed with a review of existing opinion dynamics
models in Section II. Then, in Section III, we define our
models of polar opinion dynamics, and, subsequently, analyze
them in Section IV. The analysis of our models relies on some
notions from non-smooth analysis reviewed in the Appendix.
We conclude with a discussion of our results in Section V.
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II. GENERAL LITERATURE REVIEW

The numerous existing opinion dynamics models can be
roughly divided into two groups: analytic and algorithmic.

Analytic models are represented as systems of difference
or differential equations

x(t +1) =W (x(t), t)x(t) or dx/dt = ẋ =W (x(t), t)x

and describe a process of agent interaction usually targeting
a certain form of agreement among the agents. These models
mainly differ in the extra properties of the agent interaction
process besides the agents’ effort toward reaching agreement.
All our models proposed in this paper belong to this group.

Analytic models have long been studied by sociologists,
starting with the works of French [27] and Harary [35].
Nowadays, the basic formulation of the weighted averaging
process is usually referred to as DeGroot model [21]. A
variation of DeGroot model with some agents’ states kept
constant has been studied by Pirani and Sundaram [60]. An
improvement upon DeGroot model was proposed by Friedkin
and Johnsen [29], who enabled the agents to have individ-
ual levels of susceptibility to persuasion by other agents.
Variations of Friedkin-Johnsen model have been studied in
a context of a group’s discussing a sequence of issues [41],
[72]. The question of the dependence of A upon the agents’
beliefs has been empirically studied by Friedkin in [28]. A
variation of Friedkin-Johnsen model with time-dependent A(t)
and its connection to the underlying notion of dissonance
minimization was discussed in work [34] by Groeber et al. A
Friedkin-Johnsen-type model with stubborn agents has been
studied as a local interaction game by Ghaderi et al. [30].

Another type of analytic models—close in spirit to our
models—are the models with state-dependent agent interac-
tion, W (x), and, in particular, the bounded confidence mod-
els [14], [52], whose key idea is that only the agents with close
enough states can interact. The two popular representatives of
such models are Hegselmann-Krause (HK) [36] model and the
model of Deffuant et al. [20]. Some convergence results for
HK model have been proven by Blondel et al. [9]. Sufficient
convergence conditions for a more general model with state-
dependent agent interaction, that includes HK model as a
special case, have been studied by Lorenz [51].

A special subtype of bounded confidence models are
those that allow for stubbornness, leadership, antagonism, or
zealotry, and whose behavior has been investigated through
simulation. In particular, in [19], Deffuant et al. study the
behavior of Deffuant’s model with smooth confidence bounds
in the presence of stubborn agents. Kurmyshev et al. [48]
extend Deffuant’s model with two types of agents character-
ized by “friendly” and “antagonistic” interaction, respectively.
Jalili [40] has studied the effect of the choice of the subset
of stubborn leaders as well as a particular network structure
upon the the bounded confidence model’s convergence rate.
Sobkowicz [64] has considered the “Deffuant model with
emotions”, where different opinions have varying resilience to
change. In particular, the author considered the cases when the
extreme opinions are more resilient to change than the neutral
opinions, as well as the case of an asymmetric dependency

of the opinion resilience on the opinion value. These opinion
resilience mechanisms are similar to some of those we use
in our specialized models in Section III. Chen et al. [15]
investigated how stubborn leaders can attract followers in
the context of a bounded confidence model that incorporates
the leaders’ reputation, stubbornness, appeal, as well as the
extremity of their opinions. Finally, Tucci et al. [67] have
studied the bounded confidence model with stubborn leaders
and investigated the effect of the number of leaders on the
opinion dynamics profile.

Similar analytic models are studied in the control systems
and robotics communities, in the context of multi-agent coor-
dination problems [11], [57]. The models with time-varying
topology W (t) of the network have been studied in [53],
[56], [55], [58]; the models for signed networks, allowing for
agents’ friendly and antagonistic interaction, have been studied
in [5], [39]; the models with randomized agent interaction have
been studied in [24], [65].

The final class of analytic models are the models considered
in the context of the naming game. Specifically, Waagen et
al. [69] design a naming game model with discrete opinions
and zealots—who do not change their opinion—and study the
effect of the number of zealots on the opinion dynamics of the
entire population. Verma et al. [68] has also studies the effect
of the presence of zealots in the naming game.

Algorithmic models for opinion dynamics are usu-
ally defined as combinatorial algorithms—probabilistic or
deterministic—describing how the agents update their states.
These models usually operate with discrete agent states and
in discrete time. A notable difference of algorithmic models
from their analytic counterparts is that algorithmic models are
usually data-driven, that is, such models are usually to be fit
to data, whereas the analytic models are “prescriptive”. One
model in this group is the Independent Cascade Model [31],
where the agents get “activated” with an opinion by their
neighbors in a probabilistic fashion. The basic version of this
model uses binary opinions—indicating presence or absence of
an opinion—and is usually used in the context of the influence
maximization problem [42]. A version of the Independent
Cascade Model for the case of multiple competing opinions
has been proposed in [12]; a version with asynchronous
communications has been studied in [62]. A related, yet
more general model, allowing for competing opinions, is the
switching-selection model of [32].

Two other types of algorithmic models are the Voter
model [17], [23], [44], [73] and the Linear Threshold
model [33], [70], where in the former model, each agent is
activated in a probabilistic fashion based on the number of
active agents in the neighborhood, and in the latter model,
agents become active as soon as the number of active neigh-
bors surpasses a constant threshold. Versions of the Linear
Threshold model for the case of competing opinions have been
studied in [10]. The extensions of the discrete-opinion Voter
model with stubborn agents have been considered in works [3],
[74], [73], where the authors studied the models’ long-run
behavior as well as the problem of influence maximization.
Finally, there are Bayesian algorithmic models [4], whose

agent state update rules are based on the Bayes rule.
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III. MODEL OF POLAR OPINION DYNAMICS

General model: We define the general model of polar
opinion dynamics as follows:

ẋ =−A(x)Lx. (1)

where x(t) ∈ [−1,1]n represents the agents’ states, A(x(t)) ∈
diag([0,1]n) is a diagonal matrix whose diagonal elements
are the agents’ state-dependent and possibly different suscep-
tibility functions locally Lipschitz in [−1,1]n, L = I−W is
the network’s Laplacian matrix, and W ∈ [0,1]n×n is the row-
stochastic adjacency matrix of the directed network, with its
edge weight Wi j measuring the amount of relative influence of
agent j upon agent i.

The mathematical interpretation of the above defined model
is as follows. In (1), the negative Laplacian −L, when applied
to x(t), measures how much, on (weighted) average, the
agent’s state is smaller than the states of the agents in its
out-neighborhood Nout(i) = { j | j 6= i∧Wi j > 0}

(−Lx)i = ∑
j∈Nout (i)

wi j(x j− xi).

When (−Lx)i > 0 and agent i is open to persuasion, that is,
Aii(x) > 0, then ẋi > 0, and xi grows, “following” its out-
neighbors. Conversely, if (−Lx)i < 0, the state of an open agent
i decreases. If either an agent’s state is in balance with the
states of its out-neighbors, or the agent is closed to persuasion,
that is, Aii(x) = 0, then this agent’s state does not change.

Model (1) can also be thought of as a non-linear generaliza-
tion of the heat diffusion model ẋ = α∆x, where the negative
Laplacian −L of (1) corresponds to the finite-difference ap-
proximation of the continuous-space Laplace operator ∆, and
the rate A(x) at which the state of the model evolves may be
thought of as the temperature-dependent thermal diffusivity—
a naturally occurring phenomenon [71].

The general model for polar opinion dynamics ẋ =−A(x)Lx
consists of two conceptual components: the averaging com-
ponent −Lx drives the agents towards agreement, while the
susceptibility component A(x) impedes this convergence pro-
cess. The averaging component is based on such theories of
social psychology as social comparison theory [25], cognitive
dissonance theory [26], and balance theory [13], [37], whose
unifying idea is that the agents act to achieve balance with
other group members. The general idea of agents’ suscepti-
bility or stubbornness to persuasion comes from the socio-
psychological studies of the strength of attachment to one’s
opinion [61], [2], [46]. The dependency of the agents’ sus-
ceptibility A(x) on their current beliefs agrees with the socio-
psychological studies [8], [63], [75], that posit that the agents’
attitudes are “constructed on demand”.

Specialized models: In addition to the general model (1),
we will consider three specialized models, each with a differ-
ent definition of state-dependent susceptibility A(x(t)), having
different socio-psychological interpretations.

(i) Model with stubborn extremists: The first specialized
model draws from the socio-psychological studies [47], [7],
[61], [59], [54], [22] of the attitude extremity as being a
major factor defining the strength of conviction, and whose

definition of agent susceptibility A(x)= (I−diag(x)2) assumes
that extreme opinions are more resistant to change than neutral
opinions.

ẋ =−(I−diag(x)2)Lx. (2)

This model is appropriate when the extreme opinions compete
in that an agent’s strong preference of one extreme implies
this agent’s likely rejection of the opposite extreme. For
example, this may be the case when agents’ states describe the
degrees of support for one of the two major political parties
in the US—inveterate Republicans or Democrats are unlikely
to change their political affiliation, while neutral voters can
be successfully attracted toward one or another pole of the
opinion spectrum.

(ii) Model with stubborn positives: The second specialized
model is a variation of the model with stubborn extremists with
the asymmetric susceptibility function A(x) = (I−diag(x))/2,
where the agents only at one end of the opinion spectrum are
stubborn.

ẋ =− 1
2 (I−diag(x))Lx. (3)

This definition—inspired by the “Stubborn Left” and “Stub-
born Right” susceptibility functions considered by Friedkin
in [28]—fits those cases when the agents at one, say, negative
extreme of the opinion spectrum have no reason to reject
the alternative opinion, while the agents having the opposite,
positive, opinion have an incentive to maintain their position.
For example, the opinion may describe the degree of liking one
of two smartphone brands, where opinion −1 corresponds to
the neutrally marketed brand, while opinion +1 corresponds
to the brand that is aggressively marketed not just as the best,
but also as the only viable option.

(iii) Model with stubborn neutrals: Finally, in our third
specialized model, drawing from the social comparison the-
ory [25] and the studies of social norms [28], we defined agent
susceptibility as A(x) = diag(x)2, assuming that the neutral
opinions are resilient to change, while the extreme opinions
are unstable, thereby, making this model the opposite of the
model with stubborn extremists.

ẋ =−diag(x)2Lx. (4)

This model assumes that the neutral opinion 0 correspond to a
social norm, and the agents may not feel comfortable deviating
from it and going against what is acceptable in their society.

Specialized models’ justification: Stating our specialized
models, we have provided three particular definitions of the
agents’ susceptibility A(x). While these definitions agree with
several well-established socio-psychological theories, the latter
theories do not provide any specifics about the particular
mathematical form of A(x), besides giving a general idea of its
behavior. In our definitions, we use low-degree polynomials,
making sure A(x) fits the socio-psychological theories and, at
the same time, is simple enough to allow a clear analysis.
Similarly, quadratic polynomials were used by Taylor [66]
who extended Abelson’s linear models [1] with “variable
resistance”. Alternatively, Friedkin in his recent study [28],
when defining the constant susceptibility A(x(0)) of the agents
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based on their initial beliefs, used functions of similar “shape”,
yet, expressed them using exponential functions.

Nevertheless, despite this lack of a single correct mathe-
matical form for each version of A(x), the convergence results
we obtain in the next Section IV are derived independently of
a particular mathematical form of A(x), only relying on the
zeros of A(x) as well as our ability to analytically compute
them. Thus, while we will further provide our analysis for the
specialized models using the particular susceptibility functions
defined above, this analysis is easy to adapt to other sus-
ceptibility functions behaving similarly, yet, possibly, having
different mathematical form.

IV. ANALYSIS OF THE MODELS

In this section, we will analyze well-posedness, equilibrium
points, and the asymptotic behavior of our models. The con-
vergence proofs will rely on several notions from non-smooth
analysis reviewed in the Appendix.

A. Well-posedness

In order for our general model ẋ = −A(x)Lx to be well-
posed, its solutions must exist, be unique, and must never es-
cape the state space [−1,1]n. These properties of the solutions
are stated in the following theorem and its corollary.

Theorem 1 (Well-posedness of the general model). If x(0) ∈
[−1,1]n, and the evolution of x(t) is governed by the general
model of polar opinion dynamics ẋ = −A(x)Lx, then x(t) ∈
[−1,1]n for any t ≥ 0.

Corollary (Existence, uniqueness, smoothness of solutions).
The general model of polar opinion dynamics ẋ = −A(x)Lx,
x(0) ∈ [−1,1]n, has a unique continuously-differentiable solu-
tion x(t) defined for all t > 0.

Since both Theorem 1 and its Corollary are standard results
in control theory, we will omit their proofs and only mention
that the validity of Theorem 1 immediately follows from
the general contraction Lemma 3, while the validity of the
Corollary follows from Theorem 3.3 of [43] used together
with local Lipschitz-continuity of A(x) and Theorem 1.

B. Equilibrium points

Prior to studying the equilibrium points of our models, we
will prove a basic lemma.

Lemma 1 (Properties of some network partitions). Let W ∈
Rn×n be a row-stochastic adjacency matrix of a strongly
connected network G(W ). If G(W )’s nodes are partitioned
into two non-empty sets {1, . . . ,n} = I1 ∪ I2, I1 ∩ I2 = ∅, and
P is any permutation matrix such that nodes I1 precede nodes
I2 in

PWPᵀ =

[ I1 I2

I1 W11 W12

I2 W21 W22

]
,

then both (I −W11) and (I −W22) are invertible, and both
(I−W11)

−1W121= 1 and (I−W22)
−1W211= 1.

Proof. Since G(W ) is strongly connected, W is irreducible.
Consequently, since both I1 and I2 and non-empty, W11 is
substochastic, so there exists ` ∈ I1, such that

∑
j∈I1

(W11)` j < 1. (∗)

Notice that ∑ j∈I1 (W11)
k
i j can be interpreted as the likelihood

of a k-hop random walk on G(W ) to start at node i and end at
any node of I1, so (∗) implies that there is a positive likelihood
for a 1-hop random walk starting at ` to escape I1. If we define
d(i, j) to be the length—in hops—of the shortest path from
node i to node j in G(W ), and dmax(`) = maxi∈I1 d(i, `), then

∀k > dmax(`) ∀i ∈ I1 : ∑
j∈I1

(W11)
k
i j < 1,

since for each i ∈ I1, there is at least one k-hop walk passing
through `, and, as a result, there is a positive likelihood
of any such walk’s escaping I1. Hence, for all k > dmax(`),
W k

11 is convergent, and its spectral radius ρ(W k
11) < 1, which

immediately entails ρ(W11) < 1. Hence, for the spectrum of
(I −W11), we have σ(I −W11) ⊂ (0,2). Thus, (I −W11) is
non-singular and, as such, invertible. Consequently, matrix
(I−W11)

−1W12 is well-defined, and its row-sums are

(I−W11)
−1W121= (since W is row-stochastic)

= (I−W11)
−1(1−W111) =

= (I−W11)
−1(I−W11)1= 1.

Applying the same reasoning to blocks W22 and W21 in place
of blocks W11 and W12, we obtain the existence of (I−W22)

−1,
and equality (I−W22)

−1W211= 1.

Theorem 2 (Equilibrium points). Suppose the network’s ad-
jacency matrix W is row-stochastic, and network G(W ) is
strongly connected. Then, the following holds.

1) The equilibrium points of the stubborn positives model
ẋ = − 1

2 (I− diag(x))Lx and the stubborn neutrals model ẋ =
−diag(x)2Lx are

x∗ = α1n, α ∈ [−1,1].

2) Consider an arbitrary agent set partition {1, . . . ,n} =
I1∪ I2, I1∩ I2 =∅, 2≤ |I1| ≤ n, and an arbitrary permutation
matrix P such that the agents are ordered as

PWPᵀ =

[ I1 I2

I1 W11 W12
I2 W21 W22

]
, Px =

[
I1 x1
I2 x2

]
.

Then, the equilibrium points of the stubborn extremists model
ẋ =−(I−diag(x)2)Lx are

x∗ = α1n, α ∈ [−1,1], and x∗ = Pᵀ[x∗1
ᵀ,x∗2

ᵀ]ᵀ,

where
x∗1 ∈ {−1,1}|I1| \{−1|I1|,1|I1|},

x∗2 =

{
(I−W22)

−1W21x∗1, if I2 6=∅,

[ ]0×1, if I2 =∅.

Proof. 1) First, let us deal with the model with stubborn
positives ẋ = f (x) =− 1

2 (I−diag(x))Lx. It is easy to see that
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x∗ = α1, α ∈ [−1,1] are equilibrium points of the system.
Now, let us look for equilibrium points corresponding to
the states of disagreement. Consider such a candidate point
x ∈ [−1,1]n, x 6= α1, n > 1. Since x 6= α1, there exists agent
i ∈ {1, . . . ,n}, such that xi = min(x) < 1, and exists agent
j ∈ {1, . . . ,n} such that x j > xi and Wi j > 0. Because xi < 1,
Aii(x) = 1

2 (1− xi) > 0; due to the existence of such agent j,
(Lx)i 6= 0. As a result, ( f (x))i 6= 0 and, thus, x is not a point of
equilibrium. Hence, x∗=α1 are the only points of equilibrium
of the model with stubborn positives.

In the remainder of the proof, we will consider different
partitions {1, . . . ,n}= I1∪ I2, I1∩ I2 =∅ of the agent set, and
P being any permutation matrix such that agents I1 precede
agents I2 in PWPᵀ and Px. For readability, for each partition
I1 ∪ I2, we will omit P in the expressions for W and x, and
will apply the right agent ordering later.

Let us proceed to the model with stubborn neutrals ẋ =
−diag(x)2Lx. A candidate equilibrium point x is defined w.r.t.
an agent set partition {1, . . . ,n}= I1∪I2, I1∩I2 =∅, 0≤ |I1| ≤
n as follows: xi = 0 if i∈ I1; and |xi|> 0 if i∈ I2. If I1 =∅, then
f (x) = 0⇔ Lx = 0⇔ x∗ = α1, where α ∈ [−1,1]. If I2 =∅,
then, clearly, x∗ = 0. Finally, if both I1 and I2 are non-empty,
then, w.l.o.g., assuming that agents I1 precede agents I2, f (x)=
0⇔ (I−W22)x2 = 0. However, from Lemma 1, we know that
(I−W22) is invertible. Hence, the obtained equation has only
the trivial solution x2 = 0, and the corresponding equilibrium
point is x∗ = 0. We have proven that the equilibrium points of
the model with stubborn neutrals are x∗ = α1, α ∈ [−1,1].

2) For the model with stubborn extremists ẋ = −(I −
diag(x)2)Lx, we define candidate equilibrium points w.r.t.
partition {1, . . . ,n}= I1∪I2, I1∩I2 =∅, 0≤ |I1| ≤ n as follows:
|xi| = 1 if i ∈ I1; and |xi| < 1 if i ∈ I2. If I1 = ∅, then
f (x) = 0⇔ Lx = 0, and, thus, x∗ = α1, α∈ [−1,1]. If I2 =∅,
then x∗ ∈ {−1,1}n. If both I1 and I2 are non-empty, then,
again, assuming that agents I1 precede agents I2 in W and x,
equation f (x) = 0 is rewritten as

(I−diag(x2)
2)
[
−W21 (I−W22)

][ x1
x2

]
= 0

⇔ (since |x2|< 1)⇔ (I−W22)x2 =W21x1.

From Lemma 1, we know that (I−W22) is invertible. Thus,
x2 = (I−W22)

−1W21x1. Among the x = [xᵀ1 ,x
ᵀ
2 ]

ᵀ satisfying the
obtained equation, we would like to separate those correspond-
ing to consensus and those corresponding to disagreement. If
x1 = 1, then, again from Lemma 1, we derive x2 = 1, and
x∗=1. Similarly, if x1 =−1, then x∗=−1. Notice, that all the
equilibrium points discovered so far correspond to consensus
and are independent of matrix P.

Finally, if x1 ∈{−1,1}|I1|\{1,−1} (which implies |I1| ≥ 2),
and, hence, the agents necessarily disagree, then x2 = (I −
W22)

−1W21x1, and the corresponding equilibrium points, under
the partition-defined agent order P, are x∗ = Pᵀ

[
xᵀ1 xᵀ2

]ᵀ.

C. Convergence analysis

Having studied the equilibrium points of our specialized
models, we will now study these models’ convergence. We
will, first, establish sufficient conditions for convergence to

consensus of the general model of polar opinion dynamics
and, then, use this result to prove convergence of the three
specialized models.

In the proofs of convergence, we will need establishing
forward invariance of certain subsets of the state space with
respect to a model at hand. To that end, we will need the
following Lemma, being an immediate consequence of the
solution uniqueness stated in the Corollary of Theorem 1.

Lemma 2 (Agent subset invariance). If x(t)∈ [−1,1]n evolves
according to one of the specialized models

ẋ =− 1
2 (I−diag(x))Lx, (3)

ẋ =−diag(x)2Lx, (4)

ẋ =−(I−diag(x)2)Lx, (2)

and the agents are partitioned into Iclosed(t) = {i | Aii(x(t)) =
0} and Iopen(t) = {i | Aii(x(t)) > 0}, then, for all t ≥ 0,
Iclosed(t) = Iclosed(0) = Iclosed and Iopen(t) = Iopen(0) = Iopen.

The following lemma will be instrumental in proving for-
ward invariance of subsets of the state space as well as in the
construction of Lyapunov functions in the convergence proofs.

Lemma 3 (General contraction lemma). Suppose that W is
a row-stochastic adjacency matrix of the network, and agent
states x(t)∈ [−1,1]n evolve according to the general model of
polar opinion dynamics

ẋ = f (x) =−A(x)Lx. (1)

Then, Vmax(x) = max(x) is non-increasing and Vmin(x) =
min(x) is non-decreasing along the trajectories of (1).

Proof. Let us consider Vmax(x) = max(x) and define Imax(x) =
{i | xi = max(x)}. According to Lemma 2.2 of Lin et al. [50],
the upper Dini derivative of Vmax along the trajectories of (1)
is defined as

D+
f Vmax(x) = max

i∈Imax(x(t))
ẋi(t)

= max
i∈Imax(x(t))

Aii(x(t))︸ ︷︷ ︸
∈[0,1]

∑
j∈Nout (i)

wi j(x j− xi︸ ︷︷ ︸
≤0

)≤ 0.

Hence, Vmax is non-increasing along the trajectories of (1). The
proof for Vmin is similar and, hence, is omitted.

We have laid out all the necessary preliminaries, and are
ready to prove convergence of our models. In the following
theorem, we will establish a sufficient condition for the con-
vergence to consensus of the general model of polar opinion
dynamics.

Theorem 3 (General convergence to consensus). Suppose that
W is a row-stochastic adjacency matrix of a strongly con-
nected network G(W ), and agent states x(t) ∈ [−1,1]n evolve
according to the general model of polar opinion dynamics

ẋ = f (x) =−A(x)Lx, (1)

with the agents’ having potentially different susceptibility
functions Aii(x).
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Let S ⊆ [−1,1]n be a non-empty compact set, forward
invariant w.r.t. system (1), and

N = S ∩ {α1 | α ∈ [−1,1]}

be its non-empty subset of consensus states.
Further, assume that in S, the agents’ susceptibility func-

tions Aii(x) agree upon their zeros in that

∀x ∈ S ∀i, j ∈ {1, . . . ,n} : Aii(x) = A j j(x) = 0→ xi = x j.

Then, all trajectories x(t) of (1) starting in S converge to
N as t→ ∞.

Proof. We will prove convergence using the Invariance Princi-
ple given as Theorem 9 in the Appendix. To apply it, we will,
first, need to find a suitable Lyapunov function for system (1).
Consider the following Lyapunov function candidate

Vmax−min(x) = max(x)−min(x).

While it immediately follows from the general contraction
Lemma 3 that Vmax−min(x) is non-increasing along the trajec-
tories of system (1), in order to prove convergence to a set,
we need a more detailed analysis that would distinguish the
cases when Vmax−min(x) decreases and when it does not change
along the system’s trajectories.

From Theorem 8, it follows that

∂Vmax−min(x) =

{
{Pᵀ[αᵀ,−βᵀ,0ᵀ]ᵀ}, if x ∈ S\N,

{Pᵀ(α−β)}, if x ∈ N,

where convex combination coefficients αi correspond to the
agents in Imax(x) = {i | xi = max(x)}, convex combination
coefficients βi correspond to the agents in Imin(x) = {i | xi =
min(x)}, 0 correspond to the rest of the agents Imid(x) =
{1, . . . ,n} \ Imax(x) \ Imin(x), and permutation matrix Pᵀ re-
stores the original agent order.

Now, for each ξ ∈ ∂Vmax−min(x), we are interested in
the values of inner products 〈ξ , f (x)〉, which, according to
Definition 2, comprise the set-valued Lie derivative

L̃ fVmax−min(x) = {a ∈ R | ∀ξ ∈ ∂Vmax−min(x) : 〈ξ , f (x)〉= a}

of Vmax−min(x) at x along the trajectories of system (1). Our
immediate goal is to understand when maxL̃ fVmax−min(x) is
negative and when it is zero, depending on the chosen x ∈ S.

If x ∈ N, that is, x = α1 for some α ∈ [−1,1], then f (x) =
−A(x)Lx = −A(x)α(L1) = 0 and, thus, ∀ξ ∈ ∂Vmax−min(x) :
〈ξ , f (x)〉= 0, so L̃ fVmax−min(x) = {0}.

If x ∈ S \N, then let us investigate the possible values of
〈ξ , f (x)〉, w.l.o.g., dropping P in the expression for ξ , for
readability, and using the same agent order in f (x) as in ξ :

〈ξ , f (x)〉=−ξ
ᵀA(x)Lx

=−

 α
−β
0

ᵀ Amax(x) 0 0
0 Amin(x) 0
0 0 Amid(x)

×
×

 (I−W11) −W12 −W13
−W21 (I−W22) −W23
−W31 −W32 (I−W33)

 xmax
xmin
xmid


=−

(
αᵀAmax(x)(xmax− [W11W12W13]x) +

βᵀAmin(x)([W21W22W23]x− xmin)
)
,

where xmax, xmin, and xmid are the states of the agents from
Imax(x), Imin(x), and Imid(x), respectively; Amax(x), Amin(x),
and Amid(x) are the diagonal matrices of susceptibilities of the
agents from these three agent subsets; and adjacency matrix W
is partitioned ordering the agents as Imax(x), Imin(x), Imid(x).

Since x ∈ S\N, then x 6= α1 and max(x)> min(x). Hence,
from the assumption of the theorem about the agreement of
Aii(x) upon zeros, it follows that at least one of the inequalities
diag(Amax(x))> 0 and diag(Amin(x))> 0 holds. Let us assume,
for now, that diag(Amax(x)) > 0 and focus on the first term
αᵀAmax(x)(xmax − [W11W12W13]x) of the obtained expression
for 〈ξ , f (x)〉.

Due to row-stochasticity of W and strong connectiv-
ity of G(W ), for (xmax − [W11W12W13]x)i = 0 to hold,
all out-neighbors of agent i ∈ Imax(x) in G(W ) must
also be from Imax(x). If there are no such agents i,
then xmax − [W11W12W13]x > 0. Additionally, since α is
comprised of a convex combination’s coefficients, and
diag(Amax(x)) > 0, then at least one element of αᵀAmax(x)
is positive. Hence, αᵀAmax(x)(xmax− [W11W12W13]x) > 0, and
maxL̃ fVmax−min(x)< 0.

If there is an agent i ∈ Imax(x) with its entire out-
neighborhood consisting of the members of Imax(x), then
(xmax− [W11W12W13]x)i = 0. However, xmax− [W11W12W13]x 6=
0, as the opposite would be possible either if agents Imax(x)
were disconnected from the rest of the network (which is
impossible due to the network’s strong connectivity assump-
tion), or x was a consensus state (which is impossible, as such
states are absent from S \N). Thus, there is j ∈ Imax(x) such
that (xmax− [W11W12W13]x) j = δ > 0. Now, however, if we put
α1 = ei and α2 = (ei + e j)/2, with ek being the k’th element
of the standard basis, we will have

α
ᵀ
1Amax(x)(xmax− [W11W12W13]x) = 0,

α
ᵀ
2Amax(x)(xmax− [W11W12W13]x) = δ/2(Amax(x)) j j > 0.

Consequently, for a given x ∈ S \N, term αᵀAmax(x)(xmax−
[W11W12W13]x) takes at least two different values, depending
on the choice of α. It can be analogously shown that, if
diag(Amin(x)) > 0, then βᵀAmin(x)([W21W22W23]x− xmin) also
takes at least two different values, for different β. Hence, since
α and β can be chosen independently, and at least one of the
terms αᵀAmax(x) and βᵀAmin(x) is not 0, we conclude that, if
x ∈ S \N, and there are some agents in Imax(x) whose entire
out-neighborhood is also in Imax(x), then

∃ξ1 6= ξ2 : 〈ξ1, f (x)〉 6= 〈ξ2, f (x)〉,
which entails L̃ fVmax−min(x) = ∅ and, by convention,
maxL̃ fVmax−min(x) = max∅=−∞ < 0.

To summarize, we have so far shown that, if x ∈ S\N, then
maxL̃ fVmax−min(x)< 0, and, if x ∈ N, then L̃ fVmax−min(x) =
{0}. Additionally, it immediately follows from Theorem 7 that
Vmax−min(x) is Lipschitz and regular on S. Thus, Vmax−min(x)
is a Lyapunov function for system (1).

Finally, we notice that, by assumption, S is compact and
forward invariant w.r.t. system (1). Additionally, N, in which
0 ∈ L̃ fVmax−min(x), is forward invariant w.r.t. system (1)—as
it entirely consists of equilibrium points—and, clearly, is the
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largest closed subset of itself. These two facts, taken together
with the existence of Lyapunov function Vmax−min(x), allow us
to conclude that, by Invariance Principle, all trajectories x(t)
of system (1) starting in S converge to N as t→ ∞.

Having proven a sufficient condition for the convergence to
consensus of the general model, we will proceed with a com-
prehensive analysis of convergence for the three specialized
models, starting with the model with stubborn positives.

Theorem 4 (Convergence—Stubborn Positives). Suppose that
W is a row-stochastic adjacency matrix of a strongly con-
nected network, and x(t) evolves according to the model with
stubborn positives

ẋ = f (x) =−A(x)Lx, A(x) = 1
2 (I−diag(x)). (3)

Then,

- if x(0)< 1, then lim
t→∞

x(t) = α1, α ∈ [0,1);

- if exists i such that xi(0) = 1, then lim
t→∞

x(t) = 1.

In other words, in the absence of the agents initially having
extreme states, x(t) converges to some consensus state α1,
and if there is at least one agent initially holding the extreme
state of 1, then all agents approach that state as t→ ∞.

Proof. Since the convergence behavior of model (3) varies
across the state space, let us, first, partition the latter and,
then, prove convergence in each part individually. Consider
the following state space partition (see Fig. 1):

[−1,1]n = lim
ε→+0

S0(ε)∪S1,

S0(ε) = [−1,1−ε]n,

S1 = {Pᵀx | x ∈∪n
k=1 {1}k× [−1,1)n−k},

where N0(ε) = {α1 | α ∈ [−1,1− ε]} and N1 = {1} are
the sets of consensus states in S0(ε) and S1, respectively,
convergence to which is expected.

Fig. 1. Convergence behavior of the model with stubborn positives in two
dimensions, as well as the partition of the state space. Several trajectories
representative of the model’s behavior are displayed as solid arrows.

(i) Convergence from S0(ε) to N0(ε): We will prove con-
vergence using the general convergence Theorem 3, with
S = S0(ε) and N = N0(ε). To apply the theorem, we need to
prove the agreement upon zeros of the susceptibility functions
Aii(x) and forward invariance of S0(ε). (Theorem 3 also
requires both S and N to be non-empty, and S to be compact.

However, whenever we use Theorem 3, non-emptiness trivially
follows from the definition of these sets, and compactness of S
immediately follows from Heine-Borel theorem, as we always
choose S ⊆ Rn, n < ∞ to be both bounded and closed. Thus,
we will further omit the discussion of these two statements
about S and N from our proofs.)

Firstly, as A(x)= 1
2 (I−diag(x)) and, thus, Aii(x)= 1

2 (1−xi),
it is clear that, if Aii(x) = A j j(x) = 0, then xi = x j = 1, which
proves the zero-agreement property

∀i, j ∈ 1, . . . ,n : Aii(x) = A j j(x) = 0→ xi = x j.

In order to prove forward invariance of S0(ε) w.r.t. sys-
tem (3), we notice that, according to contraction Lemma 3,
Vmax(x) = max(x) is non-increasing along the trajectories of
system (3), and, at the same time, from the well-posedness
Theorem 1, we know that min(x) ≥ −1 for all x ∈ [−1,1]n.
Consequently, all the trajectories of the system starting inside
cube S0(ε) remain in it as t→ ∞.

Now, by invoking the general convergence Theorem 3, we
conclude that all trajectories of system (3) starting in S0(ε)
converge to N0(ε) as t→ ∞.

(ii) Convergence from S1 to N1: The agreement upon zeros
property of Aii(x) has already been proven above. As to for-
ward invariance of S1 w.r.t. system (3), it follows immediately
from Lemma 2 about the invariance of the closed agent subset.
Thus, by the general convergence Theorem 3, all trajectories
of system (3) starting in S1 converge to N1 as t→ ∞.

Theorem 5 (Convergence—Stubborn Neutrals). Suppose that
W is a row-stochastic adjacency matrix of a strongly con-
nected network, and x(t) evolves according to the model with
stubborn neutrals

ẋ = f (x) =−A(x)Lx, A(x) = diag(x)2. (4)
Then,

- if x(0)> 0, then lim
t→∞

x(t) = α1, α ∈ (0,1];

- if x(0)< 0, then lim
t→∞

x(t) = α1, α ∈ [−1,0);

- otherwise, lim
t→∞

x(t) = 0.

In other words, if the initial states of all agents are positive,
then x(t) converges to an element-wise positive consensus
state; if the initial states are all negative, then the convergence
is to a negative consensus; finally, if either there are some
closed agents, or some open agents’ states have opposite signs,
then x(t) converges to 0 as t→ ∞.

Proof. Let us, first, partition the state space and, then, prove
convergence for each part individually (see Fig. 2).

[−1,1]n = S0∪ lim
ε→+0

S−(ε)∪ lim
ε→+0

S+(ε),

S−(ε) = [−1,−ε]n, N−(ε) = {α1 | α ∈ [−1,−ε]},

S+(ε) = [ε,1]n, N+(ε) = {α1 | α ∈ [ε,1]},

S0 = {x ∈ [−1,1]n |
n

∏
i=1

xi = 0∨∃i, j : sgn(xix j) =−1},

N0 = {0},
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Fig. 2. Convergence behavior of the model with stubborn neutrals in two
dimensions, as well as the partition of the state space. Several trajectories
representative of the model’s behavior are shown as solid arrows.

where we expect convergence from S−(ε), S+(ε), and S0 to
N−(ε), N+(ε), and N0, respectively.

(i) Convergence from S−(ε) to N−(ε): We will prove
convergence using the general convergence Theorem 3, which
requires that we prove the agreement upon zeros of functions
Aii(x) and forward invariance of S−(ε).

Since A(x) = diag(x)2 and Aii(x) = x2
i , it is clear that

Aii(x) = 0⇔ xi = 0, thus, proving the zero-agreement property

∀i, j ∈ 1, . . . ,n : Aii(x) = A j j(x) = 0→ xi = x j.

Forward invariance of S−(ε) immediately follows from the
facts that Vmax(x) is non-increasing along the trajectories of the
system due to the general contraction Lemma 3, and max(x)≥
−1 following from the well-posedness Theorem 1.

We, now, can invoke the general convergence Theorem 3
and conclude that all trajectories of (4) starting in S−(ε)
converge to N−(ε) as t→ ∞.

(ii) Convergence from S+(ε) to N+(ε): The proof is identi-
cal to the proof for the case of S−(ε) and N−(ε) and, as such,
is omitted.

(iii) Convergence from S0 to N0: The agreement of Aii(x)
upon zeros has already been proven in part (i). As to forward
invariance of S0, there are two qualitatively different ways
a trajectory of the system can leave one of the mixed-sign
orthants S0 consists of: either a trajectory leaves cube [−1,1]n

or it escapes into either the positive or the negative orthant. The
former is impossible due to the well-posedness Theorem 1,
which states that the trajectories cannot leave the state space
[−1,1]n. The latter is also impossible, because, in order for
a continuous trajectory x(t) to leave from a mixed-sign to
the negative or the positive orthant, the closed agent subset
Iclosed(x) has to change when a trajectory passes a mixed-
sign orthant’s boundary, which would contradict the agent
subset invariance Lemma 2. Thus, by the general convergence
Theorem 3, all trajectories of (4) starting in S0 converge to N0
as t→ ∞.

Theorem 6 (Convergence—Stubborn Extremists). Suppose
that W is a row-stochastic matrix of a strongly-connected
network, and state x(t) is governed by the model with stubborn
extremists

ẋ =−A(x)Lx, A(x) = (I−diag(x)2). (2)

Further, assume that the agent set is partitioned as

Iopen = {i | Aii(x(0))> 0},
Iclosed = {i | Aii(x(0)) = 0}.

Then, the following holds:

- If Iclosed = ∅, then lim
t→∞

x(t) = α1, for some α ∈ [−1,1],
that is, if there are no closed agents, then the system converges
to a consensus.

- If Iclosed 6= ∅, yet, ∀i, j ∈ Iclosed : xi = x j = α ∈ {−1,1},
then lim

t→∞
x(t) = α1. In other words, if there are some closed

agents, all of whom agree on the state α, then the system
converges to that consensus value.

- If Iclosed 6= ∅, ∃i, j ∈ Iclosed : xi 6= x j, and a permutation
matrix P structures the adjacency matrix W of the network so
that the closed agents Iclosed precede the open agents Iopen in
in PWPᵀ, then lim

t→∞
x(t) = x∗ = Pᵀ[x∗1

ᵀ,x∗2
ᵀ]ᵀ, where x∗1 are the

initial states of the closed agents, and x∗2 = (I−W22)
−1W21x∗1

if |Iopen|> 0 and x∗2 = [ ]0×1 otherwise. In other words, if there
are multiple closed agents disagreeing on the state, then the
system converges to the defined above state x∗ of disagreement.

Proof. As the behavior of the system varies across the state
space (see Fig. 3), let us, first, partition the latter and, then,
prove convergence for each part individually.

Fig. 3. Convergence behavior of the model with stubborn extremists in three
dimensions. A few representative trajectories are displayed as solid arrows; the
solid diagonal correspond to the consensus equilibrium states of the system;
the circles correspond to the disagreement equilibrium states; the corners are
the states of disagreement where all agents are closed, while in the states
in the interior of the cube’s edges, some agents remain open (depending on
the location of closed agents in the network, some edges may have no such
internal points of equilibrium, like in the case of edge [-1,-1,1]-[-1,1,1]).
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[−1,1]n = lim
ε→+0

S0(ε)∪ lim
ε→+0

S−(ε)∪ lim
ε→+0

S+(ε)⋃
|Imax∪Imin|≥2

S∗(Imax, Imin),

S0(ε) = [−1+ε,1−ε]n,

S−(ε) = {Px | x ∈ ∪n
k=1{−1}k× [−1,1−ε]n−k},

S+(ε) = {Px | x ∈ ∪n
k=1{ 1}k× [−1+ε,1]n−k},

S∗(Imax, Imin) =

{x | i ∈ Imax↔ xi = 1∧ i ∈ Imin↔ xi =−1},

Above, S0(ε) corresponds to the interior of the state space,
comprised of the states without extremist agents; S−(ε) and
S+(ε) correspond to the parts of the state space’s surface
where all extremist agents are either in state −1 or in state
1, respectively; and S∗(Imax, Imin) (|Imax ∪ Imin| ≥ 2) are the
“edges” in which there are necessarily multiple extremist
agents having different opinions. Now, we will study conver-
gence of system (2) inside each of the above defined parts of
the state space.

(i) Convergence in S0(ε) (see Fig. 4): From the general

Fig. 4. Convergence in S0(ε).

contraction Lemma 3, it follows that S0(ε) is forward invariant
w.r.t. (2). Additionally, inside S0(ε), the agents cannot hold
extreme opinions, so Aii(x)> 0. Thus, it immediately follows
from the general convergence Theorem 3 that all trajectories
of system (2) starting in S0(ε) converge to the latter’s subset
of consensus states, that is, N0(ε) = {α1 |α∈ [−1+ε,1−ε]},
as t→ ∞.

(ii) Convergence in S−(ε) (see Fig. 5): forward invariance
of S−(ε) follows from the general contraction Lemma 3.
Additionally, since the states of S−(ε) can only have extremist
agents in state −1, then Aii(x) = 0⇔ xi =−1, and, hence the
zero-agreement property

∀i, j ∈ 1, . . . ,n : Aii(x) = A j j(x) = 0→ xi = x j

holds in S−(ε). Thus, by the general convergence Theorem 3,
all trajectories of system (2) starting in S−(ε) converge to
N−(ε) = S−(ε)∩{α1 | α ∈ [−1,1]}= {−1} as t→ ∞.

(iii) Convergence in S+(ε): The case is identical to the case
of S−(ε), with the extreme state 1 replacing the extreme state

Fig. 5. Convergence in S−(ε).

−1, and the set to which convergence is expected to occur
being N+(ε) = {1}.

(iv) Convergence in S∗(Imax, Imin) (see Fig. 6): In this case,
the general convergence Theorem 3 is not applicable, as we ex-
pect convergence to a state x∗ = Pᵀ[x∗1

ᵀ,x∗2
ᵀ]ᵀ of disagreement,

with x∗1 corresponding to the initial states of the closed agents
of Iclosed = Imax∪ Imin = {i | |xi| = 1}, x∗2 = (I−W22)

−1W21x∗1,
and the adjacency matrix W being structured according to the
partition Iclosed , Iopen. Notice, that if either |Imin∪ Imax|= n, or

Fig. 6. Convergence in S∗(Imax, Imin).

if the open agents can be reached only from the extremists
in one state, then |x∗|= 1, that is, the states of all the agents
may asymptotically become extreme.

First, we will construct a Lyapunov function out of max-min
functions, then, re-use it to prove invariance and, eventually,
convergence to a state of disagreement using the Invariance
Principle.

Consider function V∗max(x) = max(x− x∗), where x∗ is the
state of disagreement defined above. From Theorem 8, it
follows that

∂V∗max(x) = {Pᵀ[αᵀ,0ᵀ]ᵀ},
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where α, consisting of the coefficients of a convex combi-
nation, correspond to the agents of I∗max(x) = {i | (x− x∗)i =
max(x−x∗)}, 0 correspond to the rest of the agents, and Pᵀ is
a permutation matrix restoring the original agent order. Now,
for any x ∈ S∗(Imax, Imin) and ξ ∈ ∂V∗max(x), up to reordering
of the agents, we will have

〈ξ , f (x)〉=−αᵀA∗max(x)(x∗max− [W11,W12]x), (5)

where A∗max(x) are the susceptibilities of the agents of
I∗max(x), and the adjacency matrix is structured according
to the agent set partition I∗max(x), {1, . . . ,n} \ I∗max(x). Our
immediate goal is to determine the sign of the obtained ex-
pression (5). To that end, consider factor (x∗max− [W11,W12]x),
letting x∗∗max be the part of x∗ corresponding to the agents of
I∗max(x)

x∗max− [W11,W12]x

= x∗max−x∗∗max + x∗∗max︸ ︷︷ ︸
0

−[W11,W12](x−x∗+ x∗︸ ︷︷ ︸
0

)

= (x∗max− x∗∗max)− [W11,W12](x− x∗)+(x∗∗max− [W11,W12]x∗)︸ ︷︷ ︸
0

= (x− x∗)∗max− [W11,W12](x− x∗).

It is clear from the definition of I∗max(x) that (x− x∗)∗max−
[W11,W12](x− x∗)≥ 0 and, hence 〈ξ , f (x)〉 ≤ 0. Furthermore,
we can apply the argument from the proof of the general
convergence Theorem 3, to establish that when there is an
agent i such that ((x− x∗)∗max− [W11,W12](x− x∗))i = 0, we
can vary α to make 〈ξ , f (x)〉 take different values for the same
x. Thus, we can conclude that L̃ fV∗max(x) = {0} when |x|= 1

(as ξ = 0) or when x = x∗, and maxL̃ fV∗max(x) < 0 for the
other x ∈ S∗(Imax, Imin).

We can repeat the same reasoning to establish that, for

V−∗min =−min(x− x∗),

it holds that L̃ fV−∗min(x) = {0} when |x|= 1 or x = x∗, and
maxL̃ fV−∗min(x)< 0 for the rest of x ∈ S∗(Imax, Imin).

Our reasoning about V∗max(x) and V−∗min(x) allow us to
conclude that function

V∗max−min(x) =V∗max(x)+V−∗min(x)

= max(x− x∗)−min(x− x∗)

is a Lyapunov function for system (2), as required by the
Invariance Principle. Additionally, S∗(Imax, Imin) is forward
invariant, which immediately follows from the agent subset
invariance Lemma 2. Thus, by Invariance Principle, all trajec-
tories of system (2) starting in S∗(Imax, Imin) converge to set

N∗(Imax, Imin) = {x | |x|= 1}∪{x∗},

in which 0 ∈ L̃ fV∗max−min(x). What remains to show is what
element of N∗(Imax, Imin) the system converges to.

Clearly, if all the agents are initially closed, that is, |x(0)|=
1, then limt→∞ x(t) = x(0), which follows from the agent
subset invariance Lemma 2. Now, assume that |x(0)| 6= 1.
In such a case, a trajectory cannot approach any element of
{x | |x| = 1} (except, possibly, x∗ in the case when the open
agents are only reachable by the closed agents having the same

state, and, as a result, |x∗|= 1), as, generally, approaching one
of these states would violate at least one of the above proven
inequalities

maxL̃ fV∗max(x) = maxL̃ f max(x− x∗)≤ 0,

maxL̃ fV−∗min(x) = maxL̃ f (−min(x− x∗))≤ 0.

Hence, if |x(0)| 6= 1, then the trajectories of (2) converge to
x∗ as t→ ∞.

V. DISCUSSION

In this section, we summarize and interpret the obtained
results, as well as assess where they fit in and how contribute
to the existing body of research.

New models: In this work, we have defined the general
model of polar opinion dynamics

ẋ =−A(x)Lx, (1)

that, depending on how we define A(x), has interpretation in
terms of one of the socio-psychological theories. Model (1)
can be viewed as a non-linear analog of DeGroot [21] and
Friedkin-Johnsen [29] models, with the dependence of the
agents’ susceptibilities A(x) to persuasion upon their current
opinions being the key distinguishing trait of our model. Math-
ematically, model (1) is also related to the class of bounded
confidence models [64], [14], [52], [36], [20], in which the
opinion-adoption behavior of the agents also depends on the
agent’s current beliefs, yet, this dependence is based upon
the socio-psychological principles different from the ones we
consider. A notable exception is the work of Sobkowicz [64],
in which, the author uses the opinion resilience mechanisms
similar to the ones we use in our models with stubborn
positives and stubborn extremists.

Behavior of the general model: For the general model (1),
in Theorem 3, we have provided a sufficient condition for
the convergence to consensus. Roughly speaking, a trajectory
starting inside a forward invariant set approaches a state of
consensus if all closed agents have similar states, that is,
Aii(x) = A j j(x) = 0→ xi = x j. From the sociological perspec-
tive, it means that, as long as all the ultimately stubborn
agents in the network agree upon their states, the agents will
eventually agree, as there is no force that would drive the
system to disagreement. The observed behavior is different
from Friedkin-Johnsen model in that, in our model, the pres-
ence of non-fully open agents, having Aii(x) < 1, does not
immediately lead to an asymptotic disagreement. The obtained
sufficient condition for convergence to consensus, compared to
its analogs derived in [51], [9], is better interpretable from the
sociological point of view, and is not more restrictive.

Behavior of the specialized models: In addition to the
general model, we have considered three specialized models

ẋ =− 1
2 (I−diag(x))Lx, (stubborn positives)

ẋ =−diag(x)2Lx, (stubborn neutrals)

ẋ =−(I−diag(x)2)Lx. (stubborn extremists)

The behavior of these models, studied in Theorems 4, 5, and 6,
can be summarized as follows.
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Convergence to consensus (closed agents absent): If there
are no closed agents in the network, that is, if A(x(0))> 0, and,
as a result, every agent is at least to some degree susceptible to
persuasion, then the system converges to a state of consensus,
as shown for the example of the model with stubborn positives
in Fig. 7. In the absence of closed agents, the particular

-1 -0.5 0 0.5 1
x1

-0.8

-0.5

0

0.5

1

x
2

Fig. 7. Phase portrait: convergence to consensus of the model with stubborn
positives in the absence of closed agents.

consensus value is known only for the model with stubborn
neutrals when the agents with both positive and negative states
are present—in this case, the system converges to 0.

This behavior is not surprising, since, when term A(x) of
the vector field −A(x)Lx does not prevent any agent from
changing its state, the negative Laplacian expectedly drives
the state toward a consensus. Thus, if there are no ultimately
stubborn agents, then the group will asymptotically reach an
agreement.

Convergence to consensus (closed agents present): In the
presence of closed agents all of whom agree on their state
α ∈ [−1,1], the system converges to consensus α1. In other
words, if the ultimately stubborn agents are present and share
the same opinion, they will persuade the rest of the group to
adopt that opinion. A representative example of such behavior
is given in Fig. 8, for the model with stubborn neutrals. A

x2
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Fig. 8. Phase portrait: convergence to consensus of the model with stubborn
neutrals when closed agents are present.
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Fig. 9. Phase portrait: asymptotic behavior of the model with stubborn
extremists. Strictly inside the state space, trajectories converge to a consensus.
On the surface of the state space, when all closed agents have the same state
α, trajectories converge to that consensus state α1. In the presence of multiple
closed agents holding different opinions, the system converges to a state of
disagreement (such states are displayed as solid circles).

natural conclusion is that the only force that can counteract the
persuasion efforts of the ultimately stubborn agents agreeing
on an opinion is the ultimately stubborn agents having a
different opinion.

Convergence to disagreement: Finally, in the presence of
multiple closed agents holding different opinions, which is
possible only for the model with stubborn extremists, the
system converges to a state of disagreement. Fig. 9 shows a
full range of qualitatively different asymptotic behaviors of the
model with stubborn extremists. If, in addition to the closed
agents holding different opinions, there are some open agents
in the network, then the closed agents will persuade the open
agents to adopt a combination of their opinions. In this case,
the particular limiting state to which the system will converge
will depend on the structure of the network and the locations
and states of the closed agents, yet, not on the initial opinions
of the open agents. (A similar behavior has also been observed
in the context of the Voter model with stubborn agents [74,
Sec. 4]). It is particularly interesting that the opinions of the
open agents in the latter limiting state have a rather simple
expression (I−W22)

−1W21x∗1, given in Theorem 6, where W22
is the block of the adjacency matrix corresponding to the
cluster of the open agents, W21 is the block responsible for
the influence of the closed agents upon the open agents, and
x∗1 are the closed agents’ (initial) states.

Model analysis: The bulk of our theoretical analysis of the
models’ behavior is comprised of the proofs of convergence.
The standard tools for the analysis of convergence of non-
linear models, such as LaSalle Invariance Principle, require
existence of a smooth Lyapunov function, with quadratic
functions being a popular choice. The latter, however, may
be hard and, sometimes, provenly impossible [55] to find
for a model defined over a general directed network. In this
work, we show, using several existing tools from non-smooth
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analysis, how to apply non-smooth max-min functions to prove
convergence of our models. Such Lyapunov functions have
been considered in the literature [55], [38], however, this
work is the first to provide a full formal analysis of such
functions used along with the generalized Invariance Principle.
Due to the generality of the non-smooth analysis tools we
have used, our analysis can be easily adapted to other non-
linear models defined over directed networks, with Lyapunov
functions constructed out of convex components.
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APPENDIX
REVIEW OF NON-SMOOTH ANALYSIS

This section contains a review of several tools from non-
smooth analysis that prove useful when dealing with non-
smooth Lyapunov functions in the proofs of convergence. In
what follows, we rely on the standard definitions of locally
Lipschitz [16, p.9] and regular [16, pp.39–40] functions.

Definition 1 ((Clarke) Generalized gradient [16]). Let V :
Rn→R be locally Lipschitz, and ΩV be the set of points where
V fails to be differentiable. Then, the generalized gradient of
V is defined as follows

∂V (x) = co
{

lim
i→∞

∇V (xi) | xi→ x,xi /∈ Z∪ΩV

}
,

where co{·} is the convex hull, and Z is any set of Lebesgue
measure zero. Thus, the generalized gradient of V at x is the
convex hull of all gradient values around and approaching x
where V is differentiable.

Theorem 7 (Properties of generalized gradient [18]). Let
V1,V2 : Rn → R be locally Lipschitz and regular at x ∈ Rn,
a,b ∈ [0,∞)⊂ R. Then,

(i) [Scaling rule] ∂ (a ·V1)(x) = a ·∂V1(x) and (a ·V1) is locally
Lipschitz and regular at x.

(ii) [Sum rule] ∂ (a ·V1 + b ·V2)(x) = a∂V1(x)+ b∂V2(x), and
a ·V1 + b ·V2 is locally Lipschitz and regular at x. The sum
of sets in the expression above is understood in the sense of
A+B = {a+b | a ∈ A,b ∈ B}.
(iii) [Max-min functions] Let Vi : Rn→ R, k ∈ {1, . . . ,m}< ∞

be locally Lipschitz at x ∈ Rn, and

Vmax(y), max{Vk(y) | k ∈ {1, . . . ,m}},
Vmin(y), min{Vk(y) | k ∈ {1, . . . ,m}}.

Also, let

Imax(x) = {i |Vi(x) =Vmax(x)},
Imin(x) = {i |Vi(x) =Vmin(x)}.

Then,
- Vmax and Vmin are locally Lipschitz at x.
- If Vi is regular at x for each i ∈ Imax(x), then

∂Vmax(x) = co∪{∂Vi(x) | i ∈ Imax(x)}

and Vmax is regular at x.
- If −Vi is regular at x for each i ∈ Imin(x), then

∂Vmin(x) = co∪{∂Vi(x) | i ∈ Imin(x)}

and −Vmin is regular at x.

The following theorem is as a corollary of Theorem 7.

Theorem 8 (Generalized gradients of max-min functions).
Consider functions Vmax(x) = max(x), V−min(x) = −min(x),
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Vmax−min(x)=Vmax(x)+V−min(x), where x∈ S⊆ [−1,1]n. Also,
let N = S∩{α1 | α ∈ [−1,1]}, and define Imax(x) and Imin(x)
as in Theorem 7, and Imid(x) = {1, . . . ,n} \ Imax(x) \ Imin(x).
Then,

∂Vmax(x) = {Pᵀ[αᵀ,0ᵀ]ᵀ},

∂V−min(x) = {Pᵀ[−βᵀ,0ᵀ]ᵀ},

∂Vmax−min(x) =

{
{Pᵀ[αᵀ,−βᵀ,0ᵀ]ᵀ}, if x ∈ S\N,

{Pᵀ(α−β)}, if x ∈ N,

where α and β are vectors whose elements comprise coeffi-
cients of convex combinations (αi,β j ≥ 0, ∑iαi = ∑ j β j = 1),
αi correspond to the agents from Imax(x), β j correspond to the
agents from Imin(x), 0k correspond to the agents from Imid(x),
and permutation matrices Pᵀ restore the original order of {xi}.

Proof. Notice that both Vmax(x) = max(x) and Vmin(x) =
min(x) can been viewed as, respectively, the maximum and
the minimum of a finite number of functions Vi(x) = xi,
i ∈ {1, . . . ,n}. Since each Vi(x) is continuously-differentiable
and, thus, locally Lipschitz and regular on S, Theorem 7 allows
us to apply the rule (iii) for computing the generalized gradient
for max-min functions, followed by the application of the (i)
scaling and (ii) sum rules. The statement of the theorem, then,
follows immediately.

Definition 2 (Set-valued Lie derivative [6], [18]). For a locally
Lipschitz V : Rn→ R and system ẋ = f (x), the set-valued Lie
derivative L̃ fV (x) of V along the trajectories of the system is
defined as

L̃ fV (x) = {a ∈ R | ∀ξ ∈ ∂V (x) : 〈ξ , f (x)〉= a}.

The following theorem is an analog of the generalized
Invariance Principle [6], [18], specialized for the case of
a continuous vector field, while the original was stated for
differential inclusions.

Theorem 9 (Invariance Principle [6], [18]). If

(i) V : Rn→ R is locally Lipschitz and regular,
(ii) S⊂ Rn is compact and invariant w.r.t. ẋ = f (x), and
(iii) maxL̃ fV (x)≤ 0 for each x∈ S, then all solutions x(t) :

[0,∞) → Rn starting in S converge to the largest invariant
subset M of

S∩{x ∈ Rn | 0 ∈ L̃ fV (x)},

where {· · ·} is set closure. If M is finite, then the limit of each
solution x(0) ∈ S exists and is an element of M.
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