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Abstract— This paper proposes models of learning process
in groups of individuals who collectively execute a sequence of
tasks and whose actions are determined by individual skill levels
and networks of interpersonal appraisals and influence. The
closely-related proposed models have increasing complexity,
starting with a centralized manager-based assignment and
learning model, and finishing with a social model of inter-
personal appraisal, assignments, learning, and influences. We
show how rational optimal behavior arises along the task
sequence for each model. Our models are grounded in replicator
dynamics from evolutionary games, influence networks from
mathematical sociology, and transactive memory systems from
organization science.

Index Terms— collective learning, transactive memory sys-
tem, appraisal network, influence network, evolutionary games,
replicator dynamics, multi-agent systems

I. INTRODUCTION

a) Motivation and problem description: Researchers in
sociology, psychology, and organization science have long
studied the inner functioning and performance of teams with
multiple individuals engaged in tasks. Extensive qualitative
studies, conceptual models and empirical studies reveal some
statistical features and various phenomena of teams [1], [2],
[3], [4], [5], but only a few quantitative and mathematical
models are available [6], [7], [8]. In this paper we build
mathematical models for the dynamics of team structure
and performance. Our work is based on the core idea that
the exhibited phenomena and features of teams must result
from some essential elements, that is, individual (member)
attributes and the team’s inner structure. We aim to math-
ematically characterize these essential elements, investigate
how they relate to team performance, and, most importantly,
how they evolve with time.

We consider a team of individuals with unknown skill
levels who complete a sequence of tasks. The team’s basic
inner structure is characterized by the appraisal network,
which determines how the task is assigned, and is updated
via performance feedback and the co-evolution with the
influence network. We aim to build multi-agent dynamical
models in which (i) the team as an entirety eventually
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achieves the optimal task assignment; (ii) each individual’s
true relative skill level is asymptotically learned by the team
members, which is referred to as collective learning.

b) Literature review: Our work is deeply connected
with a conceptual models of teams, the transactive memory
system (TMS), which generates a shared division of cognitive
labor with respect to the encoding, storage, retrieval and
communication of information [9]. The TMS of a team is
linked with the individual and team performance [10], [11].
Lewis [1] describes the behavioral indicators that a TMS is
operating in a group: the degree to which members specialize
in complementary yet distinct aspects of the groups tasks
(specialization), the extent that members rely on the expertise
of other members (credibility), and evidence of coordinated
interdependent activity (coordination).

In our models, collective learning arises as the result of
the co-evolution of the interpersonal appraisals and influence
networks. Related previous work includes social comparison
theory [13], averaging-based social learning [14], opinion
dynamics on influence networks [15], [16], [17], reflected
appraisal mechanisms [18], [19], [20], dynamic balance
theory [21], [22], [23], and the combined evolution of
interpersonal appraisals and influence networks [24].

In the modeling and analysis of the evolution of appraisal
and influence networks, we also build an insightful con-
nection between our model and the well-known replicator
dynamics studied in evolutionary game theory; see the text-
book [25], some control applications [26], [27], and the
recent contribution [28].

c) Contribution: Firstly, based on a few natural as-
sumptions, we propose three novel models on dynamics of
teams: manager dynamics, assign/appraise dynamics, and
assign/appraise/influence dynamics, with increasing com-
plexity. Our work integrates three well-established types
of dynamics: replicator dynamics, dynamics of appraisal
networks, and opinion dynamics on influence networks. To
the best of our knowledge, this is the first time that such
an integration has been proposed. Moreover, our models
provide an innovative perspective on the connection between
team performance and appraisal network. In our models,
performances of a group of individuals, with fixed skill
levels, are determined by how the task is assigned. In the
baseline manager dynamics, task assignment is determined
by an outside authority, and adjusted via the replicator
dynamics with individuals’ performance feedback. The as-
sign/appraise dynamics elaborates the baseline model by
assuming that, individuals’ interpersonal appraisals, instead
of an outsider authority, determine the task assignment. In
the assign/appraise/influence dynamics model, we further



elaborate the assign/appraise dynamics by considering the
co-evolution of appraisal and influence networks.

Secondly, theoretical analysis is presented on the dy-
namical properties of the models we propose. One of our
key results is that, for assign/appraise dynamics and as-
sign/appraise/influence dynamics, the left dominant eigen-
vector (a well-established centrality notion) of the appraisal
matrix obeys the replicator dynamics (with a multiplicative
bias), as in the manager dynamics. We also establish that, for
each of the models we propose, task assignment converges
to its optimal value. Moreover, for assign/appraise/influence
dynamics, every individual asymptotically learns the true
relative skill levels of all the team members.

Thirdly, we remark that, theoretical results on as-
sign/appraise/influence dynamics reveal a further connection
with the TMS theory. According to the work by Palaz-
zolo [29] and Lee et al. [30], internal cognitive consis-
tence is positively correlated with mature TMS. The as-
sign/appraise/influence dynamics also describe an emergence
process by which team members’ perception of “who knows
what” become more similar over time.

d) Organization: The rest of this paper is organized
as follows: Section II introduces some preliminaries on
evolutionary games and replicator dynamics; Section III
proposes our problem set-up and centralized manager model;
Section IV introduces the assign/appraise dynamics; Section
V introduces the assign/appraise/influence model; Section
VI provides some further discussions and conclusion. We
postpone all proofs to a forthcoming journal submission.

II. PRELIMINARIES

Evolutionary games apply game theory to evolving popu-
lations adopting different strategies. Consider a game with
finite pure strategies ej,es,...,e, and mixed strategies
w € int(A,). The expected payoff for mixed strategy v
against mixed strategy w is defined as the payoff function
m(v,w) = > vm(w), with m(w) = w(e;, w) for
simplicity. A strategy w is an evolutionary stable strategy
(ESS) if any mutant strategy v # w, adopted by an e-
fraction of the population, brings less expected payoff than
the majority strategy w, as long as e is sufficiently small. A
necessary and sufficient condition for a local ESS is stated
as follows: there exists a neighborhood U (w) such that, for
any v € U(w) \ {w}, n(w,v) > 7(v,v).

Replicator dynamics, given by equation (1), models the
evolution of sub-population distribution w(t) € A,. Each
sub-population i, with fraction w;(t) at time ¢, is using
strategy e; and has the growth rate proportional to its fitness,
defined as the expected payoff m;(w(t)).

w; = w; (m(w) - zn:wkwk(w)). (D
k=1

The time index t is omitted for simplicity. There is a
simple connection between the ESS and the replicator dy-
namics [25]: if the payoff function 7(v,w) is linear to w,
then an ESS is a globally asymptotically stable equilibrium

for system (1); if m(v, w) is nonlinear to w, then the ESS
is locally asymptotically stable.

III. PROBLEM SET-UP AND MANAGER DYNAMICS

In this section we introduce some basic formulations and
a baseline centralized system on the evolution of a team.
Frequently used notations are listed in Table I.

A. Model assumptions and notations

The assumption on individuals and tasks are given below.

Assumption 1 (Team, task type and assignment):
Consider a team of 7 individuals characterized by a
fixed but unknown vector x = (z1,...,7,)' satisfying
x > 0, and "1, = 1, where each z; denotes the skill
level of individual . The tasks being completed by the team
are assumed to have the following properties:

(i) The total workload of each task is characterized by a
positive scalar and is fixed as 1 in this paper;

(ii)) The task can be arbitrarily decomposed into n
sub-tasks according to the task assignment w =
(wy,...,w,) ", where each w; is the sub-task work-
load assigned to individual i. The task assignment
satisfies w > 0, and w'1, = 1. The sub-tasks are
executed simultaneously.

The scalar setting of skill levels and task assignments can be
simply interpreted as the assumption that, the type of tasks
considered in this paper only requires some one-dimension
skill. Alternatively, in a more general way, the skill levels can
be considered as individuals’ overall abilities of contributing
to the completion of tasks, and the task assignments are the
individuals’ relative responsibilities to the team, which forms
naturally in the process of completing the tasks.

With fixed skill levels x, the measure of each individual ¢’s
performance is assumed to be only a function of w, defined
by the following assumption.

Assumption 2 (Individual performance): Given fixed x,
each individual ¢’s performance, with the assignment w, is
measured by p;(w) = f(z;/w;), where f : R>g — R>¢ is
continuously differentiable and monotonically increasing.
Despite the specific form f(x;/w;) as in Assumption 2, the
measure of individual performance can be quite general by
adopting difference measures of x; and w;.

It is reasonable to claim that, in a well-functioning team,
individuals® relative responsibilities, characterized by the
task assignment in this paper, should be proportional to
their actual abilities. Define the measure of the mismatch
between task assignment and individual’s true skill levels
as Hqi(w) = > |w;/z; — 1|. For fixed x, the optimal
assignment w* = x minimizes H1(w).

B. Centralized manager dynamics

In this subsection we introduce a continuous-time central-
ized model on the evolution of task assignment, referred to as
the manager dynamics. The diagram illustration is given by
Figure 1(a). Suppose that, at time ¢, a team of n individuals is
completing a task based on the assignment w(t). The manger



TABLE I
NOTATIONS FREQUENTLY USED IN THIS PAPER

> (< resp.)
= (< resp.)
1, (O resp.)

entry-wise strictly greater than (less than resp.).
entry-wise no less than (no greater than resp.).
n-dimension column vector with all entries
equal to 1 (O resp.)
x  vector of individual skill levels, with @ =
(z1,22,. .. ,xn)T =0, and 21, = 1.
w  task assignment. w > 0,, and w'l, =1
f  a concave, continuously differentiable and in-
creasing function f: [0, +00) — [0, +00)
vector of individual performances. p(w) =
(p1(w),...,pn(w)) . where pi(w) =
f(w;/x;) is the performance of individual 7.
A appraisal matrix. A = (aj;)nxn, Where a;; is
individual ¢’s appraisal of j’s skill level.
W influence matrix. W = (w;;)nxn, Where w;;
is the weight individual ¢ assigns to j’s opinion.
A,  n-dimension simplex {y € RZ, | y'l, = 1}
int(Ay)  the interior of Ay,. B
Ve (A)  the left dominant eigenvector of the non-negative
and irreducible matrix A, i.e., the normalized
entry-wise positive left eigenvector associated
with the eigenvalue equal to A’s spectral radius.

observes the individuals’ real-time performance p(w(t)) and
adjust the task assignment w(¢) according to the dynamics:

s = (o) — 3 o). @
k=1

for any ¢ € {1,...,n}. The following theorem states the
asymptotic behavior of the manager dynamics.

Theorem 1 (Behavior of manager dynamics): Consider
the manager dynamics (2) for the task assignment as in
Assumption 1 with performance as in Assumption 2. Then

(i) the set int(A,,) is invariant;

(i) the optimal assignment w* = x is the ESS for
the evolutionary game defined by the payoff function
m(v,w) = > v f(xi/w;), and is thus a locally
asymptotically stable equilibrium for equation (2);
for any w(0) € int(A,), the manager’s assignment
w(t) converges to w* = x, as t — oo.

(iii)

Equation (2) takes the same form as the classic replicator
dynamics [25], with the nonlinear fitness function 7;(w) =
f(z;/w;). Distinct from the classic result that, the ESS with
nonlinear payoff function can only lead to local asymptotic
stability for the replicator dynamics, our model is a special
case in which the ESS associated with a nonlinear payoff
function is also a globally asymptotically stable equilibrium
of the replicator dynamics.

IV. THE ASSIGN/APPRAISE DYNAMICS OF
APPRAISAL NETWORKS

Despite the desired property on the convergence of task
assignment to optimality, the manger dynamics does not
capture one of the most essential aspects of team dynamics:
the evolution of the team’s inner structures. In this section,
we introduce a multi-agent system, elaborated from the
baseline manager dynamics, in which the team members’

interpersonal appraisals, rather than any manager, determine
the task assignment, and the appraisal network is updated via
performance feedback signal observed by each team member.

A. Model description and problem statement

Appraisal network: Denote by a;; the individual 7’s eval-
uation of j’s skill levels and refer to A = (a;;)nxn as the
appraisal matrix. Since the evaluations are in the relative
sense, we assume A = 0, and Al, = 1,,. The directed
and weighted graph G(A), referred to as the appraisal
network, reflects the team’s collective knowledge on the
distribution of its members’ abilities.

Assign/appraise dynamics: We propose a multi-agent
model on the evolution of the appraisal network. The model
is referred to as the assign/appraise dynamics and illustrated
by the diagram in Figure 1(b). We model three phases:
task assignment, feedback signal, and update of appraisal
network, specified by the following three assumptions re-
spectively.

Assumption 3 (Assignment rule): At any time t > 0, a
task is divided and assigned according to the left dominant
eigenvector of the appraisal matrix, i.e., w(t) = vier (A(t)).

For now we assume A(t) is row-stochastic and irreducible
for all ¢ > 0, so that vleﬂ(A(t)) is always well-defined.
We will present a theorem on the well-definedness of the
assignment later in this section.

Assumption 4 (Feedback signal): After executing the task
with assignment w, each individual ¢ observes, without any
noise, the difference between her own performance p;(w)
and the team’s weighted average performance, given by
Pave(w) = 375y wipk(w).

Assumption 5 (Update of interpersonal appraisals):

With performance feedback signal defined as in
Assumption 4, each individual 7 increases her self appraisal
and decreases the appraisals of all the other individuals, if
pi(w) > paye(w), and vice versa. In addition, the appraisal
matrix A(t) remains row-stochastic.

The following dynamical system for the appraisal matrix,
referred to as the appraise dynamics, is arguably the simplest
model satisfying Assumptions 4 and 5:

ag = a;i(1 — ag) (pi(’w) - pave('w)>7

Qij = —0;iiQi; (Pi(’w) _ pave(,w))' (3)

The matrix form of the appraise dynamics, together with the
assignment rule as in Assumption 3, is given by

A= diag(p(w) - pave(w)ln)Ad(In — A),
w = 'Uleft(A)>

“4)

and collectively referred to as the assign/appraise dynamics.
Here A4 = diag(ai1,...,ann).
Problem statement: In the next subsection, we investigate
the asymptotic behavior of dynamics (4), including:
(i) convergence to the optimal assignment, which means
that the team as an entirety eventually learns its mem-
bers’ relative skill levels, i.e., lim; o w(t) = x;
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(ii) appraisal consensus, which means that the individuals
asymptotically reach consensus on the appraisals of
all the team members, i.e., a;;(t) — ag;(t) — 0 as
t — 400, for any i, j, k.

Collective learning is the combination of convergence to the
optimal assignment and appraisal consensus.

B. Dynamical behavior of the assign/appraise dynamics

We start by establishing that the appraisal matrix A(t), as
the solution to equation (4), is extensible to all ¢ € [0, +00)
and the assignment w(¢) is well-defined, in that A(¢) remains
row-stochastic and irreducible. Moreover, some finite-time
properties are investigated.

Theorem 2 (Well-definedness and finite-time properties):
Consider the assign/appraise dynamics (4), based on
Assumptions 3-5, describing a task assignment as in
Assumption 1, with performance as in Assumption 2. For
any initial appraisal matrix that is row-stochastic, irreducible
and has strictly positive diagonal,

(i) The appraisal matrix A(t), as the solution to (4), is
extensible to all ¢ € [0, +00). Moreover, A(t) remains
row-stochastic, irreducible and has strictly positive
diagonal for all ¢t > 0;

(ii) there exists a row-stochastic irreducible matrix C' €
R™*™ with zero diagonal such that

A(t) = diag(a(t)) + (I, — diag(a(t))) C,  (5)

for all ¢+ > 0, where a(t) = (al(t),...,an(t))T and
a;(t) = a;(t), fori e {1,...,n};
Define the reduced assign/appraise dynamics as

(iif)
ai = a;(1 — a;) (pi(w) — pave(w)),

n

G Ck (6)
i (1_%)/;(1_%)’

where ¢ = (c1,...,¢,) " = v (C). This dynamics is
equivalent to system (4) in the following sense: The
matrix A(t)’s each diagonal entry a;;(t) satisfies the
dynamics (6) for a;(t), and, for any ¢ > 0, a;;(t) =
ai(t) for any i, and aij(t) = aij(O)(l — ai(t))/(l —
a;(0)) for any i # j;
The set @ = {a € [0,1]"]0 < a; < 1 -
¢i(a(0))}, where ¢;(a(0)) = o ming & (1—ax(0)),
is a compact positively invariant set for the reduced
assign/appraise dynamics (6);
(v) the assignment w(t) satisfies the generalized repli-
cator dynamics with time-varying fitness function

@iv)
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(b) assign/appraise dynamics
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Diagram illustrations of manager dynamics, assign/appraise dynamics, and assign/appraise/influence dynamics.
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Fig. 2. Visualization of the evolution of A(t) and w(t) obeying the

assign/appraise dynamics with n» = 6. In these visualized matrices and
vectors, the darker the entry, the higher value it has.

a;(t) (pi (w(t)) — Pave (w(t))) for each i:
w; = w; (ai (pi (w) - pave(w))

- Z Wk Ak (pk (’LU) - pave(w))) .
k=1

With the extensibility of A(t) and the finite-time proper-
ties, we now present the main theorem of this section.

Theorem 3 (Asymptotic behavior): Consider the
assign/appraise dynamics (4), based on Assumptions 3-5,
with the task assignment as in Assumption 1 and the
performance as in Assumption 2. For any initial appraisal
matrix that is irreducible, row-stochastic, and has positive
diagonal,

(7

(i) the solution A(t) converges, i.e., there exists A* €
R™*™ such that lim;_,, A(t) = A*;

(ii) the limit appraisal matrix A* is row-stochastic and
irreducible. Moreover, the task assignment satisfies
limy o0 w(t) = vier(A*) = x.

This theorem indicates that, the teams obeying the as-
sign/appraise dynamics asymptotically achieves the optimal
task assignment, but do not necessarily reach appraisal
consensus. Figure 2 gives a visualized illustration of the
asymptotic behavior of the assign/appraise dynamics.

V. THE ASSIGN/APPRAISE/INFLUENCE DYNAMICS
OF APPRAISAL NETWORKS

In this section we further elaborate the assign/appraise
dynamics by assuming that, the appraisal network is updated
via not only the performance feedback, but also the co-
evolution with influence network.

A. Model description

The new model, referred to as the as-
sign/appraise/influence dynamics, is defined by three
components: the assignment rule as in Assumption 3, the
appraise dynamics based on Assumptions 4 and 5, and the



influence dynamics, which is the opinion exchanges among
individuals on interpersonal appraisals. Diagram illustration
of assign/appraise/influence dynamics is presented in
Figure 1(c). Denote by w;; the weight individual 7 assigns
to j (including the self weight w;;) in the opinion exchange.
The matrix W = (w;;)nxn defines a directed and weighted
graph, referred to as the influence network. The construction
of influence network and the opinion dynamics all the
individuals obey are defined as follows.

Assumption 6 (influence dynamic): Assume that, at each
time ¢ > 0, the influence network is identical to the appraisal
network, ie., W(t) = A(t). Moreover, assume that the
individuals obeys the classic DeGroot opinion dynamics [15]
on the interpersonal appraisals.

The equations for assign/appraise/influence dynamics are
written as

A= L (42 - 4)
+7—alpp diag(p(w) - pave(w)ln)Ad<In - A), (3)
w = vier (A),

The time index ¢ is omitted for simplicity. The first term on
the right-hand side of the first equation in (8) corresponds to
the influence dynamics, while the second term on the right-
hand side corresponds to the appraise dynamics. Parameters
Tave and T,pp are positive, and relate to the time scales of
influence dynamics and appraise dynamics respectively.

B. Dynamical behavior of the assign/appraise/influence dy-
namics

First of all, the following lemma shows that, for the
assign/appraise/influence dynamics, we only need to consider
the all-to-all initial appraisal network.

Lemma 4 (Entry-wise strictly positive appraisals):
Consider the assign/appraise/influence dynamics (8)
based on Assumptions 3-6, with the task assignment and
performance as in Assumptions 1 and 2 respectively. For
any initial appraisal matrix A(0) that is primitive and
row-stochastic, there exists At > 0 such that A(t) > O, x»,
for any t € (0, At].

Before discussing the asymptotic behavior, we state a
technical assumption.

Conjecture 5 (Strict lower bound of appraisals):
Consider the assign/appraise/influence dynamics (8)
based on Assumptions 3-6, with the task assignment and
performance as in Assumptions 1 and 2 respectively. For
any A(0) that is entry-wise positive and row-stochastic,
there exists amin > 0, depending on A(0), such that
A(t) = aminl,1,) for any time t > 0, as long as A(7) and
w(7) are well-defined for all 7 € [0, ¢].

Now we state the main results of this section.

Theorem 6 (Asymptotic behavior): Consider the
assign/appraise/influence ~ dynamics (8) based on
Assumptions 3-6, with the task assignment and performance
as in Assumptions 1 and Assumption 2 respectively. Suppose
that Conjecture 5 holds. For any initial appraisal matrix
A(0) that is entry-wise strictly positive and row-stochastic,

A | | r | | - T -
wEE . N . . T ——
(at=0 (b)yt=2 (c) t=10 (d) t=30
Fig. 3. Visualization of the evolution of A(t) and w(t) obeying the

assign/appraise/influence dynamics with n = 6. In these visualized matrices
and vectors, the darker the entry, the higher value it has.

(i) the solution A(t) exists and w(t) = vie (A(t)) is well-
defined for all ¢ € [0,400). Moreover, A(t) > Opxnp
and A(t)1,, = 1,, for any ¢t > 0;

(ii) the assignment w(t) obeys the generalized replicator
dynamics (7), and &1, < w(t) < (1 —(n— 1){0)1n,

where
-1
Y0 > ’ and

(iii) as ¢ — +oo, A(t) converges to 1,z and thereby
w(t) converges to x.

maxyg T

§0<1+(n1)

_ maxy 7 /wi(0)
~ ming 2 /w; (0)

min; x;

As Theorem 6 indicates, assign/appraise/influence dynam-
ics leads to collective learning. A visualized illustration of
the dynamics is given by Figure 3.

VI. Di1sCUSSION AND CONCLUSION
A. Connections with the TMS theory

TMS structure: As discussed in the introduction, one
important aspect of TMS is the members’ shared under-
standing about who possess what expertise. For the case
of one-dimension skill, TMS structure is approximately
characterized by the appraisal matrix and thus the de-
velopment of TMS corresponds to the collective learn-
ing on individuals’ true skill levels. Simulation results in
Figure 4 compare the evolution of some features among
the teams obeying the assign/appraise/influence model, the
assign/appraise model, and the team that randomly assigns
the sub-tasks, respectively. Figure 4(a) shows that, for both
assign/appraise/influence dynamics and assign/appraise dy-
namics, function H1(w, x), as the measure of the mismatch
between task assignment and individual skill levels, converge
to 0, which exhibits the advantage of a developing TMS.

Transitive triads: As Palazzolo [29] points out, transi-
tive triads are indicative of a well-organized TMS, while
non-transitive triads indicate a poorly organized TMS. The
underlying is that inconsistency of interpersonal appraisals
lowers the efficiency of locating the expertise and allocating
the incoming information. In order to reveal the evolution
of triad transitivity in our models, we define an unweighted
and directed graph, referred to as the comparative appraisal
graph G(A) = (V,E), with V = {1,...,n}, as follows:
for any 4,5 € V, (4,5) € E if a;; > a4, i.e., if individual
¢ thinks j has no lower skill level than ¢ herself. We adopt
the standard notion of triad transitivity and use the number
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Fig. 4.  Evolution of the measure of mismatch between assignment
and individual skill levels, and the number of non-transitive triads in the
comparative appraisal graph. The solid curves represent the team obeying
the assign/appraise/influence dynamics. The dash curves represent the team
obeying the assign/appraise dynamics. The dotted curves represent the team
that randomly assign sub-task workloads.

of non-transitive triads as the indicator of inconsistency in a
team. Figure 4(b) shows that, the non-transitive triads vanish
in the team obeying the assign/appraise/influence dynamics,
but persist in the teams obeying the assign/appraise dynamics
or just randomly assigning subtasks.

B. Conclusion

This paper proposes a baseline model: the centralized
manager dynamics, and two elaborative multi-agent mod-
els on team dynamics: the assign/appraise and the as-
sign/appraise/influence dynamics. We reveal insightful con-
nections between our models and the replicator dynamics
in evolutionary game theory. For the multi-agents models,
the appraisal network is modeled as a team’s basic inner
structure. The appraisal network generates the team’s task
assignments, and the mismatch between the assignment and
individuals® true skill levels is an indicator of the level of
team performance. By theoretical analysis we investigate the
asymptotic behavior of the evolution of appraisal network.
We also show that the qualitative predictions of our models
are consistent with TMS theory in organization science.
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