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A framework is introduced for planning unmanned aerial
vehicle flight paths for visual surveillance of ground targets,
each having particular viewing requirements. Specifically,
the framework is designed for instances in which each target
is associated with a set of imaging parameters, including a
desired (i) tilt angle, (ii) azimuth, with the option of a 360-
degree view, and (iii) dwell-time. Tours are sought to image
the targets, while minimizing both the total mission time and
the time required to reach the initial target. An ε-constraint
scalarization is used to pose the multi-objective problem as a
constrained optimization, which, through careful discretiza-
tion, can be approximated as a discrete graph-search. It is
shown that, in many cases, this approximation is equivalent
to a generalized traveling salesperson problem. A heuristic
procedure for solving the discrete approximation and recov-
ering solutions to the full routing problem is presented and
illustrated through numerical studies.
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1 Introduction
1.1 Overview

The use of autonomous mobile sensors is becoming
increasingly common in civilian and military applications.
Tasks that can benefit from autonomous sensors include
search and rescue, forest fire or oil spill monitoring, surveil-
lance and reconnaissance, transportation and logistics man-
agement, and hazardous waste cleanup [1, 2, 3]. These ap-
plications require intelligent and practical strategies to gov-
ern autonomous behavior in the presence of numerous con-
straints that arise in realistic missions.

This technical brief considers a particular mobile sensor
scenario that is of interest in many applications, e.g., in mil-
itary operations [4], where a single fixed-wing Unmanned
Aerial Vehicle (UAV) collects visual sensor data within a
large environment. Here, the UAV is equipped with a gim-
baled camera, and must provide surveillance imagery of mul-
tiple, static ground targets, each having associated imaging
constraints. These pre-specified constraints include (i) a de-
sired tilt angle with tolerances, (ii) a desired azimuth with
tolerances, including the option of a 360-degree view, and
(iii) the amount of time that the UAV should dwell before
moving to the next target. The goal is to construct flight
paths that are optimal in some sense, while simultaneously
allowing each target to be imaged to specification.

Ideally, our framework seeks flight paths that simulta-
neously minimize two metrics: (i) the time required for the
UAV to image all targets and return to the initial target, and



(ii) the delay between the mission onset and the time the UAV
reaches its first target. The latter goal is motivated primarily
by operational scenarios in which mission critical planning
cannot progress until initial sensory information is collected,
e.g., this arises in military reconnaissance missions where
sensory data supports the operations of a manned aircraft [5].

Since these two objectives are conflicting in general, we
construct solutions by constraining the second performance
metric and optimizing over the first, consistent with stan-
dard scalarization approaches for addressing multi-objective
problems [6]. We develop a discrete-approximation strategy
for constructing high-quality solutions to the scalarized prob-
lem, naturally leading to a complete heuristic framework for
the full, multi-objective mission.

Specifically, this brief proceeds as follows. First, we
show how the multi-objective routing problem with both vis-
ibility and dwell-time constraints is posed as a constrained
optimization problem through reasonable assumptions about
UAV trajectories and dwell-time maneuvers. Then, we illus-
trate how the constrained optimization problem is approxi-
mated by a discrete problem, which implicitly considers both
the time required for appropriate dwell-time maneuvers and
the visibility constraints. Next, we present a novel heuris-
tic method for solving the discrete approximation that lever-
ages solutions to standard Generalized Traveling Salesper-
son Problem (GTSP) instances. Finally, we integrate these
constructions into a complete framework to produce high-
quality solutions to the full, multi-objective routing problem,
and we illustrate these methods numerically.

1.2 Purpose and Scope

The primary purpose of this brief is two-fold. First, the
presented approach serves to extend previous work relating
to both discrete Dubins vehicle routing and set-based gen-
eralizations of TSPs, by explicitly incorporating dwell-time
and visibility considerations within a multi-objective frame-
work. More specifically, the problem herein is loosely inter-
preted as a generalization of both the Polygon-Visiting Du-
bins Traveling Salesperson Problem (PVDTSP) [7, 8] and
the Dubins Traveling Salesperson Problem with Neighbor-
hoods (DTSPN) [9]. To incorporate multiple objectives and
explicit imaging constraints, we adopt a strategy that is, in
some sense, an extension of [7], in which the authors approx-
imate solutions to a PVDTSP by discretizing regions of inter-
est and posing the resulting problem as a Generalized Travel-
ing Salesperson Problem (GTSP), which can be solved using
well-known methods, e.g., through transformation to a stan-
dard Asymmetric Traveling Salesperson Problem (ATSP)
and subsequent use of heuristic solvers (see [7, 10]).

The second primary purpose of our work is to demon-
strate how a complex, operationally relevant UAV surveil-
lance problem, which includes user-enforced imaging con-
straints, can be placed into an optimization framework whose
solutions are approximated by leveraging the solutions to
standard combinatorial routing problems.
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Fig. 1. Illustration of key imaging parameters associated target Tj .

2 Problem Formulation
2.1 UAV Specifications

Consider a single fixed-wing UAV, equipped with a GPS
location device and a gimbaled camera. The camera is
steered by a low-level controller, which is independent of the
vehicle motion controller. We neglect the possibility of cam-
era occlusions. The work herein focuses on high-level UAV
trajectory planning, rather than low-level vehicle or camera
motion control. We consider planar motion in a ground-plane
reference frame, assuming the UAV maintains a fixed alti-
tude a and a fixed speed s. We model the UAV as a Dubins
vehicle [11] with minimum turning radius r , neglecting dy-
namic effects caused by wind, etc. Let vvv0 ∈ R2 × [0,2π)
denote the UAV’s initial configuration (location, heading).

2.2 Target Specifications
Consider M static targets, each with associated imaging,

i.e., visibility and dwell-time, requirements. Assume that
the UAV must center each target within the camera’s field
of view for imaging, and thus no-two targets can be imaged
simultaneously. The axis passing through the UAV location
and the center of the camera field of view is used as a refer-
ence for assessing imaging constraints (see Figure 1).

Each target Tj is associated a set of (fixed) parameters:

1. ttt j ∈ R2, the location of the target in the ground-plane,
2. BEH j ∈ {ANY,ANGLE,FULL}, the required viewing be-

havior, where ANY indicates no preference for the az-
imuth of collected images, ANGLE indicates that the tar-
get should be imaged at a specific azimuth, and FULL in-
dicates that a 360-degree view of the target be provided,

3.
[
φA
j − ∆

A
j , φ

A
j + ∆A

j

]
⊂ R, a range of acceptable az-

imuths when BEH j = ANGLE, as measured with respect
to a reference ray in the ground plane (Fig. 1, top),

4.
[
φT
j − ∆

T
j , φ

T
j + ∆T

j

]
⊂ (0, π2 ], acceptable camera tilt an-

gles as measured with respect to a plane parallel to the
ground-plane (Fig. 1, bottom), and

5. τj ∈ Z≥0, the required number of dwell-time “loops.”



Fig. 2. An example visibility region VIS j when BEH j , ANGLE
(left), and when BEH j = ANGLE (right).

Define the visibility region, VIS j ⊂ R2, for target Tj as the
set of locations from which the UAV can image the target
with an acceptable tilt angle and azimuth (that is, a tilt an-
gle within the interval

[
φT
j − ∆

T
j , φ

T
j + ∆T

j

]
and, if BEH j =

ANGLE, an azimuth within the interval
[
φA
j − ∆

A
j , φ

A
j + ∆A

j

]
;

if BEH j , ANGLE, then any azimuth is acceptable). Each
VIS j is uniquely defined by the UAV altitude a, the location
ttt j , the behavior BEH j , and the intervals

[
φT
j − ∆

T
j , φ

T
j + ∆T

j

]
,[

φA
j − ∆

A
j , φ

A
j + ∆A

j

]
. Algorithm 1 presents the methodol-

ogy for constructing visibility regions. Note that, if BEH j ,
ANGLE, then VIS j is a full annulus; otherwise, VIS j is an an-
nular sector (Fig. 2). Fixing target locations, each visibility
region is parameterized by two radii (lower, upper radial lim-
its) together with two angles (lower, upper angular limits).

Algorithm 1: Visibility Region Construction
Input : a; φT

j , φ
A
j , ∆

T
j , ∆

A
j for each j ∈ {1, . . . , M }

Output : {VIS j } j∈{1, . . .,M }

for Each T j do
if BEH j , ANGLE then

1 Define VIS j as the annulus in R2 centered at ttt j with
radial limits a/ tan(φT

j ± ∆
T
j )

else
2 Define VIS j as the annular sector in R2 centered at ttt j

with radial limits a/ tan(φT
j ± ∆

T
j ), and angular

limits equivalent to φA
j ± ∆

A
j .

3 return {VIS j } j∈{1, . . .,M }

The variable τj ∈ Z≥0 indicates the number of dwell-
time “loops” that are required at Tj : If τj = 0, then the UAV
accomplishes its task by passing over any point within VIS j .
If τj > 0, i.e., non-trivial dwell time is specified, assume the
UAV images Tj as follows: If BEH j = FULL, the UAV makes
τj full circles around the target location at some constant ra-
dius; if BEH j , FULL, then the UAV selects a pivot point
within VIS j and makes τj circles about the selected point
at radius r . Each non-trivial dwell-time maneuver must be
performed entirely within the appropriate visibility region.
Fig. 3 shows examples of acceptable imaging behavior for
various choices of τj and BEH j . For the remaining analysis,
assume that imaging parameters are chosen to ensure prob-
lem feasibility, i.e., there exists at least 1 dwell-time maneu-
ver at each target satisfying the aforementioned constraints.

2.3 Problem Statement
The goal is to construct an optimal UAV trajectory with

the following characteristics: The UAV begins its tour by
moving from its initial configuration to a configuration where
it can begin imaging a target and, after the initial maneuver,
the UAV follows a closed trajectory, along which it images
each target to specification. Note that separating the initial
maneuver from the remaining closed route ensures that the
target imaging behavior can be effectively repeated if de-
sired. Recall the performance metrics to be minimized: (i)
the time required for the UAV to traverse the closed portion
of the generated trajectory (beginning and ending at the first
target), and (ii) the time required for the UAV to perform its
initial maneuver, i.e., move from vvv0 to the starting point of
the closed portion. We consider the following problem.

Problem 1 (Optimal UAV Tour). Find a UAV tour (con-
sisting of an initial maneuver, and a closed trajectory) that
solves the following optimization problem:

Minimize: Closed Trajectory Time,

Subject To: Initial Maneuver Time ≤ ε,

Dynamic Constraints Satisfied (Sec. 2.1), and

Correct Dwell-Time Maneuvers Performed

at Each Target (Sec. 2.2),
(1)

where ε ≥ 0 is a constant parameter.

3 Discrete Approximation
Problem 1, which explicitly considers all imaging con-

straints, is typically difficult to solve directly. However, by
carefully sampling the UAV configuration space, we pose
a discrete alternative whose optimal solutions approximate
those of Problem 1. This discrete approximation is closely
related to standard path-finding problems, allowing the use
of existing solvers to produce high-quality sub-optimal solu-
tions. This section develops the discrete problem of interest.

3.1 Configuration Space Sampling
We sample the UAV configuration space to obtain a fi-

nite collection of points of the form vvv B (xxx, θ) ∈ R2×[0,2π).
These points serve as the basis for the discrete approximation
to Problem 1. Specifically, we choose a set of points that
each represent the starting and ending configuration of an
appropriate dwell-time “loop” at some target. That is, each
sampled point vvv B (xxx, θ) has heading θ that points in a direc-
tion tangent to a valid dwell-time loop (associated with target
TARvvv) passing through location xxx ∈ VIS j . By pairing each
vvv with its target TARvvv , this procedure creates a natural one-
to-one mapping between the generated points and a set of
feasible dwell-time maneuvers. As such, subsequent graph
formulations can “disregard” dwell-time constraints by us-
ing an augmented graph distance. Fig. 4 shows examples of
valid sampled sets associated with some Tj . Here, the dot is
the point’s location and the arrow represents its heading.



BEHj = FULL, τj != 0 BEHj = ANGLE, τj != 0 BEHj = ANY, τj != 0 BEHj = ANGLE, τj = 0 BEHj != ANGLE, τj = 0

Fig. 3. Example imaging behaviors at target Tj for various choices of BEH j and τj .

BEHj = FULL, τj != 0 BEHj = ANGLE, τj != 0 BEHj = ANY, τj != 0 BEHj = ANGLE, τj = 0 BEHj = ANY, τj = 0

Fig. 4. Examples of valid configuration samples associated with Tj for various choices of BEH j and τj .

Algorithm 2 outlines the sampling process. Here, N ∈
N is a parameter representing the number of sample points
associated with each target, V is the resultant set of sampled
UAV configurations, and each set DWL j is defined thusly: If
τj , 0, let DWL j be the set of points vvv B (xxx, θ) ∈ VIS j ×
[0,2π) having location xxx that lies on the circular image of an
appropriate dwell-time maneuver and heading θ that points
in a direction tangent to the same circular image at xxx. If
τj = 0, let DWL j B VIS j × [0,2π). Note that, since all
valid dwell-time loops associated with some target passing
through a point vvv ∈ V have the same radii, we can assume
without loss of generality that each vvv is the starting/ending
configuration of a single loop associated with TARvvv .

Algorithm 2: Configuration Space Sampling
Input : N ∈ N; a; VIS j , τ j for all j ∈ {1, . . . , M }
Output : V , {TARvvv }vvv∈V

1 Initialize V = ∅;
2 for Each T j do
3 Construct and parameterize DWL j by considering the images

of valid dwell-time maneuvers at target T j ;
4 for k ∈ {1, . . . , N } do
5 Sample vvvk ∈ DWL j , associate the target T j to vvvk ,

i.e., define TARvvvk B T j , and add vvvk to V ;

6 return V , {TARvvv }vvv∈V

3.2 Graph Construction
Given the set of sampled points V that is returned by Al-

gorithm 2, we utilize Algorithm 3 to construct a weighted,
directed graph G B (V ∪ {vvv0},E,W ) that effectively dis-
cretizes the solution space of Problem 1. Here, the edge set
E contains directed edges connecting each pair of nodes in
V , along with directed edges connecting the initial UAV con-
figuration vvv0 with each node in V . Weights are defined via
an augmented distance that includes both the time required to
complete the dwell-time maneuver at the source node and the
time required to travel between configurations. The discrete
approximation to Problem 1 using the graph G is presented
in Problem 2.

Problem 2 (Discrete Approximation). Consider the
graph G B (V ∪ {vvv0},E,W ) resulting from Algorithm 3.
Find a sequence vvv1,vvv2, . . . ,vvvM ∈ V that solves

Minimize: W (vvvM ,vvv1) +

M−1∑
k=1

W (vvvk ,vvvk+1)

Subject To: W (vvv0,vvv1) ≤ ε, and

TARvvvk1
, TARvvvk2

, for any k1 , k2,

(2)

where vvv0 corresponds to the initial UAV configuration and
ε ≥ 0 is a constant parameter.

Algorithm 3: Graph Construction
Input : N ∈ N; V , {TARvvv }vvv∈V ; vvv0, s, a, r
Output : G B (V ∪ {vvv0 }, E,W )

1 Initialize the edge set E = ∅;
for Each pair of distinct points vvvk1, vvvk2 ∈ V do

2 Add the directed edges (vvvk1, vvvk2 ) and (vvvk2, vvvk1 ) to E;
3 Set the weight W

(
vvvk1, vvvk2

)
equal to the sum of:

(i) the time required to perform the dwell-time
maneuver associated with vvvk1 , and

(ii) the time required to traverse the optimal Dubins
path from vvvk1 to vvvk2 ;

4 Set the weight W
(
vvvk2, vvvk1

)
equal to the sum of:

(i) the time required to perform the dwell-time
maneuver associated with vvvk2 , and

(ii) the time required to traverse the optimal Dubins
path from vvvk2 to vvvk1 ;

5 Add the initial UAV configuration vvv0 to the node set of G;
6 for Each node vvv ∈ V do
7 Add the directed edges (vvv0, vvv) to E;
8 Set the weight W (vvv0, v) equal to the time required to

traverse the optimal Dubins path from vvv0 to vvv;

9 return G = (V ∪ {vvv0 }, E,W )

4 UAV Tour Construction
Notice that solutions to Problem 1 can be recovered

from solutions to Problem 2. Indeed, given a solution



vvv1, . . . ,vvvM to (2), we recover a feasible solution to (1) by:
(i) concatenating the optimal Dubins paths between adjacent
nodes in the sequence (also appending the path from vvv0 to vvv1
at the beginning and the path from vvvM with vvv1 at the end) and
(ii) appending the dwell-time trajectory associated to each
node vvv1, . . . ,vvvM . The remainder of our analysis studies the
discrete approximation (Problem 2) and its relation to the
continuous formulation (Problem 1).

4.1 Solving the Discrete Problem
We leverage solutions of a classic graph path-finding

problem to find solutions to (2). In particular, we propose
a heuristic framework that relates solutions of (2) the follow-
ing Generalized Traveling Salesperson Problem (GTSP).

Problem 3 (GTSP). Given a complete, weighted, directed
graph G B (V ,E,W ), and a family of finite, non-empty
subsets {Vj ⊆ V} j∈{1, ...,M } , find a minimum weight, closed
path that visits exactly one node from each subsetVj .

Problem 2 is not equivalent to a GTSP in general, due to
the constraint on the initial maneuver. However, GTSP so-
lution procedures can be leveraged in constructing solutions
to the constrained problem. Indeed, a heuristic procedure for
constructing solutions to Problem 2 using the solutions to re-
lated GTSP instances is outlined in Algorithm 4. Here, INLε
denotes the set of all nodes in V that can be reached from vvv0
in time less than ε .

Algorithm 4: Heuristic Solution to Problem 2
Input : G = (V ∪ {vvv0 }, E,W ), {TARvvv }
Output : vvv1, . . . , vvvM

1 Construct the set INLε B {vvv ∈ V | W (vvv0, vvv) ≤ ε};
if INLε is empty then

2 return “Problem 2 Infeasible”
else

3 Select a subset INL∗ε ⊆ INLε , whose elements are all
associated with a single target T ̂ ;

4 Construct the subgraph G B (V, E,W ) ⊆ G that is
induced by the node setV ⊆ V , where
V B V \{vvv ∈ V | TARv = T ̂, v < INL

∗
ε };

5 Formulate and solve the GTSP (Problem 3) using the graph G
and subsetsVj B {vvv ∈ V | TARv = T j };

6 Define vvv1, vvv2, . . . , vvvM as the unique, circular shift1 of the
resultant GTSP solution that satisfies TARvvv1 = T ̂ ;

7 return vvv1, . . . , vvvM

4.2 Complete Tour Construction
The complete procedure is presented in Algorithm 5.

Solutions produced by Algorithm 5 are not optimal in gen-
eral, though they will exhibit structural characteristics that
generally improve in quality (with respect to Problem 1) as
the sampling granularity is made increasingly fine. We omit
a full mathematical characterization of limiting behavior in
this brief and simply note that properties related to resolution
completeness can be rigorously shown.

1A circular shift of an ordered sequence a1, a2, . . . , aM is an ordered
sequence ai, ai+1, . . . , aM , a1, . . . , ai−1, where i ∈ {1, . . . , M }

Algorithm 5: Heuristic Tour Construction via GTSPs
Input : vvv0, s, a, r ; N ∈ N; {T j } j∈{1, . . .,M }
Output : Complete UAV Route

% Create visibility regions;
1 Create target visibility regions via Algorithm 1.

% Create the discrete approximation;
2 Sample the configuration space and create the graph G via

Algorithms 2 and 3. Formulate Problem 2;

% Solve the discrete approximation;
3 Construct a solution vvv1, . . . , vvvM to Problem 2 via Algorithm 4;

if Algorithm 4 returns an error (Problem 2 is infeasible) then
4 return “Error: Discrete Approximation Infeasible”

% Convert the solution of Problem 2 into a solution to Problem 1;
5 Construct the optimal Dubins path that visits the nodes in the

following order: vvv0, vvv1, . . . , vvvM , vvv1;
6 Append dwell-time maneuvers to recover a solution to Problem 1.;
7 return UAV Route: Initial Maneuver + Closed Trajectory

5 Numerical Examples

The presented algorithms are shown via numerical ex-
amples. For each example, solutions to Problem 1 are con-
structed via Algorithm 5, where GTSPs are solved through
transformation into an equivalent ATSP (see [10]) that is
subsequently solved using an implementation of the Lin-
Kernighan heuristic. In all cases, the set INL∗ε (Algorithm 4)
is chosen as the set of all points in INLε associated with some
single target. A slightly modified version of Algorithm 2 is
used for sampling in which the number of samples, N , as-
sociated with each target is not fixed a priori, but instead is
determined by creating a grid of samples within the sampling
subsets. Grid spacing is determined by 3 parameters δr , δθ,
and δα, which represent, loosely, the radial location spac-
ing, the angular location spacing, and the angular heading
spacing, resp. The parameters δr , δθ, and δα are inversely
proportional to the number of samples at each target.

5.1 Pareto-Optimal Front

The first example is a 5 target mission with the follow-
ing UAV parameters: r = 750 m, a = 1000 m, s = 39
m/s, and vvv0 = ((−2500,500) m,0). Target parameters are
shown in Table 1. The approximate Pareto-optimal front
for Problem 1 as a function of the sampling granularity is
shown in Figure 5. The figure also shows illustrations of so-
lutions produced at spacing condition 5 when ε = 65 s (left)
and ε = 205 s (right). The following steps were taken to gen-
erate each curve: First, Algorithm 5 was called for a series
of ε values, and the resulting initial maneuver/closed trajec-
tory times were recorded. Then, in post-processing, the ap-
proximate Pareto-optimal curve was generated by selecting,
for each ε , the lowest cost route satisfying the initial maneu-
ver constraint. Note that increasing ε corresponds to relax-
ing the initial maneuver constraint, and thus the cost is non-
increasing in ε . Notice also that the Pareto-optimal fronts
shift toward zero as the sampling spacing is decreased.



Table 1. Target Input Data

Tj t j Beh j τj
[
φA
j − ∆

A
j , φ

A
j + ∆A

j

] [
φT
j − ∆

T
j , φ

T
j + ∆T

j

]
T1 (5000,−5000) m FULL 2 − [ π8 ,

3π
8 ]

T2 (4300,−1750) m ANGLE 1 [ π4 ,
3π
4 ] [ π8 ,

3π
8 ]

T3 (0,4000) m FULL 3 - [ π8 ,
3π
8 ]

T4 (−8000,−2000) m ANY 1 - [ π8 ,
3π
8 ]

T5 (−2000,8000) m ANGLE 0 [ 3π
2 ,2π] [ π8 ,

3π
8 ]
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Fig. 5. Approximate Pareto-Optimal Front and Example Routes for the Spacing Conditions in Table 2

Table 2. Spacing Conditions

Spacing Condition δr δθ δα

1 1000 m π π

2 500 m π π

3 500 m π/2 π/2

4 250 m π/2 π/2

5 250 m π/4 π/4

6 125 m π/4 π/4

7 125 m π/8 π/8

5.2 Performance
The next example illustrates the performance of Algo-

rithm 5 in comparison to an incremental, “greedy” alterna-
tive that operates as follows: Visibility region creation and
configuration space sampling are done using Algorithms 1

and 2. Starting with the initial UAV configuration, each suc-
cessive UAV destination is chosen by selecting the closest
node (Dubins distance) associated with a target that has not
yet been imaged. A valid route is constructed by append-
ing dwell-time maneuvers and connecting the last selected
configuration (vvvM ) with the first (vvv1). We consider a 5 tar-
get mission with the same UAV parameters, target locations,
imaging behaviors, and tolerances as in Section 5.1. How-
ever, we vary the number of dwell-time loops associated with
each (each target requires same number of loops).

The difference between the closed trajectory times pro-
duced by the greedy method and those produced by Algo-
rithm 5 as a function of ε under spacing condition 5 (Fig. 5)
is shown in Fig. 6.Notice that the performance of the greedy
search method can be made arbitrarily poor by increasing
the number of dwell-time loops. This result is primarily due
to targets that require a 360-degree view, since the greedy
heuristic generally chooses points lying on the visibility re-
gion perimeter, which are very far from the target location.
Thus, increasing the number of dwell-time loops can drasti-
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cally increase total tour times. As such, Algorithm 5 can pro-
vide a significant advantage over similar incremental plan-
ning strategies when non-trivial dwell-times are required.

6 Conclusions
A straightforward algorithmic framework was presented

for constructing unmanned aerial vehicle trajectories for
surveillance of multiple targets, each having visibility and
dwell-time constraints.

Avenues of future research include the expansion to the
multi-vehicle case, explicit comparisons with other routing
schemes (e.g., Markov chain-based schemes), and an inves-
tigation of alternative discretization strategies. Further, the-
oretical studies of the implications of subset selection in Al-
gorithm 4 and other manipulations to aid computation are
of interest. In addition, incorporation of uncertain dwell-
times and the explicit pairing with other facets of complex
missions, e.g. operator analysis of imagery, should be ex-
plored. Other valuable extensions include the explicit con-
sideration of visual occlusions and the incorporation of more
complex vehicle dynamics. Experimental validation of these
approaches in an appropriately designed hardware testbed
would also provide further insight into practical implemen-
tation of the presented algorithms.
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