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Quickest Detection over Robotic Roadmaps
Pushkarini Agharkar, Francesco Bullo

Abstract—We study the problem of quickest detection of
anomalies in an environment under extreme uncertainties in
sensor measurements. The robotic roadmap corresponding to the
environment can be represented as a graph with an arbitrary
topology. We analyze the Ensemble CUSUM Algorithm for this
surveillance problem. We quantify the delay in detection of
anomalies using the Ensemble CUSUM Algorithm and also frame
an optimization problem to minimize this detection delay. We
then provide an upper bound on the optimal detection delay
and frame a convex optimization problem to minimize this
upper bound. We also propose an efficient policy which achieves
this upper bound and which can be computed by solving a
semidefinite program. We illustrate the efficacy of the Ensemble
CUSUM Algorithm using numerical simulations. We observe that
the efficient policy outperforms policies based on other well-
known Markov chains. This trend is more noticeable for higher
levels of uncertainties and noise in sensor measurements.

I. INTRODUCTION

The topic of surveillance in environments using autonomous
agents has received considerable attention lately. Specific
examples include the monitoring of chemical and oil spills [5],
the detection of forest fires [9], search and rescue missions
and topological mapping [21], the periodic patrolling of an
environment [6], [20]. Other applications include building
and infrastructure maintenance [10], minimizing emergency
vehicle response times [2] and robotic warehouse management
[23]. In this paper, we consider surveillance strategies under
extreme uncertainties in sensor measurements.

A. Related Work

Theoretical analysis of the surveillance problem was con-
ducted in [4] and a survey of various surveillance scenarios and
the corresponding approaches was presented in [1]. Surveil-
lance strategies that minimize the refresh time, i.e., time period
between subsequent visits to regions have been proposed in
[12],[16] and [17]. In [12], authors propose optimal algorithms
which minimize the refresh time for chain and tree graphs and
constant factor algorithm for cyclic graphs. Authors in [17]
consider the problem of minimizing specific weighted sums
of refresh times and design non-intersecting tours on graphs
for this surveillance criterion. In [16], the authors design speed
controllers on closed paths to minimize the refresh time for a
given set of points of interest in the environment.

The surveillance policies proposed in [12],[16] and [17]
are deterministic in nature. Stochastic surveillance strategies
assume importance in scenarios where the intruders can move
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or hide to avoid detection and as a result, the movement of
the surveillance vehicle is required to be non-deterministic.
The computation of an optimal deterministic strategy is also
tedious. This is because the length of the tour which is
repeatedly executed in the course of the deterministic strategy
may be arbitrarily long. This is important especially in large
environments and in situations where the strategy has to be
re-evaluated to incorporate new information. We hence devote
our attention to stochastic strategies.

Several authors have used Markov chain based approaches
to design stochastic strategies for various surveillance tasks.
Authors in [18] use the Metropolis-Hastings algorithm to
achieve specified frequency of visits to regions of the en-
vironment. In [7], authors design random walk strategies
on hypergraphs and parametrically vary the local transition
probabilities over time in order to achieve fast convergence
to a desired visit frequency distribution. In [19], authors use
the fastest mixing Markov chain for quickest detection of
anomalies. Authors in [13] use a Markov chain with minimum
mean first passage time in order to detect intruders in unknown
locations in the environment. Authors in [14] consider different
intruder models and present routing strategies for surveillance
in scenarios corresponding to them.

The framework for the surveillance problem studied in this
paper was introduced in [19]. In the setup of this problem, the
surveillance vehicle conducts surveillance of an environment
which can be represented as a graph. It takes observations
from different regions of the environment in order to detect
the presence of anomalies in the regions as quickly as possible
after their occurrence. The authors in [19] proposed a Markov
chain based routing policy termed the Ensemble CUSUM Al-
gorithm to determine the movement of the surveillance vehicle
across regions. The Markov chains that they considered were
required to have transition matrices with identical columns.

B. Contributions

We revisit the surveillance problem studied in [19]. The
authors in [19] considered an all to all graph topology more
suitable for environments with aerial vehicles. We extend
their setup to graphs with arbitrary topologies, which we
broadly refer to as robotic roadmaps. Further, we only keep
the assumption of irreducibility on the Markov chains and look
at a wider class of Markov chains than the one considered in
[19]. We determine an expression for the average detection
delay in the generalized setting and find that it depends on the
first passage times of the Markov chain corresponding to the
routing policy. We then frame an optimization problem to find
the Markov chain corresponding to the optimal policy which
minimizes the detection delay. We also provide an upper bound
on the minimum detection delay and frame an optimization
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Fig. 1. The environment is an area separated into seven regions of interest.
Observations made in the highlighted region change after an anomaly occurs.
The aim of the surveillance vehicle is to detect this change as soon as possible.
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Fig. 2. The robotic roadmap corresponding to the environment can be
represented by a graph. The edge weights of the graph represent travel times
between neighboring regions.

problem to minimize the upper bound. We prove that the
upper bound optimization problem is convex and provide
a semidefinite program (SDP) formulation to solve it and
obtain the corresponding efficient policy. Using an illustrative
example, we validate our expression for the detection delay
and also surmise that the efficient policy provides a detection
delay close to that of the optimal policy.

C. Organization

In Section II, we describe the setup of the surveillance
problem, formally define the quickest detection task and state
the Ensemble CUSUM Algorithm to address the task. In
Section III, we review results on the CUSUM algorithm and
the mean first passage time of Markov chain random walks on
graphs which will be used to analyze the Ensemble CUSUM
Algorithm. In Section IV, we analyze the performance of the
Ensemble CUSUM Algorithm and provide an upper bound
on its performance. In Section V, we present numerical
simulations which validate our findings. Conclusions of the
paper are summarized in Sec. VI

II. PROBLEM SETUP

We first describe our model for the environment and the
mathematical model used for simulating the presence of
anomalies in the environment.

A. Environment

The environment in the problem setup of this paper can be
modeled as a graph G = (V,E) with node set V := {1, . . . , n}
and edge set E ⊆ V × V . The nodes in the graph correspond
to the regions in the environment and the edges correspond to
the interconnections between them. The time taken to travel
from region i to the neighboring region j is dij and travel
time matrix D = [dij ] ∈ Rn×n with the property that dij ≥ 0
if (i, j) ∈ E and dij = 0 otherwise.

The level of importance wi is assigned to region i and w =
[wi] ∈ Rn×1 is the referred to as the priority vector. Without
loss of generality, wT1n = 1. The environment can thus be
described by the 4-tuple: E = 〈V,E,D,w〉. An example of
the environment and the graph corresponding to it is shown
in Fig. 1 and Fig. 2 respectively.

B. Observations in Environment

When the surveillance vehicle visits a region in the environ-
ment, it makes an observation about the region. Based on all
the observations made in the region up to that point, it predicts
the presence of anomalies in the region.

Let the set of observations made by the surveillance vehicle
at the region k be {yk,1, yk,2, . . .}. If an anomaly occurs
in the region at some iteration ν, then the observations
{yk,1, . . . , yk,ν} are i.i.d. with probability density function
f0k and the observations {yk,ν , yk,ν+1, . . .} are i.i.d. with
probability density function f1k . We use the notation D(f1k , f

0
k )

to denote the Kullback-Leibler divergence of f0k from f1k
and also denote Dk := D(f1k , f

0
k ) for convenience. We now

describe the spatial quickest detection task and quantify it.

C. Quickest Detection of Anomalies

The surveillance vehicle adopts a policy described by the tu-
ple P = 〈P, q〉. It moves in the environment E = 〈V,E,D,w〉
according to a Markov chain with stationary distribution
q = [qi] ∈ Rn×1 and transition matrix P = [pij ] ∈ Rn×n.
If (i, j) ∈ E, then pij ≥ 0 and pij = 0 otherwise.

The aim of the vehicle is to detect anomalies in a region
based on observations made in that region in least amount of
time possible. More specifically, using a routing policy P , it
is required to minimize the average detection delay defined
below.

Definition 1 (Average Detection Delay): Let the vehicle
service the environment E = 〈V,E,D,w〉 using policy P
for k ∈ {1, . . . , n} and let δk(P) be the delay in detecting
an anomaly at region k. Then the task of the vehicle is to
minimize the average detection delay δavg(P) given by

δavg(P) =

n∑
k=1

wkE[δk(P)]. (1)

D. Ensemble CUSUM Algorithm

The surveillance vehicle visits the regions in E according
to a realization of the Markov chain with stationary distri-
bution q and transition matrix P . When the vehicle is in a
particular region of the environment, it runs a local version
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Algorithm 1: Ensemble CUSUM Algorithm
Given: Policy P = 〈P, q〉, threshold η, initial state x.
Set: Λk,0 = 0 for k ∈ {1, . . . , n}, local variable τ = 1

for all regions.
1 Make observation yk,τ at region x;

2 Λx,τ = sup
(

Λx,τ−1 + log
f1
x(yx,τ )
f0
x(yx,τ )

, 0
)

;
3 if Λx,τ > η then
4 Declare an anomaly at region x;
5 Set Λx,τ = 0;
6 end
7 Set τ ← τ + 1 for x;
8 Select x← z with probability P (x, z);
9 Repeat from step 1.

of the CUSUM algorithm. We refer to the n parallel CUSUM
algorithms by Ensemble CUSUM Algorithm (Algorithm 1).
We wish to find the surveillance policy P = 〈P, q〉 for the
environment E = 〈V,E,D,w〉 which minimizes the average
detection delay δavg(P) defined in equation (1) in the previous
section.

Remark 2: (Service times): The service times required for
conducting surveillance in different regions are not modeled
in the problem setup. However, they can be incorporated in
a straightforward manner. If v ∈ Rn×1 is the constant vector
of service times, they can be accounted for by modifying the
travel time matrix to D̄ := D + 1nvT .

Remark 3: (Knowledge of probability density functions):
The probability density functions in the absence and presence
of anomalies are assumed to be known to the surveillance
vehicle. In a scenario where the probability density functions
are not known, the CUSUM algorithm can be replaced by the
minimax robust quickest change detection algorithm [22] and
the results presented in this paper can be extended to apply to
that scenario as well.

III. PRELIMINARIES

We will now state some preliminary results which will
be used in analysing the Ensemble CUSUM Algorithm. We
will start by reviewing some performance guarantees on the
CUSUM algorithm.

A. CUSUM Algorithm

The CUSUM algorithm is designed for quick prediction
of anomalies while at the same time, avoiding making false
alarms [15], [11]. In the CUSUM algorithm, at each iteration
τ ∈ N made in region k, (i) observation yk,τ is collected, (ii)
the statistic

Λk,τ = sup

(
Λk,τ−1 + log

f1k (yk,τ )

f0k (yk,τ )
, 0

)
with Λk,0 = 0 is computed and (iii) a change is declared if
Λk,τ > η. Let Ok be the observation at which an anomaly is
declared at region k. For a given threshold η, the expectation of
Ok conditioned on the presence of an anomaly, i.e., the worst

expected number of observations of the CUSUM algorithm
[11] is

Ef1
k
(Ok) ≈ e−η + η − 1

D(f1k , f
0
k )

=
η̄

Dk
, (2)

where η̄ = e−η+η−1, and the expectation of Ok conditioned
on the absence of an anomaly, i.e., the false alarm rate for
CUSUM algorithm is

Ef0
k
(Ok) ≈ eη − η − 1

D(f0k , f
1
k )

(3)

The approximations in equations (2,3) are referred to as the
Walds approximations [15]. For large values of the threshold
η, these approximations are known to be accurate. We also set

sk :=
η̄

Dk
, (4)

and s = [sk] ∈ Rn×1, referring to it as the vector of CUSUM
samples. Given η̄ and Dk, the constant sk is the expected
number of visits to region k required to detect an anomaly in
that region.

The expression for the average detection delay of the
Ensemble CUSUM Algorithm (Algorithm 1) depends on the
property of Markov chains called the first passage time. So
we will define the first passage times of a graph and review
some of its properties.

B. First Passage Time

Simply put, the first passage time from node i to node j
of a graph is the expectation of the time Tij taken for a
Markov chain to start from i and visit j for the first time.
This is taking into account the time taken to traverse edges in
the graph specified by the travel time matrix D of the graph.
Given a realization X1, X2, X3, . . . of the Markov chain, the
mathematical definition of the random variable Tij is as

Tij = min
{ k−1∑
n=0

dXn,Xn+1 , for k ≥ 1 | Xk = j

given that X0 = i
}
.

The expectation of Tij , i.e., E[Tij ] =: nij is the first passage
time from node i to node j. The matrix N = [nij ] is referred to
as the first passage time matrix. The following results provide
the governing equation for N , as well as a special weighted
sum of its entries. The proofs for these results can be found
in [13].

Theorem 4: (Governing equations for first passage times):
For an irreducible Markov chain with transition matrix P ,
stationary distribution q and travel time matrix D,
(i) The first passage time matrix N = [nij ] satisfies the

following equation:

nij = pijdij +
∑
k 6=j

pik(nkj + dik),

or in matrix form,

(I − P )N = (P ◦D)1n1Tn − PNd.
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(ii) The diagonal elements of N satisfy the following equa-
tion:

nii = qT (P ◦D)1nqi.

where P ◦D is the element-wise product between P and D.
A specific weighted sum of the first passage time matrix N ,

called the mean first passage time is now defined. It is also
referred to as the weighted Kemeny constant in [13].

Theorem 5: (Mean first passage time): The mean first pas-
sage time of an irreducible Markov chain with transition
matrix P , stationary distribution q, travel time matrix D and
first passage time matrix N is

qTNq = qT (P ◦D)1n

(
n∑
i=2

1

1− λi(P )

)
, (5)

where {λ1(P ), . . . , λn(P )} are the eigenvalues of P with
λ1(P ) = 1.

IV. PERFORMANCE OF THE ENSEMBLE CUSUM
ALGORITHM

We are now ready to state our main results on the average
detection delay δavg(P) of the Ensemble CUSUM Algorithm
(Algorithm 1).

Theorem 6: (Performance of the Ensemble CUSUM Algo-
rithm): For a single vehicle conducting surveillance of the
environment E = 〈V,E,D,w〉 according to the Ensemble
CUSUM Algorithm (Algorithm 1) using the policy P =
〈P, q〉,
(i) the expected detection delay E[δk(P)] at region k satisfies

E[δk(P)] =

n∑
i=1

qinik + (sk − 1)nkk, (6)

(ii) the average detection delay δavg(P) over the entire envi-
ronment satisfies

δavg(P) =

n∑
k=1

wk

(
n∑
i=1

qinik + (sk − 1)nkk

)
, (7)

where N = [nij ] ∈ Rn×n is the first passage time matrix
for the irreducible Markov chain with transition matrix P ∈
Rn×n and stationary distribution q ∈ Rn×1 and the constant
s ∈ Rn×1 is the vector of CUSUM samples.

Proof: Let τ ∈ {1, . . . , Ok} be the iterations at which the
vehicle visits region region k and sends information about it to
the control center. Let Ok be the iteration at which an anomaly
is detected in region k. The observation made at region k at
the τ -th iteration in that region is denoted by yk,τ . Let the log
likelihood ratio calculated by the local CUSUM algorithm for
that iteration be εk,τ . Then,

εk,τ = log
f1k (yk,τ )

f0k (yk,τ )
.

Conditioned on the presence of an anomaly, {εk,τ}τk∈N are
i.i.d. and Ef1

k
[εk,τ ] = Dk. Then, referring to result summarized

in equation (2), Ef1
k
[Ok] = η̄/Dk. Thus, the expected time it

takes for the Ensemble CUSUM Algorithm to make the Ok-
th observation at region k is essentially the expected detection

delay δk(P) at region k. We will now devote our attention to
computing the expectation of δk(P).

Let t0k be the time at which the vehicle starts the CUSUM
algorithm. Let {t1k, t2k, . . . , t

Ok
k } be the time instant at which

it leaves region k, having serviced it, and ∆tik = ti+1
k − tik for

i = {0, 1, 2, . . .}. Then, the detection delay δk(P ) = tOkk =∑Ok
i=0 ∆tik. The expectation of δk(P ) can be computed:

E[δk(P )] = E

[
Ok−1∑
i=0

∆tik

]

= E[∆t0k] + E

[
Ok−1∑
i=1

∆tik

]
= E[∆t0k] + (E[Ok]− 1)E[∆tik] (8)

=

n∑
i=1

qinik +

(
η̄

Dk
− 1

)
nkk. (9)

Equation (8) comes from the application of Wald’s identity.
Notice that E[∆t0k] is the expected time to start from any node
and visit node k for the first time and given i > 0, E[∆tik]
is the expected time taken to return to node k. Recollect that
nij is the expected time for the vehicle to start from node i to
visits node j for the first time. Hence, we can conclude that
E[∆t0k] =

∑n
i=1 qinik and E[∆tik] = nkk for i > 0 to obtain

equation (9). Using the definition of s from equation (4), the
first result follows. Next, using the definition of δavg(P) from
equation (1), the second result follows.

Thus, the average detection delay depends on the first
passage times between nodes of the graph representing the
environment E . We now present a modified expression for
δavg(P), removing the dependence of the first passage times, in
the following theorem. The proof of the theorem is postponed
to Appendix B.

Theorem 7: (Average detection delay): For a single vehicle
conducting surveillance of the environment E = 〈V,E,D,w〉
according to the Ensemble CUSUM Algorithm (Algorithm 1)
using the policy P = 〈P, q〉,

δavg(P) = β1Tn [((I − P ) + (P ◦D)1nq
T )−1 ◦ I](r · w)

+ (β − 1) + β(s− 1n)T (r · w), (10)

where r ∈ Rn×1 with r · q = 1n, I ∈ Rn×n is the identity
matrix, β = qT (P ◦D)1n and the constant s ∈ Rn×1 is the
vector of CUSUM samples.

In our setup, the environment can have an arbitrary graph
topology and the routing policy can also take an arbitrary form
adhering to the restrictions imposed by the graph topology.
A specific simplification, where the environment is an all
to all graph and where the transition matrix for the routing
policy has the form P = 1nqT is explored in [19]. While
they provide algorithms to optimize the stationary distribution
q in the simplified setup, we consider the more generalized
problem. Specifically, our goal is to find policy P = 〈P, q〉
for the vehicle such that δavg(P) is minimized. This can be
framed as the following optimization problem:

Problem 1: (Minimizing the average detection delay):
Given the environment E = 〈V,E,D,w〉 and the constant
vector of CUSUM samples s ∈ Rn×1, determine the stationary
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distribution q = [qi] ∈ Rn×1 and transition probabilities
P = [pij ] ∈ Rn×n solving:

minimize β1Tn [((I − P ) + (P ◦D)1nq
T s)−1 ◦ I](r · w)

+ (β − 1) + β(s− 1n)T (r · w)

subject to P1n = 1n,

0 ≤ pij ≤ 1, for each (i, j) ∈ E
pij = 0, for each (i, j) /∈ E
qTP = qT , for each (i, j) ∈ E
qT1n = 1,

qi ≥ 0, ri = 1/qi, for each i ∈ {1, . . . , n}
P irreducible,

β = qT (P ◦D)1n.
(11)

The above optimization problem contains the constraint
that the transition matrix be irreducible. Since it is hard
to enforce the irreducibility constraint during each step of
an iterative optimization algorithm, our approach is to relax
the irreducibility constraint and verify that the final solution
satisfies the constraint. A Markov chain that is not irreducible
contains multiple communicating classes, making the first
passage time between at least one pair of regions infinite. Since
the average detection delay depends on the first passage times
of the chain, the outcome where the final solution is a reducible
chain would drive up the cost function of the optimization
problem, making such an outcome highly unlikely. Because
of this reason, the relaxation of the irreducibility constraint
works very well in practice.

Let P∗ be the solution to Problem 1 and let δ∗avg :=
δavg(P∗). The cost function of this optimization problem is not
a convex function of P and q. Moreover, one of the constraints
is also nonlinear. We now devote some attention to determining
an upper bound on δ∗avg, and frame an optimization problem
to minimize it. We start with evaluating policies of the form
Pw = 〈Pw, w〉, i.e., where the Markov chain corresponding
to the policy has stationary distribution equal to the priority
vector w. We leverage the result known on the weighted sum of
the first passage times from Theorem 5 to simplify expressions
for the detection delay of the Ensemble CUSUM algorithm in
this case.

Theorem 8: (Upper bound on average detection delay): For
a single vehicle conducting surveillance of the environment
E = 〈V,E,D,w〉 according to the Ensemble CUSUM Algo-
rithm (Algorithm 1) using the policy Pw = 〈Pw, w〉,

δavg(Pw) =
(
wT (Pw ◦D)1n

)( n∑
i=2

1

1− λi(Pw)
+ (s− 1n)T1n

)
for all Pw ∈ Sw, where Sw is the set of transition matrices
corresponding to irreducible Markov chains with stationary
distribution w, {λ1(Pw), . . . , λn(Pw)} are the eigenvalues of
Pw with λ1(Pw) = 1, and the constant s ∈ Rn×1 is the vector
of CUSUM samples.

Proof: We start with the expression for δavg(P) obtained
in Theorem 6. In matrix form, equation (7) can be rewritten
as

δavg(P) = qTNw + (s− 1n)TNdw, (12)

where P = 〈P, q〉. Setting the variable q to w, and using the
result from Theorem 5, as well as the result from Theorem. 4
(ii), equation (12) can be simplified:

δavg(Pw)

= wTNw + (s− 1n)TNdw

=
(
wT (Pw ◦D)1n

)( n∑
i=2

1

1− λi(Pw)
+ (s− 1n)T1n

)
.

We can make the upper bound obtained on the optimal
detection delay tighter by choosing Pub ∈ Sw which mini-
mizes the average detection delay. The following optimization
problem can be framed to find the matrix Pub.

Problem 2: (Minimizing the upper bound on optimal
average detection delay): Given the environment E =
〈V,E,D,w〉, the vector of CUSUM samples s ∈ Rn×1 and
the stationary distribution w ∈ Rn×1, determine the transition
probabilities P = [pij ] ∈ Rn×n solving:

minimize
(
wT (P ◦D)1n

)( n∑
i=2

1

1− λi(P )
+ (s− 1n)T1n

)
subject to P1n = 1n,

0 ≤ pij ≤ 1, for each (i, j) ∈ E
pij = 0, for each (i, j) /∈ E
wipij = wjpji, for each (i, j) ∈ E.

(13)

Note that the above optimization problem also involves the
restriction of non-reversibility on the transition matrix P as
denoted by the last equality.

Theorem 9: (Convexity of Optimization Problem 2): Let Sw
be the set of transition matrices associated with irreducible
non-reversible Markov chains on graph G = (V,E) and
having the stationary distribution w. Then, the Optimization
Problem 2 is convex.

Proof: From Theorem 8, the cost function f(Pw) of the
Optimization Problem 2 can be written down as:

f(Pw) =
(
wT (Pw ◦D)1n

)( n∑
i=2

1

1− λi(Pw)

)
+
(
wT (Pw ◦D)1n

)
(s− 1n)T1n. (14)

The first term in equation (14) is the mean first passage time
of the Markov chain as defined in Theorem 5. The mean first
passage time is a convex function over the set Sw (refer to [13]
for the proof). Moreoever, the second term in equation (14) is
an affine function over the set Sw. Since the positive weighted
sum of convex and affine functions is convex, the function
Pw 7→ f(Pw) is convex over the set Sw. The set Sw is also
convex and the constraints of the problem are affine. Hence,
the optimization problem is convex.

The Optimization Problem 2 can be written as a semidefinite
program. In order to do this, the expression for the detection
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Fig. 3. The environment consists of thirteen regions of interest. A long
passage connects a subgraph containing seven of the regions to another star
subgraph consisting of the remaining six regions.

delay is rewritten in terms of the trace of a matrix as

δavg(Pw) =
(
wT (Pw ◦D)1n

)
×

(
n∑
i=2

1

1− λi(Pw)
+ (s− 1n)T1n

)
=
(
wT (Pw ◦D)1n

)
× Tr

(
(I −W 1/2PwW

−1/2 + wcw
T
c )−1

)
+
(
wT (Pw ◦D)1n

)
(s− 1n)T1n,

where W = diag[w] and the column vector wc =
(
√
w1, . . . ,

√
wn)T . The first equation comes from Theorem 8

and the first part of the second equation is because of a relation
between the trace of a function of Pw and its eigenvalues [13].
Using this form for δavg(Pw), we can now formulate an SDP
as shown below.

Problem 3: (Minimizing the upper bound on the optimal
average detection delay (SDP)): Given the environment E =
〈V,E,D,w〉 and vector of CUSUM samples s ∈ Rn×1, with
W = diag[w] and wc = (

√
w1, . . . ,

√
wn)T , determine Y =

[yij ] ∈ Rn×n, X ∈ Rn×n, t ∈ R and u ∈ R solving:

minimize Tr(X) + u(sT1n)

subject to [
t(I + wcw

T
c )−W 1/2YW−1/2 I

I X

]
> 0[

t 1
1 u

]
> 0

n∑
j=1

yij = t, for each i ∈ {1, . . . , n}

wiyij = wjyji, for each (i, j) ∈ E
0 ≤ yij ≤ t, for each (i, j) ∈ E
yij = 0, for each (i, j) /∈ E
wT (Y ◦W )1n = 1

t ≥ 0.

Then, the transition matrix Pw is given by Pw = Y/t.s
Let Pub be the solution to the Optimization Problem 2. We

refer to the policy Pub = 〈Pub, w〉 as the efficient policy for
convenience.
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Fig. 4. Variation of the average detection delay using the optimal policy δ∗avg
(black squares), the efficient policy δub (grey squares) and the policy based
on the fastest mixing non-reversible Markov chain with a uniform stationary
distribution (grey circles) with respect to the threshold η of the CUSUM
algorithm. Expected detection delay for the optimal policy using Monte Carlo
Simulations (dashed lines).
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Fig. 5. Average detection delay using the optimal policy δ∗avg (black squares)
and the efficient policy δub (grey squares) are compared with the average
detection delay obtained using the policy based on the fastest mixing non-
reversible Markov chain (grey circles) with a uniform stationary distribution
and the policy from [19] (black circles) for various levels of noise in sensor
measurements made in one of the regions.

V. NUMERICAL SIMULATIONS

We now study the spatial quickest detection task for a
specific environment. In particular, we are interested in ex-
amining the efficiency of the upper bound service policy
Pub = 〈Pub, w〉 (termed the efficient policy) compared to
the optimal policy P∗ which minimizes the average detection
delay. We also compare these two policies to some candidate
policies (namely the policy based on the fastest mixing non-
reversible Markov chain [3] and a policy proposed in [19]).

Environment and modeling of anomalies: The environ-
ment modeled as a graph (Fig. 3) is an area separated into
thirteen regions of interest. The edge weights of this graph
represent the travel times between neighboring regions. All
regions in the environment have equal priority, so that w = 1n,
and the service time required to make an observation in each of
the regions is one time unit. The probability density functions
of the observations made in the environment in the absence and
presence of anomalies are normal distributions f0k = N (0, 1)
and f1k = N (1, 1) respectively for k ∈ {1, . . . , n}.

Computation of service policies: The Optimization Prob-
lem 1 to determine the optimal policy P∗ is non-convex with
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nonlinear constraints. We solve it using the sqp algorithm in
Matlab and verify that the solutions obtained are at least local
minima. This is done by ensuring that the solutions satisfies
1. the regularity condition and 2. the Karush-Kuhn-Tucker
(KKT) conditions necessary for the solution to optimal. On
the other hand, the Optimization Problem 2 to compute the
Markov chain corresponding to the upper bound service policy
Pub is convex and can be written as a semidefinite program.
It is solved using CVX, a Matlab-based package for convex
programs [8]. The fastest mixing non-reversible Markov chain
is also computed by solving a semidefinite program in CVX.
The policy proposed in [19] is stated as follows: P† = 〈P †, q†〉
where

q†k =

√
wk/Dk∑n

j=1

√
wj/Dj

, k ∈ {1, . . . , n}

and P † is the fastest mixing non-reversible Markov chain with
stationary distribution q†.

Validation of theoretical expressions: We start with com-
paring the theoretical expression for the average detection
delay δavg in the environment obtained in Theorem 7 (black
squares) to the expected detection delay computed through
Monte-Carlo simulations (dotted lines) in Fig 4 for the op-
timal policy. For these simulations, the initial position of the
surveillance vehicle is sampled from the stationary distribution
corresponding to the Markov chain it uses. No anomalies are
present in the beginning of the simulation. The gap between
the theoretical and the numerically obtained values is attributed
to Wald’s approximation introduced in equation (2).

Comparison of performances of service policies: We
first compare variation in the performance of various service
policies with respect to different thresholds η of the CUSUM
algorithm in Fig. 4(a). The average detection delay δub ob-
tained using the efficient policy Pub (grey squares) is close
to the optimal average detection delay δ∗avg (black squares) for
all values of the threshold η. The gap observed between the
optimal solution and the upper bound can be attributed to two
factors: freedom to choose any stationary distribution as well
as relaxation of the nonreversibility constraint for computing
the optimal solution.

In comparison, the performance of the fastest mixing non-
reversible Markov chain with stationary distribution w = 1n
(grey circles) is much poorer. This is expected since the
efficient policy is guaranteed to perform better in comparison
to the fastest mixing non-reversible Markov chain with the
same stationary distribution.

Next, we study the effect of the variation in the probability
density functions of observations on the performance of the
service policies. We consider a scenario where the region in
the star subgraph farthest away from the center, is affected by
noisy observations. While the probability distribution functions
for observations in all the other regions remain same, they are
different for this region: f0 = N (0, σ) and f1 = N (1, σ) and
average detection delays of the various policies considered in
the paper are compared for different values of σ in Fig. 5.
For this simulation, η = 10 is chosen. The performance of
the efficient policy (grey squares) is close to the optimal
performance (black squares) for a wide range of σ in this case.

In comparison, the performances of the policy based on the
fastest mixing non-reversible chain with stationary distribution
w = 1n (grey circles) and the policy from [19] (black circles)
are much poorer.

VI. CONCLUSION

We studied the problem of quickest detection of anomalies
based on sensor observations in environments with arbitrary
graph topologies. We analyzed the Ensemble CUSUM Algo-
rithm for this surveillance task and provided guarantees on its
performance. We framed an optimization problem to compute
the optimal policy for the Ensemble CUSUM Algorithm.
We proposed an efficient policy which can be computed by
solving a convex optimization problem. Through numerical
simulations, we compared the performance of the optimal
policy to the efficient policy. The detection delays guaran-
teed by the efficient policy were much smaller compared to
alternative policies considered, especially for higher levels of
uncertainties in sensor observations.

The policies introduced in this work can be modified
further. For instance, the state of the CUSUM filters can be
utilized to re-evaluate the routing strategy and achieve faster
anomaly detection. An example of such a modification is the
Adaptive Ensemble CUSUM Algorithm introduced in [19].
The service time at each region can also be optimized to obtain
smaller detection delays. In situations where unpredictability
is not required, deterministic policies which may potentially
outperform stochastic policies can be further explored.

APPENDIX A
COMPUTING THE FIRST PASSAGE TIME MATRIX OF A

MARKOV CHAIN

The following result from [13] provides an expression for
the first massage time matrix N of a Markov chain with
transition matrix P in terms on the generalized inverse G of
(I − P ).

Theorem 10: (First passage times): For a Markov chain on
a graph with transition matrix P , stationary distribution q and
travel time matrix D, the first passage time matrix N satisfies
the following equations:

Nd = qT (P ◦D)1nQ, (15)

N = β(1n1TnGd + I −G)Q−1. (16)

where G = ((I − P ) + (P ◦D)1nqT )−1, Nd and Gd are
diagonal matrices with elements same as that of N and G
respectively, Q = diag[q] and (P ◦ D) is the element-wise
product between P and D.

The following identity satisfied by the generalized inverse
G of (I − P ) will also be used.

Lemma 11: For a Markov chain on a graph with transition
matrix P , stationary distribution q and generalized inverse
G = ((I − P ) + (P ◦D)1nqT )−1, the following holds true:

qTG =
qT

qT (P ◦D)1n
. (17)

Proof: The proof can be found in Lemma 16 of [13].
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APPENDIX B
PROOF OF THEOREM 7

Proof: We start from the expression for δavg(P) obtained
in Theorem 6. Using the definition of s stated in the statement
of the theorem, and equation (7), the expression for δavg(P)
can be written in matrix form as follows:

δavg(P) = qTNw + (s− 1n)TNdw. (18)

We first work towards simplifying the first term in equa-
tion (18). The first passage time matrix satisfies equation (16).
Using this and the identity from Lemma 11, and the assump-
tion that 1Tnw = 1, the term qTNw can be simplified:

qTNw = qTβ(1n1TnGd + I −G)Q−1w

= β(1TnGd + qT (I −G))Q−1w

= β(1TnGd + qT − qT

β
)Q−1w

= β1TnGdQ
−1w + (β − 1)qTQ−1w

= β1TnGdQ
−1w + (β − 1)1Tnw

= β1TnGdQ
−1w + (β − 1). (19)

where Q = diag[q]. Looking at the first term in equation (19),

1TnGdQ
−1w = 1Tn [((I − P ) + (P ◦D)1nq

T )−1 ◦Q−1]w

= 1Tn [((I − P ) + (P ◦D)1nq
T )−1 ◦ I](r · w).

Substituting Ndw = βQ−1w = β(r ◦ w) from equation (15)
into the second term in equation (18), the result follows.
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