SYNCHRONIZATION IN PULSE-COUPLED OSCILLATORS
WITH DELAYED EXCITATORY /INHIBITORY COUPLING*
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Abstract. Due to their rich behaviors, pulse-coupled oscillator (PCO) networks have been
widely studied. Prior research has focused on systems with excitatory, inhibitory, and mixed excita-
tory/inhibitory coupling, as well as on systems with and without delays in pulse transmission.

This article focuses on PCO networks with delayed excitatory/inhibitory coupling. We consider a
simple phase transition rule and show that the resulting PCO network is a linear time-varying control
system with the delays as input disturbances. We define the synchronization error as the length of the
arc containing the oscillators’ phases. We show that the synchronization error converges exponentially
fast to a final value proportional to the maximum transmission delay, under the following sufficient
conditions: (i) the coupling strength is sufficiently small, (ii) the network has a globally reachable
node, and (iii) the delays are sufficiently small. A corollary to this result is that, when all the
delays are zero, the network synchronizes exactly and exponentially fast. We also estimate the rate
of convergence, final synchronization error, and basin of attraction of the final state, and analyze
special cases where synchronization occurs even in the presence of delays. We then extend the
analysis to PCO networks with delayed inhibitory coupling, and identify sufficient conditions for
synchronization that are less conservative than those in existing literature.

Key words. pulse-coupled oscillators, clock synchronization, distributed averaging algorithm,
sensing digraph

1. Introduction.

1.1. Problem Description. Coupled oscillator networks consist of individual
oscillators (i.e., scalar systems that would each evolve periodically in isolation) and a
network of interactions coupling the dynamics of the individual oscillators. We refer
to the network as a sensing digraph. The coupling interactions can take place over
discrete or continuous time; these two cases are known as pulse coupling and diffusive
coupling respectively [17]. In pulse-coupled oscillator (PCO) networks, an oscillator
sends a pulse to its in-neighbors on the sensing digraph every time it completes an
oscillation (i.e., each time it “fires”). Each receiving oscillator experiences a discrete
jump in its phase upon reception of the pulse. The phase jump could be forward
or backward and depends on the oscilletor’s current phase. This jump is defined
by a so-called phase transition rule. The network is a hybrid system, since its state,
comprising the phases of all the oscillators, varies continuously with time except when
any oscillator receives a pulse.

PCO network models have been studied extensively since they have been useful
both for modeling naturally-occurring phenomena and for technological applications.
The oscillators are often assumed to be identical or nearly identical. Two behaviors
that are exhibited by the networks have been studied extensively: reaching synchrony
(where all the oscillators have the same phase), and reaching an asynchronous state
[28] (where the oscillators have distinct phases whose separation remains constant
with time), from arbitrary initial phases. Both types of final states are periodic.
Loosely speaking, we refer to the process by which the phase separation converges to
zero as synchronization, and the process by which the phase separation converges to
values bounded by a constant small value as approzimate synchronization.
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We broadly classify PCO network models in the literature according to the type
of coupling (excitatory, inhibitory or mixed) and according to the presence or absence
of delay in the transmission of pulses. Excitatory coupling refers to coupling where an
oscillator experiences an increase in phase upon pulse reception. Inhibitory coupling
refers to coupling where an oscillator experiences a decrease in phase upon pulse
reception. Mixed excitatory/inhibitory coupling (referred to in [23, 21] as advance-
delay coupling) refers to coupling where pulses either cause the phase to jump forward
(“advance”) or backward (“delay”) depending on the current value of the phase. Delay
in the transmission of pulses refers to the duration between the transmission of a
pulse (when an oscillator fires) and the reception of the pulse by an in-neighbor of
the sending oscillator. (“Delay” and “delayed coupling” will be used to refer only
to transmission delay from now on.) By these two criteria, there are six types of
PCO networks. Additionally, for each type of network, the behavior differs based on
the type of sensing digraph. The most common types that are studied are all-to-all
(complete graph with no self loops), and graphs that satisfy the weaker condition of
being strongly connected or strongly rooted.

1.2. Motivation.

Occurrences in Nature. One of the earliest phenomena that sparked interest in
PCO networks was the synchronization of the lighting patterns of South Asian fire-
flies [2]. In this system, the flashes of each firefly act as the coupling signal. Another
natural phenomenon, the self-synchronization of the pacemaker cells of the heart, was
studied by Peskin in [22]. Both of these phenomena have been modeled as PCO net-
works with excitatory coupling and no delay. Lastly, the electrical signals of neurons
have been modeled extensively as PCO networks with delayed inhibitory coupling
[26, 12, 3, 1].

Technological Applications. PCO network-based algorithms have been used for
clock synchronization for wireless transceivers [31], in cellular mobile radio [29], robotics
[4, 24, 33], wireless sensor networks [11, 10, 6, 25, 30], scheduling [9] and management
[5].

Modified Versions of PCO Networks. Modified algorithms have been proposed
for improved synchronization properties for technological applications. A refractory
period is a period during which an oscillator becomes unable to receive signals, right
after it fires. It is sometimes incorporated into inhibitory systems to eliminate “echo”
effects [16, 14, 20]. Self adjustment is an instantaneous self-coupling during firing that
is sometimes introduced to enable the system to get closer to synchrony [14].

1.3. PCO Network Models in Literature. The behavior of the six types
of PCO networks is summarized in Table 1.3. In most cases, the sensing digraph is
assumed to be strongly connected though sometimes the type of sensing digraph is
further restricted.

Ezcitatory Couplings. Mirollo and Strogatz [18] considered all-to-all PCO net-
works with excitatory coupling and no delay; their sufficient conditions guarantee
synchrony is reached from almost all initial condition. Numerical simulations in the
same paper indicate that also systems defined over a strongly connected digraph reach
synchrony (albeit in a slower fashion); this statement remains a conjecture.

Interestingly, the behavior of such systems changes completely with the intro-
duction of even the smallest delay. Such a system reaches an asynchronous state
from all initial conditions, as shown in [7, 27]. In [32] it is proved that synchrony in
this case is in fact impossible. This makes excitatory couplings unsuitable in practical
applications where exact synchronization is required, since small delays are inevitable.
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TABLE 1

An abbreviated partial outline of the literature on the siz kinds of PCO networks.

Excitatory coupling

Inhibitory coupling

Mixed excitatory/inhibitory
coupling

With | [18]: Sufficient conditions [12, 15]: Coexistence of syn- [23, 21]: Sufficient condi-
no for all-to-all PCOs to chrony and asynchronous tions for PCOs with GRN to
delays | asymptotically synchronize states. Sufficient condi- asymptotically synchronize
from almost all initial tions for all-to-all PCOs to for initial conditions within

conditions asymptotically synchronize an half circle.

from all initial conditions.

With | [32, 7, 27]: Asynchronous [28, 27]: Coexistence of syn- [20]: Similar to above, if net-
delays | states are reached from all chrony and asynchronous work is an undirected cycle,

initial conditions and syn-
chronization is impossible.

states. Sufficient conditions
for synchronization for large

or a directed cycle with re-
fractory periods.

delays and small initial syn-
chronization error.

Inhibitory Couplings. For PCO networks with inhibitory coupling and no delay,
both synchrony and asynchronous states are possible, depending on the initial condi-
tions. In [15], sufficient conditions are derived under which all-to-all networks reach
synchrony from all initial conditions. However, for general networks, asynchronous
states can occur as described in [12].

PCO networks with delayed inhibitory coupling also exhibit a coexistence of the
asynchronous state and synchrony, depending on the initial conditions as described
in [28]. In [27] it is proved that the synchronous state is locally stable if the delay is
greater than some threshold. There is no proof however for arbitrarily small delays.

Mized Excitatory/Inhibitory Couplings. For PCO networks with mixed excita-
tory/inhibitory couplings and no delay, [23] derives sufficient conditions for synchrony
for PCO networks whose sensing digraph has a globally reachable node (GRN). (Note
that the sensing digraph is the inverse of the interaction digraph used in [23].) For a
specific choice of phase response curve, it is shown in [21] that, in the absence of delays,
the system reaches synchrony for all initial conditions if the coupling strength is above
a certain threshold. If the coupling strength is below the threshold, it synchronizes
only from initial conditions of phases contained within an half circle.

For systems with delays, it is proved in [20] that similar behavior to the above
occurs for the special case of undirected cycle graphs. For directed cycle graphs,
a refractory period has to be added to one of the oscillators to ensure that exact
synchrony is reached.

1.4. Contribution. In this article we consider a simple PCO network model
with a piece-wise linear phase transition rule similar to that described by [21]. The
contributions of this article are as follows. Firstly, we study the timing behavior of
the firings and receptions in the PCO network, and establish finite upper and lower
bounds on the the durations between firings of a given oscillator, on the duration
taken for a pulse to be received along every edge of the sensing digraph, and on
the maximum number of receptions by a given oscillator in a sequence of successive
receptions. Secondly, we present a novel method of analysis for PCO networks based
on the study of time-varying distributed averaging systems. While this method is
applied to a specific model, we hope it may be relevant in the study of other PCO
models.



Thirdly, we derive sufficient conditions on the PCO network system for approx-
imate synchronization to occur exponentially fast, in the presence of delays. The
sufficient conditions are: (i) the coupling strength is sufficiently small, (ii) the sens-
ing digraph has a GRN, and (iii) the delays are sufficiently small. Among these, the
condition on the sensing digraph is less conservative than those in existing literature
on PCO networks with delays, which typically require strongly connected digraphs.
We also estimate the rate of convergence, the final synchronization error, and basin
of attraction of the final asynchronous state.

Our fourth contribution is then to derive sufficient conditions for exact synchro-
nization of a PCO network with no delays, as a special case of the above analysis.
These conditions are consistent with the existing contemporary literature such as the
work in [23]. We also show that synchronization in this case occurs exponentially fast,
which is a new result. As our fifth contribution, we analyze another special case with
uniform delays and equal out-degrees, where intermittent synchronization occurs even
in the presence of delays. Sixth, we apply our method of analysis to PCO networks
with delayed inhibitory coupling, to demonstrate the applicability of the method to
other PCO models. We then extend the results of [27] on intermittent synchronization
to PCO networks that are not necessarily strongly connected.

1.5. Organization of this Article. The rest of this article is organized as
follows. In Section 2 we discuss the PCO network model and related notions that
form the background for subsequent sections. In Section 3, we estimate the dura-
tions between successive firings of an oscillator, and establish some useful properties
of sequences of successive receptions by any oscillator. These properties allow us
to rewrite the system dynamics as an linear time-varying (LTV) control system in
Section 4. In Section 4, we prove the main results of the article, on approximate
synchronization in the presence of sufficiently small delays and on synchronization in
the absence of delays. In Section 5, we provide example applications and extensions
of the method of PCO network analysis introduced, to the cases of uniform delays
and equal out-degrees, and PCO networks with delayed inhibitory coupling. Section 6
contains numerical simulations that verify the analytic results.

2. Oscillator Networks: Model and Related Notions. PCO networks have
been studied by researchers in multiple disciplines, so there exists some differing usage
of terminology in the literature. For clarity, in this section, we provide the models and
definitions that we use. We consider a PCO network with mixed excitatory /inhibitory
coupling similar to that described in [21], where the phase of the oscillator jumps
toward 0 (or 1, whichever is nearer), by a distance proportional to the shorter arc
from its phase to 0, whenever it receives a pulse. In our most general theorem, we
study the case with delays, that is, the problem in the second row, third column of
Table 1.3.

2.1. PCO Network Model. The PCO network consists of n oscillators. Each
oscillator ¢ € {1,...,n} has a phase that evolves on a circle of unit circumference.
The phase, denoted by ¢;(t) € [0, 1], is the length of the counter-clockwise arc from
the positive horizontal axis to the state of the oscillator, as shown in Figure 2.1. In
what follows, we regard the circle of unit circumference equivalent to the interval
[0, 1[. Each oscillator obeys a hybrid dynamics with continuous-time evolution on the
circle, discrete jumps due to pulses, and a discrete reset to 0 on firing, when the phase
reaches 1. The continuous-time dynamics is described by

(2.1) dilt) = 1.
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The discrete-time dynamics is described as follows:
(i) when the phase ¢, reaches 1, it is reset to 0 and the oscillator i sends a pulse
to each of its in-neighbors in a sensing digraph G;
(ii) assuming a pulse is sent from oscillator ¢ at time ¢, it is received by its in-
neighbor j at time ¢ + 7;;, where 7;; is a non-negative delay;
(iii) assuming oscillator i receives a pulse at time ¢, it jumps to a new phase ¢;(t™)
according to the following phase transition rule:

o fe e, e €04
(22) o) {¢i<t)+h<1—¢i<t>)7 if 6,(1) € 3,1,

where h € ]0,1[ is a coupling strength.
An example sensing digraph is illustrated in Figure 2.2. Note that the sensing digraph
is an unweighted digraph G with vertices V = {1,...,n} and with edge set defined as
follows: (7,j) is an edge if 7 # j and 7 can receive a pulse from j.

#a(t)
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o
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FIG. 2.1. Phase of oscillator 4, ¢4 (1) FIG. 2.2. An exzample of a sensing digraph, G.

2.2. Notions related to synchronization.

Distances on the unit-circle. The counterclockwise arc-length distcc(¢;, ¢;) is the
length of the counter-clockwise arc from ¢; and ¢;. In the parametrization described
above:

diStcc((biv (bj) = (¢j - ¢z) mod 1.

Arc length function. Define the arc-length function Varelength © T™ — [0, 1] so that
Varc-length (@) is the length of the shortest arc containing every element of ¢. Note that
the arc-length function is independent of the coordinate system used to express the
phases, and if 0,, < ¢ < %]ln, then

Varc—lcngth(¢) = max(¢) - Il’llIl((b)

Arc Subsets of the n-Torus. The vector of the phases of the n oscillators takes
values in the n-torus, denoted by T™, that is, the Cartesian product of n copies of the
circle of unit circumference. Given a length « € [0, 1, the arc subset I'(y) C T™ is the
set of n-tuples (¢1,...,d,) such that there exists an arc of length strictly less than v
containing all ¢1,..., ¢,.

Synchrony. A PCO network is at synchrony when all n oscillators in the network
have the same phase. In other words, synchony is achieved at time ¢ if Virc length (0(t)) =
0. In what follows, we quantify the synchronization error at time t as the length
Varc-length (¢(t)) of the smallest arc containing ¢(t).
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Synchronization. A PCO network asymptotically synchronizes if the synchroniza-
tion error converges asymptotically to zero, and exponentially synchronizes if the syn-
chronization error converges exponentially to zero. Loosely speaking, we shall say
that a PCO network approximately synchronizes if the synchronization error is upper
bounded by a small positive constant after a finite transient time.

2.3. Graph-theoretical notions.

Reachability depth and other graph properties. Given the sensing digraph G, let
dmax be the mazimum out-degree of any node, let m be the number of edges, and,
assuming G has a GRN, let b be the reachability depth, i.e., the maximum distance
(number of edges of the shortest directed path) from any node to the GRN. Define
the digraph Z with vertices V and edge set comprising a self loop on every node. If
G has a GRN and reachability depth b, then the GRN can be reached from any node
by a path in G UZ that has exactly b edges.

Pulse instants. Let t1,ts,... be the ordered sequence of times at which a pulse is
received by any one of the oscillators. If two or more pulses are received at the same
time, then they are assigned distinct time indices ¢, = t,41 = ... arbitrarily.

Reception digraph. We define the reception digraph at p € N as a weighted digraph
G, with vertices V = {1,...,n} and edge set as follows. Every node corresponding
to an oscillator that does not receive a pulse at the pulse instant ¢, has a self-loop
weighted 1. If at time ¢, a pulse is received by oscillator ¢ from oscillator j, then node
1 has a self-loop weighted 1 — h and there is an edge from i to j weighted h. We note
that each reception digraph can be constructed by taking a sub-graph with just one
edge of the sensing digraph, adding self loops on every node, and then weighting all
the edges. Examples of reception digraphs are shown in Figure 2.3.

Accordingly, let A, be the adjacency matrix of G,. Note that A, is row-stochastic,
that is, it has all non-negative elements and the sum of elements of each row is 1.

LO@ ® N O ) B )

1 1 1 1-h

® @) ® @

Fic. 2.3. Two examples of reception digraphs consistent with the sensing digraph in Figure 2.2,
where oscillator 2 receives a pulse from oscillator 1 (on the left) and where oscillator 3 receives a
pulse from oscillator 4 (on the right).

3. Durations Between Pulses. In this section we describe the timing of the
firings and receptions of pulses in the PCO network, based on the properties of the
sensing digraph (namely, degree and number of edges) and the coupling strength.
The properties described in this section enable us to write the PCO network system
equations as a linear time-varying (LTV) control system sampled at the times when
a reception occurs, in subsequent sections.

For a PCO network with constant delays, and coupling strength that is sufficiently
small, the duration between successive firings of a given oscillator is upper and lower
bounded. A sequence of successive receptions that is sufficiently long must contain
at least one reception along each edge of the sensing digraph. Lastly, in a sufficiently
long sequence of successive receptions, there is a finite upper bound on the number
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of receptions by a given oscillator. These statements are formalized quantitatively by
Theorem 3.1 below.

THEOREM 3.1 (Upper and lower bounds on receptions by an oscillator in a se-
quence of successive receptions). Consider a PCO network with n oscillators, with
sensing digraph G with m edges, with delays 7;; for each edge (i, j), and with coupling
strength h. Assume that:

(A1) the coupling strength h and the mazimum out-degree dyax Satisfy hdmax < 1.
Then the following statements hold:

(i) for any oscillatori € {1,...,n} and for all N € N, the duration T; n between

the Nth and (N + 1)th firings of i satisfies

T’min < Ti,N S Tmaxa

1 1
2 + T—hdmax ’

(i) there exists a duration 0 < Omax = 1+ {1 + %_‘ (m — 1) such that the
sensing digraph and the reception digraphs satisfy, for each time index p € N,

where Tyin = % and Toax =

nggp+1U...ng+5_1 =GUTZ,

(iii) the mazimum number of pulses received by each oscillator over an interval of
duration v € N s

(3.1)  Ns(v) = {%J (8 — m + duax) + min {(vmod §), (§ — m + dmax)} -

The proof of statement (i) proceeds as follows. The duration between firings
of an oscillator depends on the number of pulses the oscillator receives between its
firings. Some pulses move the phase forward, decreasing the duration, and some move
the phase backward, increasing the duration to the next firing of the oscillator. The
maximum and minimum durations between successive firings of the same oscillator
depend on the maximum effect of the pulses. The proofs of Statements (ii) and (iii)
follow from statement (i). Note that § > m since each reception digraph contains
only one edge of the sensing digraph, and so, by definition of §, the function N in
statement (iii) is always non-negative.

PrOOF OF THEOREM 3.1
If an oscillator i receives no pulses from its out-neighbors between its Nth and (N +
1)th firing, then from the continuous dynamics equation (2.1), T; y = 1. If oscillator ¢
does receive pulses, then each pulse either increases or decreases the time to the next
firing according to the discrete dynamics equation (2.2).

We estimate Ty, as follows. Equations (2.1) and (2.2) imply that a pulse received
by oscillator i when ¢;(t) < & can only increase the time to firing of oscillator i. Hence
TN > %, which is the minimum duration taken for the phase to increase from 0 to %
(and occurs when no pulses are received). Therefore Ty, = %

Next, we estimate Thax. Note that the duration between any two successive
receptions along an edge (i, j) is equal to Tj x for some N in N, since the delays are
constant. In a duration At, an oscillator 7 can receive at most

At
’VTmin

1 = [2At]

pulses from a given out-neighbor, and hence at most d;[2A¢] pulses in all. From
equation (2.2), each pulse results in a phase change of at most % Conceivably, each
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pulse that oscillator ¢ receives could result in a phase change of %, since the oscillator

could receive a pulse when its phase is just less than %, then move backward by

%, then move forward again to % under the continuous dynamics, and then receive

another pulse (and so on). Therefore, the total phase change A¢; of oscillator i in
the duration At satisfies the following inequality:

h h h
h
(3.2) = A¢; > (1 — hdmax) Al — §dmax.
From the assumption (Al) and equation (3.2) we see that if At > m,
then A¢; > % So the duration taken for the phase to increase from 0 to % is less

than or equal to m, and the duration taken for the phase to increase from

% to 1 is less than or equal to % since any pulses it receives during this duration
will increase the duration, not decrease it. Therefore, T;  is less than or equal to

Tnax = % + m. This concludes the proof of statement (i).

To prove statement (ii), we recall that the time between any two successive recep-
tions along the edge (4, j) is T, v for some N in N. Suppose two successive receptions
along (i, j) occur at times ¢ and ¢t+7 y. The number of receptions during the interval

|t,t + T} n)] along the other m — 1 edges is less than or equal to PTWJ—N—‘ (m—1). Hence

i

any sequence of dpax = 1+ [?‘——‘ (m — 1) successive receptions must contain at

least one reception along the edge (i, ), and so the edge must appear in a reception
digraph at least one of these 0.y successive pulse instants. Further, every reception
digraph has a self loop on every node. This implies that there exists a natural number
0 < 6max such that the union of the digraphs G, UG, 1U...UGps5-1 is GUZ, for all
p € N. This concludes the proof of statement (ii).

Finally, to prove statement (iii) we estimate the number of pulses received by a
particular oscillator 4 during v successive receptions. We note that in a sequence of
0 successive firings, at least one reception must occur along each of the m — d; edges
that are not from node ¢. This implies that the maximum number of pulses that an
oscillator may receive in a sequence of § successive receptions is 6 — m + dyax. The
maximum number of pulses received by an oscillator in a sequence of v successive
receptions, Ns(v) can be estimated by breaking the sequence into parts of length §.

Therefore, we know Ns(v) = {%J (0 —m+dmax) +min {v mod §, (§ — m + dmax)}. This
concludes the proof of the theorem. O

Note on 6 and dmax. The upper bound .« on the duration § was calculated
without specific knowledge of the sensing digraph, the delays, or the initial conditions
of the PCO network, and hence is conservative in some cases. If this specific knowledge
is available, tighter bounds may be calculated by repeating the above proof. In some
special cases, § may be found to be equal to m.

4. Synchronization with Delays. In this section we prove that, for initial
conditions contained in a small enough arc, approximate synchronization occurs ex-
ponentially fast if (i) the coupling strength is sufficiently small, (ii) the sensing digraph
has a GRN, and (iii) all the delays are sufficiently small. Under these conditions, the
arc length function of the PCO network converges exponentially to a final value that is
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proportional to the maximum delay. Theorem 4.1 below formalizes these statements.
THEOREM 4.1 (Exponential approximate synchronization with small delays).
Consider a PCO network with n oscillators, with sensing digraph G with m edges,
with delays 7;; for each edge (i,7), and with coupling strength h. Assume that:
(A1) the coupling strength h and the mazimum out-degree duyax Satisfy hdmax < 1,
(A2) the sensing digraph G has a globally reachable node, and
(A3) the mazimum delay Tmax and the coupling strength h satisfy, for A = b(d+m),
17 = min{h, 1—h}b(1—h)b(3(5_m+dmx)_l), and b is the reachability depth of G,
1—(1—h)No(®) 2 1
( o +(1_h)N5(A—1) —1)7’max<§.

(4.1)

Then, for each initial condition satisying ¢(0) € F(% — ZATmaX), the resulting
phase evolution ¢(t), t € R>q, satisfies

(42) Varc—length(¢(t)) S atﬁj (Varc—length<¢(0)) - Voffset) + Vroffset + (eA - 1)TmaX7

where p € N is the largest time index such that t, <t and where
e the convergence factor is a =1—n €]0,1],
e the offset value is Vygeer = %(1 -(1- h)N5(A))TmaX,
e the mazimum contraction factor is {a = (H—W\f% —1), and
e the duration 6 and the number of pulses function Ns are as in Theorem 3.1.

We see that the synchronization error, quantified by the arc-length function, expo-
nentially converges to the final value Vogset + (€A — 1) Timax. A corollary to Theorem 4.1
is that, when all delays are zero, the arc-length function exponentially decreases to
zero for initial conditions contained in an arc of length % Therefore, for zero de-
lays, exact synchrony occurs if the the coupling strength is sufficiently small and the
sensing digraph has a GRN. This is consistent with a similar result (on asymptotic
convergence of the arc-length to zero) that was recently and independently estab-
lished in [23]. The statement of the corollary below is obtained from Theorem 4.1 by
substituting 7;; = 0 for every edge in the sensing digraph.

COROLLARY 4.2 (Exponential synchronization with no delays). Consider a PCO
network with n oscillators, with sensing digraph G with m edges, with delays 7;j = 0
for each edge (i,7), and with coupling strength h. Assume that:

(A1) the coupling strength h and the mazimum out-degree dmax Satisfy hdmax < 1,
and
(A2) the sensing digraph G has a globally reachable node.

Then, for each initial condition satisying $(0) € F(%), the resulting phase evolu-

tion ¢(t), t € R>q, satisfies

(43) Varc—length(¢(t)) < aL%J Varc—length(¢(0))7

where p € N is the largest time index such that t, <t and where
e the convergence factor isa =1—n€]0,1],
e the duration A and the factor n are as in Theorem 4.1, and
e the duration & and the number of pulses Ns(A) are as in Theorem 3.1.

The proof of Theorem 4.1 is in six steps. In Step 1, beginning at an an arbitrary
time step, we transform the phases to a rotating coordinate system, so that the
continuous dynamics of the system is eliminated and the discrete dynamics can be
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written as an affine function of the states, assuming that the phases are contained
in a sufficiently small arc for these system equations to be applicable. In Step 2,
we introduce the concept of the modified reception digraph (MRD) and rewrite the
system dynamics as a discrete-time LTV control system using the MRD adjacency
matrix. In Step 3, we study the properties of the MRD and its adjacency matrix, using
the analysis of the durations between pulses from the previous section. In Step 4, we
analyze the system over some fixed number of time steps, A, and find bounds on the
homogeneous solution of the LTV control system. We use the properties of the MRD
adjacency matrix in this step, based on the method in [19, 8]. In Step 5, we find upper
and lower bounds on the particular solution of the system, by analyzing the state one
element at a time. This also enables us to validate our assumption that the phases
are contained in a sufficiently small arc for the system equations to be applicable. In
Step 6, we relate the upper and lower bounds that were found on the solution to the
arc-length function, concluding the proof.
PrROOF OF THEOREM 4.1

Step 1 - Coordinate Transformation Assume that at some arbitrary start time p = vy,
the following condition is satisfied:

(4.4) B(t,) € F(% - vaax).

Define a rotating coordinate system with its origin ¢o(t) € [0, 1] such that the trans-
formed phase vector ¢(t) is given by:

(4.5) ¢i(t) = distee (o (t), di(t)), ie{l,...,n},

and the rotating coordinate system satisfies the following:
e The origin has the same continuous dynamics as the oscillators, or, gi)o(t) =1.
e When the phase ¢¢(t) reaches 1, it is reset to 0.
e at t = t,, the origin lies within the arc of length % — U ATmax that also contains
¢(ty,) such that

~ 1
(4.6) UATmax Ly < o(ty) < S ln-

Such an origin can be found since condition (4.4) is satisfied for p = y.
Let the origin of the fixed coordinate system be represented in the rotating coordinate
system as 0, given by:

0(t) = distce(do(t),0).
In the rotating coordinate system, the PCO network has no continuous dynamics

or reset. The vector ¢ remains constant between receptions.
We will assume that, for all p € N,

~ 1
(4.7) Tl < 3(ty) < 5 1n,

that is, the minimum phase may contract at most by the maximum contraction factor
LA, relative to its value at p = y. Then it is straightforward to show that the discrete
dynamics in the rotating coordinate system is given by:

(4.8)

Qj;i (thrl) = {

Gilty) — h(i(ty) — 0(ty,)), if i receives a pulse at time t,,
bilty), if i does not receive a pulse at time t,,.
10



Equation (4.8) is used in subsequent steps as the PCO network dynamics equation,
and the assumption regarding equation (4.7) is validated in Steps 5 and 6.

Step 2 - Rewriting the Discrete Dynamics as an LTV Control System with Input
Disturbances

Suppose oscillator ¢ receives a pulse from oscillator j at time t,. We solve for
0(t,) in terms of the phase of oscillator j and substitute in equation (4.8). Oscillator
j fired at time t, — 755, so q~5j =0 at time t, — 5. We solve for ﬁ(tp) as follows:

$;(tp — 7i;) = 0(tp — 7ij)
= (()(tp) + Tij) mod 1
(4.9) = 0(t,) = dj(t, — 7ij) — Tij> from equation (4.7).
Suppose ¢ receptions (by any oscillator) occur in the duration |t, — 7;;,t,[. Then,
b;(ty, — Tij) = b;(tp—q), and 0(t,) is given by the following equation:
(4.10) O(tp) = éj (tp—q) — Tij-

The discrete dynamics is rewritten by substituting equation (4.10) in equation
(4.8) to obtain the following;:

(4.11)
(1 —h)¢i(tp) + hoj(ty_q) — h7ij, if i receives a pulse from j at time
7 t
i (¢ =9 - B
Giltp+1) oi(tp) if 7 does not receive a pulse at
time 2.

Equation (4.11) is a difference equation that may be of order greater than one.
From Theorem 3.1 (i), the maximum number of pulses that could have been received
along a given edge in the duration |t, — 7;;,%p[ is given by

(2] = [27max] = 1

since assumption (A3) implies that . < % Hence the total number of pulses
received along any edge in this duration, ¢, must be less than or equal to the number of

edges in the sensing digraph, m. We can express equation (4.11) as a first order system

with the modified state vector z(t) € R"™*" where z(t,) = [(;B(tp)T . .q;(tp_m)T}T
The elements of  with index greater than n represent the ‘older’ values of the phases.
At t = 0 these states may be initialized arbitrarily, and for convenience, we initialize
each of the ‘old’ states as the midpoint of the shortest arc containing (&(O))

The discrete dynamics is then described by the following equations (note that we
use z¥ to denote x;(t,), for brevity), which are affine in z:

(1= h)x] + hall, . —hriy, if @ < n and oscillator i receives a
pulse from j at time ¢,
(4.12) xf“ =qab, if # < n and oscillator 7 does not re-
ceive a pulse at time ¢,
zr if i > n.
The discrete dynamics can be rewritten for p € {y, ...,y + v} as an affine function

in . In order to do this, we now introduce the modified reception digraph (MRD),
whose the adjacency matrix is A,.

11



At time t,, we define the modified reception digraph Qp. The nm + n vertices
of G, are defined as follows: for every node k in G,, define m 4 1 nodes in G,: the

node k itself, and m memory nodes labeled k', k2~,...,k™~. The node k will be
sometimes referred to as k°~. The edge set is given as follows:
e There is an edge weighted 1 from every node k%~ to kKt~ w =0,1,...,m—
1.

e If node ¢ has a self-loop in G,, then node i has a self-loop with the same
weight in _C';p.
o If there is an edge (4, ) for some i # j in G,, then there is an edge (7,7797)
in Qp, where ¢ is the number or receptions that occurred in the duration
Jtp = Tij tp-
An example of an MRD is shown in Figure 4.1. We note that if there is a path from
some node j to a node k in G,,, then there must be a path from node j to node & in Q~p.
Therefore, since we know there is a GRN in G, UGp41 U... UG, 51 from Theorem
3.1(ii), there must be a GRN in G, U Gpy1 U ... UGpis5-1 as well.
The memory nodes store the old states, such that node £~ has the state d;k(tp_w),
where w € {0,1,...,m}. Let the adjacency matrix of G, be A,. Then equation (4.12)
can be rewritten:

(4.13) aPtt = A, 2P + Dy,

where the input disturbance term D,, € R"™*" is the affine term from equation (4.12)
and is defined as follows:
(4.14)
—ht;j, if ¢ < n and oscillator i receives a pulse from j at time %,
[Dy]; = 0, if i« < n and oscillator i does not receive a pulse at time t,,
or if i > n.

Step 3 - Global Reachability Over Time in the Modified Reception Digraphs

Equation (4.13) is a time-varying distributed averaging algorithm (with an input
disturbance term added in) that satisfies the following conditions:

e The adjacency matrices of the MRD are row-stochastic.

e Every element of the adjacency matrix of the MRD belongs to {0, h,1 — h, 1}.

e There exists a number § < 0.5 such that the union of any § successive MRD
has a GRN. B

We show that above three conditions are sufficient for the arc-length Viic-tengtn (¢)
to converge exponentially. First we show that the GRN r of G, is reachable from any
node of the MRD over the sequence of A := b(d+m) successive MRD, in the following
sense: for every k € {1,...,n}, there exists a sequence of nodes {k,i1,42,...,ia_1,7}
such that (k,i;) is an edge of g}n (4, tw+1) 18 an edge in Qp+w forw=1,...,A—2
and {ia_1,r} is an edge in C;p+A,1.

Suppose (i,7) is an edge in G. From Theorem 3.1 (ii), the edge (7,j) must ap-
pear in at least one digraph in the sequence G,,Gpi1,...,Gp45—1. Suppose the edge
exists in Gpiq, where 0 < w < 4. From the definition of MRD, for some ¢ < m,
(1,777 ) must be an edge in _C';p+w. Then, node j is reachable from i over the duration
{p,p+ m+ 6 — 1}, since the following sequence of § + m + 1 nodes exists:

i?".'7i7 jq77j(q71)77"'7j17) j?"‘?j' b
w times §—w+1+m—q times

12

such that:



e the edges (4,7) exists in the digraphs Gp,Gpi1,---,Gprw_1 (since there are
self-loops on every node of the MRD that is not a memory node),
e the edge (7,797) exists in (_j’pﬂu by our assumption,
e the edges (j9~, @ V7), (jl@=V= j@=2=) (50~ 4) exist in the digraphs
§p+w+1, cee ¢p+w+q respectively (since these edges exist in every MRD), and
e the edges (j,7) exist in the digraphs Gpiwigii,--->Gpistm_1, (since there
are self-loops on every node of the MRD that is not a memory node).
Therefore if (4,7) is an edge in G, then node 4 is reachable from j over every
duration of length § +m or greater, in the sequence of MRD. Theorem 3.1(iii) implies
that at most 3(d — m + dmax) edges in the above sequence are weighted less than
1 (these are edges associated with receptions by i or j, and 3(0 — m + dpax) is the
maximum value over w of Ns(w) 4+ Ns(6 —w+m)), and that at most one edge in the
above sequence is weighted h (this is the edge from i to j if they are distinct).
Since there is a path of length equal to the reachability depth b from every node
k to r in GUZ from the assumption (A2), we can construct a sequence of b(d +m)+1
nodes starting with k£ and ending with r, over every sequence of b(d + m) successive
MRD, by concatenating a sequence of nodes like the one described above for each edge
of the path in G (and discarding the repeated node at the point of concatenation).
Hence the node r is reachable from every node k over a every sequence of b(d+m) = A
successive MRD. We note that at most 3b(0 — m + dax) edges in the above sequence
are weighted less than 1, and that at most b edges in the sequence are weighted h.
We use the property of global reachability of r in the MRD to analyze the LTV
control system of the PCO network.
Step 4 - Analyzing the Time-Varying Distributed Averaging System
Assume y = zA. Equation (4.13) is applied A times recursively, to find the new
state at time index zA + A. Let A, denote the product A(ZH)A_lA(ZH)A_Q L AA,
and let XGTDA be the particular solution of the difference equation, that is, the
solution to the linear system with the zero initial condition z*® = 0. Then, applying
equation (4.13) recursively A times to calculate z(**1)2 from 22 yields:

(4.15) pGHDA g gD 4 p (DA,

Define the sequence V, for p € N as V, = max(z?) — min(zP). We use the
properties of A, which is a product of row-stochastic matrices, to analyze V. Note
that V), does not depend on the choice of origin of the rotating coordinate system,
as long as this origin is chosen such that all the elements of z lie in [0, %[ This is
important, since we may choose a new rotating coordinate system after every A time
steps.

Let a;;(p) denote the (4,7) element of the adjacency matrix A,. From a node
k, consider the sequence of nodes by which the GRN r can be reached reached:
{k,i1,...,ia—1,7} such that (k,i1) is an edge in QZA,(iw,in) is an edge in C;ZAJHU
forw=A{1,...,2A + A —2}, and (ia_1,7) is an edge in QZAJFA,L The existence of
these edges implies that the corresponding element of the MRD adjacency matrix is
non-zero, and hence ay ;, (2A) > min {h,1 - h}, a;, i, ., (2A +w) > min{h,1 - h}
forw={1,...,2A+A -2}, and a;, , ,(zA+A—1) > min{h,1 — h}. Furthermore,
at most 3b(6 — m + dpax) of these elements are less than 1, and at most b elements
are equal to h.

We note that since A, is a product of row-stochastic matrices, A, is row-stochastic.
The method in [19, 8] uses the observation that the product:

Ak iy (ZA) @iy 0y (A1) oo Gig in (ZA+FA=2) a0 r(ZA+A-1)
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is one term in the expression for [A.], ., and that all the other terms are non-negative,
to deduce that

(Al > n=min{h,1— h}b (1- h)b(3(5_m+dma")_1) for all k € {1,...,n}.
and therefore:
max(A,2*2) < naz® + (1 — n) max(2*2), and
min(A,2%2) > oz + (1 - n) min(a*),

since [AzxZA]k = [A.],, 222 + Z [l a:jA.
Jjev,
Jj#FT
. — Voara < — »A + max — min rom (4.15).
4.16 Vias 1—n)V. XEFDA _pip xGHDA g 4.15

We now require the upper and lower bounds on the particular solution X, to substitute
into equation (4.16).

Step 5 - Bounds on the Particular Solution

Equation (4.13) shows that the particular solution X depends on the input dis-
turbance terms D,,. By definition, every element of D, is non-positive. Then, equa-
tion (4.12) implies that for the ith element of z,, the following inequality holds:

(1 — h)z? — himax  if ¢ < n and i receives a pulse at

(417) maxaP? > 2P > ) FIH}Q ty . i
min xP if 2 < n and 7 does not receive a

pulse at time ¢, or ¢ > n.

To find bounds on the states after some v < A —1 time steps from y, we apply the
above equation recursively v times on an element of z, (noting that a given oscillator
can receive at most Ns(v) pulses over v time steps, from Theorem 3.1(iii)):

(4.18)
max z¥ > xiﬁ'v >(1-— h)N‘;(”) min z¥ — (1 —(1- h)Na(”))TmaX

>(1— h)N5(“)€ATmaX - (1 -(1- h)N‘;(“))Tmax aog)l equation

:(2(1 - h)Nﬁ(”)*Né(Afl) - 1)Tmax from the definition of A in
Theorem 4.1
(4.19) > Tmax since the function AN is increasing.

The above enables us to validate our assumption regarding equation (4.7) for
pe{zA+1,...,2zA+ A — 1}, by induction, as follows. If equation (4.6) is satisfied
for y = zA and equation (4.7) is satisfied for p € {zA+1,...,2A +v — 1}, then
the above analysis implies that equation (4.7) is satisfied for p = zA + v. Hence, by
induction, (4.7) is satisfied for all v < A—1, and our use of the system equations (4.13)
for A time steps is valid.

The equation (4.19) can be used to find the maximum and minimum elements of
XGHDA - Qubstituting y = 2A and v = A and the zero initial condition Ty = Optnm
in equation (4.18) for i € {1,...,n+ nm} yields

(4.20) 0> 28 > — (1= (1= M0 )y
14



Substituting the above in equation (4.16) yields

Viasa < (1 =n)Vea + (1= (1= BN 10
(421) = Vea = Voftser < aZ(‘/O - Voffsct)a

with Vogset and a as defined in Theorem 4.1. The above relation gives an upper bound
on Vi when N is a multiple of A. We find an upper bound on Vx when N is not a
multiple of A, by substituting p = AL%j and v =N — AL%j in equation (4.19):

N
max 7203 > va > Tmax

— Vny < maxzl &) — Tmax
< laTmax + V| ¥ | = Tmax from equation (4.6)

(4.22) = al 3 (Vo = Vogtaet) + Vottset + (Ca — 1) Tinax from equation (4.21).

Step 6 - Estimating the Arc Length

Since the vector q~5 is contained within an arc of length %, the arc-length function
Varc-length (@) 1s given by maxqg — min qg Since the elements of (ZS are also elements of
€, ‘/arc—length (¢(tp)) is less than or equal to Vp Also, Varc—length (Q/)(O)) =V, from our
choice of initialization of the elements of x. Hence equation (4.22) can be rewritten
as equation (4.2).

Lastly, assumption (A3) ensures that Vogset + £ATmax is less than L which on
substitution in equation (4.21) implies that V. A is less than or equal to 5 — €ATmax-
This means that equation (4.4) is satisfied at zA for every z € N, as long as equa-
tion (4.4) is satisfied at ¢ = 0 (as was assumed in Theorem 4.1), and hence a new
choice of rotating coordinate system can be made that satisfies equation (4.6) at each
zA. Furthermore, the assumption regarding equation (4.7), which was validated for
p € {mA,...,mA 4+ A} in Step 5, is now validated for all time. O

Note on Corollary 4.2. Corollary 4.2 can be quantitatively improved on noting
that in the absence of delays, the firing and reception of a pulse happen simultaneously
and so ¢ in equation (4.11) is always 0. Hence there is no need to include memory
nodes in the MRD, and the reception digraphs themselves can be used in their place.
Repeating the proof of Theorem 4.1, Corollary 4.2 can be restated after replacing A
with A = b8, and 7 with 7 = min {h 1— A} (1 — h)b@—mtdmau—1)  We explain the
details of this improvement in [13].

5. Example Applications and Extensions. The following examples apply
and extend the results and analysis method of Section 4 to two interesting cases. We
introduce the concept of intermittent synchronization: A PCO network intermittently
synchronizes if there exists an ordered time sequence that converges asymptotically
to zero, and is constructed as follows - the synchronization error is sampled at least
once per oscillation (of any oscillator) at instants when no pulse is received.

5.1. Batch behavior and intermittent synchronization. This subsection
analyzes a special case of Theorem 4.1 and demonstrates that, even in the presence
of delays, intermittent synchronization is possible if the delays are uniform and all
nodes of the sensing digraph have equal out-degrees. Since all the assumptions of
Theorem 4.1 are satisfied, all the steps in the proof of Theorem 4.1 are applicable
here, and approximate synchronization occurs. By further requiring that the delays
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Fic. 4.1. An example of a modified reception digraph g},, consistent with the reception digraph
on the left in Figure 2.3, where oscillator 2 receives a pulse from oscillator 1 at tp, and where two
receptions have occurred in the duration |t, — T21,tp| and hence ¢ = 2. The lighter-colored nodes
are memory nodes.

be uniform and the sensing digraph have all-equal out-degrees, we can prove the
stronger result of intermittent synchronization.

THEOREM 5.1 (Intermittent synchronization with uniform delays and all-equal
out-degrees). Consider a PCO network with n oscillators, with sensing digraph G
with m edges that satisfies all the assumptions of Theorem 4.1. Assume that:

(A1) all the delays are uniform and non-zero, that is, 7;; = T for each edge (i,7),
and
(A2") Each node of G has the same out-degree d.
Then, for all initial conditions $(0) € T'(min{r, 3 —loyn7}), the network synchronizes
intermittently.

Proof. We will first show that the firings of this system occur in “batches,” that
is, successive firings by all n oscillators with no receptions in between. Consider a
time ¢ when ¢(¢t) € I'(Tmin) and all the phases are in the lower two quadrants, and
therefore satisfy

(5.1) Sl <00 < 1.
Then, any pulses that had been fired prior to ¢t have been received already, since
Tmax < % The next firing occurs at time ¢ + 1 — max(¢(t)). Since Vi tengsn(@(2)) is
less than 7, no receptions of pulses occur until all n oscillators have fired their next
pulse after time ¢t. This implies that if any oscillator fires between two receptions, at
a time ¢ €]t,_1,tp[, then all n oscillators must fire in the same time interval |¢,_1%,[
exactly once. In other words, they fire in a batch. The m pulses that were fired
in this batch are received at time indices {p,...,p+ m — 1}. In the time interval
[tp, tp+m—1], one reception occurs along every edge and so each oscillator ¢ receives d
pulses.

Let A, denote the matrix product Ay, ...A,. Applying equation (4.13)

16



m times recursively, starting at a time index p that starts a batch, yields

ZPtm = Apm-12" + Apprm—2Dp + ..+ Apim-1,0Dpm—1

-1 7 +m
- p,mflxp + AP )

where XP*™ is the particular solution evaluated with the zero initial condition zP =
Onm-+m- Note that in each of the MRD at time index w € {p+1,...,p+ m — 1}, the
value of g is greater than or equal to 1, since at least one reception has occurred (at ¢,)
between the firing and reception of these pulses. The definitions of the MRD and the
state vector x imply that the nxn matrix formed by the first n rows and columns of A,,
is diagonal. Using this observation and the definition of the input disturbance terms,
equation (4.14), the particular solution XP™ is evaluated as (1 — (1 — h)?) 714 ym.
Since A, ,,_1 is row-stochastic, max (/Nlp,m,lxp) < max(zP) and min (flp,m,wp) >
min(2?). Hence Vyym <V, + max(XPH™) — min(XPT™) =V,.

Next, we observe that the GRN is reachable from any node over a sequence of 2bm,
successive MRD, if the batch behavior described above is exhibited over that time.
This implies, using reasoning identical to Step 4 in the proof of Theorem 4.1, that
Vopm(z+1) < (1= 71)Vopmsz, where 7 = min{h, 1 — h}*(1 — h)*G4=1)_ Hence, a time se-
quence of the arc-length function, sampled after each batch, converges asymptotically
to zero. In other words, the PCO network intermittently synchronizes. O

5.2. Delayed inhibitory coupling. This subsection demonstrates the applica-
bility of the analysis method of Section 4 to PCO networks with delayed inhibitory
coupling as described in [27]. The PCO network model is as described in [27], with
the continuous dynamics are given by equation (2.1) and the phase transition rule,
assuming oscillator ¢ receives from j, is given by

(5.2) ¢i(t) =g (f(i(t)) — €ij)

assuming f(¢;(t)) > €5, where f: [0,1[ — [0,1[, g is f~1, and f(0) = 0, f(1) = 1,
f'>0,and f” <O0.

In [27], intermittent synchronization is proved for strongly connected networks
with uniform delays, with initial synchronization error that is sufficiently small. We
extend these results to networks that are not necessarily strongly connected but have
a GRN. This problem is of the type described in the second row, second column of
Table 1.3.

THEOREM 5.2 (Intermittent synchronization with inhibitory coupling). Consider
an inhibitory PCO network with n oscillators, with sensing digraph G with m edges,
with pulse strength €;; € |0, 1] and uniform delay T > €;; for each edge (i,7). Let dmax
be the maximum out-degree of any node in G. Assume that:

(A1”) the sensing digraph G has a globally reachable node, and
(A2”) all the pulse strengths are normalized for each oscillator, that is,

Z €j =€, for any i in {1,...,n}.
Jli,7) s
an edge

Then, for any initial condition the network ¢(0) € I'(w) where w K 7, the network
synchronizes intermittently.

Proof. Analysis similar to that in Section 3 yields finite lower and upper bounds
on durations between firings of a given oscillator, and hence statements (ii) and (iii) of
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Theorem 3.1 have qualitatively equivalent statements for this system. Proceeding as
in the proof of Theorem 4.1, we transform the phases into a rotating coordinate system
and rewrite the PCO network dynamics in terms of a state vector x that contains past
and present values of the transformed phases. The PCO network dynamics is then
given by

(5.3) aPtl = Yp(a?),
where y, : T*"+" — T+ ig defined by
(5.4)
g(f(xi — xjpqm +7) —€ij) — 7, if i < n and oscillator i receives a
pulse from j at time ¢,
lp(2)], = @i, if i < n and oscillator i does not re-
ceive a pulse at time ¢,
Ti—ms if ¢ > n,

and ¢ is the number of pulses received by any oscillator in the time interval |¢, — 7, ¢,[.

It is useful to expand the function y using Taylor’s series about the point x =
TLprm, since Vare-lengtn (¢(0)) < w, and so the following condition is satisfied at time
tlt

(55) T]ln+nm S ¢(t1) S (T + W)]]-n+nm~

Let a® be the solution of equation (5.3) for zero initial synchronization error, given
by

al = Yp©...0U1 (T]ln—&-nm)v

and let 3, be the perturbation of = from this solution so that =, = a, + 8,. Then
equation (5.3) is rewritten as

aPtl + Bp-l-l _ yp(ozp + ﬁp)

p
:ap+1 4 6yp(a )ﬂp—‘rO(wQ)

ox
(5.6) — gl = %ﬁp +OW).

The Jacobian matrix % is row-stochastic, and equal to the adjacency matrix
of the MRD at t,, weighted by the gradients of y,, which are shown in [27] to be
upper and lower bounded inside |0, 1]. Since the synchronization error is sufficiently
small, the O(w?) term can be neglected, and batch behavior is exhibited. Analysis
identical to the proof of Theorem 5.1 implies that

(57) max(ﬁ(z+1)2bm) _ min(ﬂ(z-&-l)%m) <a (max(ﬂ@zbm) _ min(BZme)) ,

for some @ in ]0,1[. In [27], it is shown that since the pulse weights are normalized,
the intermittently-synchronized solution exists, and so a”* = 71,4y for any z € N.
Therefore, Varc-length (¢(t226m)) is less than or equal to max(ﬁ@zbm) —min(32#*™), and
converges exponentially to 0. Hence the PCO network intermittently synchronizes. O
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6. Numerical Simulations. The very simple PCO networks shown in Fig-
ure 6.1 (left) were simulated in MATLAB. The details of the simulation program are
provided in [13]. Figure 6.1 (right) shows the synchronization error during approxi-
mate synchronization, for differing amounts of delay. Qualitatively, the behavior is as
expected, in that the final synchronization error increases with the delays. However,
we see that the predicted error according to Theorem 4.1 is conservative, and in sim-
ulations of more complex networks (not reported here), the prediction was even more
so. Also, convergence occurred even when assumption (A3) was violated, which sug-
gests that the assumptions may be unnecessarily conservative. However, the method
used in the proofs of the theorems may be repeated with specific knowledge of the
sensing digraph to obtain better bounds on the parameters.

Figure 6.2 shows phases and synchronization error during synchronization, with
zero delays, as discussed in Corollary 4.2. Figure 6.3 shows the intermittent synchro-
nization that was predicted by Theorems 5.1 and 5.2. These graphs show decrease
in the synchronization error at times other than brief adjustment periods that occur
every oscillation, seen as spikes. Interestingly, although the proof of Theorem 5.2 was
for small initial synchronization error, the basin of attraction of the final state is seen
in simulations to be larger.

0.4 : ‘
L — Tmax = 0.010
; — T =0.022
0.35+ Tmax = 0.049 1|
B Tmax, = 0.11
03]\ - - -predicted
= L
.8 | N
£ 0.25)) "
1]:5 AY
Ay
= 0.2 .
® ® g -
2@ 0 @ @ I B Mo et e e
o
3
® @ o
Network (i) Network (ii) 0.05/ \,

8 100 200 30t0‘ 400 500

FiG. 6.1. Left: sensing digraphs used in simulations. Right: synchronization error during
approzimate synchronization for Network (i), simulated for different values of the delays, with h =
0.06. The predicted value is calculated from Theorem 4.1, for Tmax = 0.11. Interestingly, the
approzimate synchronization behavior is seen even though assumption (A3) is violated for Tmax >
0.022. This implies that the assumption may be unnecessarily conservative.

7. Conclusion. We developed a novel method to analyze PCO networks with
delayed excitatory/inhibitory coupling. Theorem 3.1 analyzed timing-related proper-
ties of the system that enabled us to rewrite the PCO network dynamics as an LTV
control system. Theorem 4.1 presented sufficient conditions for the PCO network to
approximately synchronize in the presence of small delays, exponentially fast. Corol-
lary 4.2 described a PCO network with all the delays set to zero. Theorem 5.1 stud-
ied intermittent synchronization, which may be sufficient for practical applications,
for networks with uniform delays and all-equal out-degrees. Theorem 5.2, analyzed
a (nonlinear) inhibitory system, and presented sufficient conditions for intermittent
synchronization that are less conservative than [27], in that they do not require strong
connectivity.

Future work may attempt to find tighter bounds on the rate of convergence, the
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F1c. 6.2.  (a): Phases and (b) synchronization error during synchronization of Network (i),
stmulated without delays, and with h = 0.06. The predicted value is calculated from Corollary 4.2.
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Fia. 6.3. Synchronization error during intermittent synchronization of Network (ii), simulated
for Theorem 5.1 on the left (with h = .06 and T = 0.1), and for Theorem 5.2 on the right (with

T = 0.1, ¢; = .004 for every edge, and g(x) defined as %}. We see, in the magnified graph
in the inset, the spikes that occur every oscillation when the oscillators are adjusting their phases.
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final value of the synchronization error, and the basin of attraction, since our estimates
were found to be conservative. Also, the method may be extended to more complex
PCO networks that have non-uniform oscillators, time-dependent or random delays,
or refractory periods. The less conservative conditions for synchronization, which
permit sensing digraphs that are not necessarily strongly connected but have a GRN,
may enable improvements in technological applications, such as clock synchronization
in sensing and robotic networks, with less heavy requirements on communication.
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