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Abstract—The assessment of voltage stability margins is a
promising direction for wide-area monitoring systems. Accurate
monitoring architectures for long-term voltage instability are
typically centralized and lack scalability, while completely decen-
tralized approaches relying on local measurements tend towards
inaccuracy. Here we present distributed linear algorithms for
the online computation of voltage collapse sensitivity indices. The
computations are collectively performed by processors embedded
at each bus in the smart grid, using synchronized phasor
measurements and communication of voltage phasors between
neighboring buses. Our algorithms provably converge to the
proper index values, as would be calculated using centralized
information, but but do not require any central decision maker
for coordination. Modifications of the algorithms to account for
generator reactive power limits are discussed. We illustrate the
effectiveness of our designs with a case study of the New England
39 bus system.

Index Terms—voltage stability, wide-area monitoring and con-
trol, voltage collapse

I. INTRODUCTION

Power grids are transitioning from a paradigm of centralized
monitoring and control to one based on decentralized deci-
sions and consumer interaction. When coupled with waining
infrastructure investment, rapidly growing urban load centers,
and the wide-spread adoption of intermittent distributed gen-
eration, this structural shift will lead to a broader and more
uncertain range of operating conditions for the grid and an
erosion of system stability margins if not properly coordinated.

Simultaneously however, the rise of cheap and ubiquitous
sensing, communication, and computational capability sug-
gests a future where the physical grid is strongly coupled to
many accompanying layers of data and control. Unlike classic
grids where sparsely available information is telemetered to a
control center and processed, copious amounts of information
are distributed throughout the smart grid along with the
computational capabilities to process measured data and make
coordinated decisions in real-time for wide-area monitoring,
protection, and control (WAMPAC) [1], [2]. The distributed
nature of these smart grid resources suggests we explore and
evaluate the effectiveness of different information architectures
for WAMPAC, ranging the spectrum from centralized to
decentralized.
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In this article we consider the problem of online monitoring
for long-term voltage instability (LTVI) within a smart grid,
which has recently been identified as an area of urgent interest
for industry [3]. While in general voltage stability is a com-
plex, multi time-scale phenomena, long-term voltage instabil-
ity is a quasi-static bifurcation instability [4], [5] associated
with an inability of the combined generation/transmission
system to transmit sufficient power to loads [6]. After an
increase in load, or a disturbance such as generation failure or
load shedding, the grid’s long-term operating point can vanish
leading to the tripping of protection equipment and potentially
to a large-scale voltage collapse blackout [6]. Robustness
margins against LTVI are quantified via voltage collapse
proximity indicators (VCPIs), which produce measures of
distance to instability [7]. Accurate indicator estimates are key
for distinguishing vulnerable system conditions from stable
conditions exhibiting low voltages [8], and we now review
various architectures for the calculation of such indicators.

A. Monitoring of Long-Term Voltage Instability

Many monitoring solutions for LTVI have been proposed,
and can be broadly classified by architecture (centralized, de-
centralized, distributed), measurement rate/complexity (time-
skewed SCADA vs. time-stamped phasor measurement unit
data), and theoretical rigor (heuristic vs. exact) [8]. The most
important distinction for our purposes is the first, which we
now expand on.

Centralized Monitoring: In a centralized monitoring ap-
proach, relevant data is telemetered to a central computer in a
control center and potentially combined with state estimation
to calculate relevant indices; see [8]–[11] and the many
references therein. From the perspective of this paper, the
main drawback of a centralized approach is that it results
in a single point of failure for the monitoring system, and
potentially requires data to be sent over large distances. Data
privacy issues may also come into consideration. Moreover, in
emerging applications such as microgrids, centralized super-
vision may be untenable or prohibitive. In this case, a more
modular, scalable monitoring approach is desirable.

Decentralized Monitoring:∗ In contrast to centralized
monitoring, decentralized techniques rely only on locally
measured information to estimate voltage stability margins.
Monitoring techniques based on PMU data and/or Thévenin

∗We use the term decentralized here for what is sometimes called “com-
pletely decentralized” or “completely distributed” — the VCPI calculated at
bus i will depend only on information measured locally at bus i, such as
phasor voltage Vi∠θi and complex power injection Pi + jQi.
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equivalent circuits were proposed in [12]–[16], among others.
Decentralized VCPIs offer low implementation complexity and
easy scalability, with the additional advantage that (typically)
no communication or state estimation is required. The price
paid for these advantages is accuracy: decentralized VCPIs
are invariably heuristics, often inspired by single-line power
flow results, and are always too optimistic since they do
not explicitly account for coupling between buses [17]. A
notable exception for decentralized approaches is [17], where
sensitivities of voltages with respect to on-load tap changer
ratios are used to monitor the system for instability.

A monitoring approach for LTVI was presented in [18],
where the grid is partitioned into overlapping monitoring
areas (akin to control areas in automatic generation control).
The indicators used however are somewhat unconventional,
and the approach relies on selecting monitoring areas which
are only weakly coupled. Neglecting this inter-area coupling
then results in a centralized assessment problem within each
area. While being termed “distributed”, in our terminology the
approach in [18] is a hybrid of centralized and decentralized
ideas. In Remark 3 we comment on the extension of our results
to similar multi-area monitoring architecture.

Distributed Monitoring: In the intermediate between cen-
tralized and decentralized we arrive at distributed monitor-
ing strategies, which rely on local measurements along with
communicated data from directly adjacent buses or areas
of the grid. Distributed strategies promise to combine the
performance of centralized monitoring with the scalability
of decentralized monitoring, requiring only sparse, localized
communication without any global information. Reflecting
this, the recent literature has witnessed a steady growth in the
applications of distributed algorithms to power system mon-
itoring and control, now including resource allocation [19],
load shedding [20], economic dispatch [21], optimal power
flow [22], voltage control [23], transfer capability assessment
[24], and inverter coordination [25] in microgrids. To the
authors knowledge however, distributed algorithms have not
yet been designed for the monitoring of VCPIs. In particular,
we focus on a subclass of VCPIs termed sensitivity indices,
which quantify the sensitivity of grid states to changes in grid
parameters. These sensitivities increase as voltage collapse
is approached, and monitoring these sensitivities therefore
provides information on the proximity to collapse.

B. Contributions

In this work we present the first distributed algorithms for
the online computation of voltage collapse sensitivity indices.
We demonstrate that the exact calculation of several standard
centralized indices can be distributed among agents embed-
ded within the smart grid, achieving centralized performance
through only local measurements and short-range nearest-
neighbor communication. The exact nature of these agents
is left unconstrained; the software could be embedded in
next generation power inverters, power electronic devices for
voltage control, or implemented at generators or smart meters.
Our algorithms do not rely on a state estimator processing
sparse measurements to estimate state variables, but rather

combine direct local measurements with measurements made
and communicated by neighboring buses. Data is transmitted
only over short distances, minimizing communication prob-
lems such as packet delays and measurement problems such
as time-stamp drift. No centralized decision maker is required.
Our approach does not rely on any pre-defined interfaces, on
any representative sets of offline data used for learning, or
on any Thévenin equivalent representations. After algorithm
convergence, each bus recovers its exact sensitivity index along
with the indices of neighboring buses. We demonstrate the
efficacy of our algorithms via simulation in Section IV on the
IEEE 39 bus system.

We assume that each bus in the system is equipped with
a phasor measurement unit. While current power systems are
not equipped with this level of observability, the smart grid
eventually may, and demonstrations of the operational benefits
of observability (such as those presented herein) will serve as
incentive to invest in such measurement capabilities in the
future. It seems plausible that our assumption of full observ-
ability can be relaxed, and that the approach can be extended
to more detailed models of long-term voltage instability, but
we defer further discussion of this to our concluding remarks
in Section V. At the transmission level, centralized, state
estimation-based voltage stability margins will continue to
play a major role, but it is nonetheless important to assess the
advantages and limitations of alternative methods. Our main
message is that complicated sensitivity indices can in fact be
computed using only localized information, without the need
for centralized coordination or computation. An area where our
algorithms may prove particularly useful is microgrids, where
centralized monitoring, control and optimization architectures
are often absent and must be implemented collectively by
coordinating devices within the microgrid in a scalable way.

C. Preliminaries and Notation

Sets, vectors and functions: We let R (resp. R>0) denote the
set of real (resp. strictly positive real) numbers. Given x ∈ Rn,
‖x‖∞ = maxi∈{1,...,n} |xi|, and [x] ∈ Rn×n is the associated
diagonal matrix with x on the diagonal. Throughout, 1n and
0n are the n-dimensional vectors of unit and zero entries, and
0 is a matrix of all zeros of appropriate dimensions. The n×n
identity matrix is In.

II. SYSTEM MODELS AND SENSITIVITY-BASED VOLTAGE
COLLAPSE PROXIMITY INDICATORS

We begin by defining the grid models to be used in the
paper before reviewing the relevant voltage collapse indices.

A. Power System Model

We model a balanced, quasi-synchronous power grid as a
connected, undirected and weighted graph (V, E), where V is
the set of nodes (buses) and E ⊆ V × V is the set of edges
(branches). We partition the set of buses V as V = L∪G, with
n ≥ 1 load (PQ) buses L = {1, . . . , n} and m ≥ 1 generator
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(PV) buses G = {n+1, . . . , n+m}.† Each branch {i, j} ∈ E
is weighted by a transfer admittance yij = gij + jbij , where
gij ≥ 0 and bij ≤ 0. We encode the weights and topology
in the bus admittance matrix Y , with elements Yij = −yij
and Yii = −

∑n+m
j=1 yij + yshunt,i, where yshunt,i is the shunt

element at bus i. The conductance matrix G and susceptance
matrix B are defined by G = Re(Y ) and B = Im(Y ). To
each bus we associate a phasor voltage Vi∠θi and a complex
power injection Pi+jQi, which are related by the power flow
equations

Pi =
∑
j∈V

ViVj(Gij cos(θi − θj) +Bij sin(θi − θj)) , (1a)

Qi =
∑
j∈V

ViVj(Gij sin(θi − θj)−Bij cos(θi − θj)) . (1b)

The unknowns in (1a)–(1b) are the phase angles θ =
(θ1, . . . , θn+m) and the load voltages VL = (V1, . . . , Vn).
With shunt admittances absorbed into the admittance matrix,
we assume that the remainder of the load at each PQ bus can
be described by a constant power load model. Extending our
approach to more general voltage-dependent static load models
Pi(Vi) and Qi(Vi) is straightforward, and requires only a few
additional terms in the formulae and algorithms which follow;
we omit these extensions for notational simplicity. Further
comments on grid modeling are deferred to Section V.

B. Cyber Layer Model

We assume that devices (agents) are embedded at each
bus which can measure local information, communicate in-
formation with devices at nearby buses, and perform basic
computations on the measured data.

Regarding measurement, we assume that each bus i ∈ V is
equipped with a PMU, yielding accurate synchronized mea-
surements of voltage phasors Vi∠θi. In addition we assume
that the processor at each bus has knowledge of (or access to
measurements of) power system infrastructure incident to the
bus, such as local power consumption/generation (Pi, Qi), the
admittances of incident electrical lines (yij), and local shunt
elements (yshunt,i). Admittances may be know a priori, or
estimated in an initialization phase using ranging technologies
over power line communication (PLC) channels. Similarly,
shunt susceptances designed to support voltage magnitudes
are often either fixed or switched by local controllers which
could be integrated into the processing equipment under
consideration. In contrast to SCADA systems which sample
data every few seconds, PMUs under the IEEE Standard
C37.118 [27], [28] are synchronized and able to take 10’s
of samples per second. On the time-scales of interest for
long-term voltage stability, this fast sampling is well ap-
proximated as continuous-time measurement. Throughout we
assume high-quality measurements and do not distinguish be-
tween measured and true values: if PMU measurement quality

†For our purposes, PV generator buses G may represent either synchronous
generators, frequency-dependent loads, or grid-forming inverters implement-
ing droop controllers [21], [26]. Similarly, load buses L may represent
standard static loads as well as inverters performing maximum power point
tracking.

is determined to be an issue, a distributed state-estimation and
filtering layer [29], [30] can be implemented between the raw
measurements and our algorithms to improve signal-to-noise
ratios and reject bad data.

Regarding communication, we assume that each agent can
communicate bidirectionally with the agents at adjacent buses
to which it is electrically connected. Said differently, the
topology of the communication layer mimics the physical
grid topology. This communication could be achieved through
power line communication (PLC), limited-range wireless, or
Ethernet. We emphasize that here our focus is not on detailed
communication protocols, but on highlighting the sufficiency
of local information exchange for the exact calculation of
standard sensitivity indicators. To streamline our mathematical
developments throughout, we will therefore assume generous
communication capabilities which in effect permit continuous-
time communication. Due to the large separation of time-scales
between PMU sampling rates and LTVI, and the fact that
our algorithms require only short-distance communications,
throughout we assume that delays are negligible. Nonetheless,
in Remark 2 we comment on theoretical extensions to less
restrictive communication assumptions.

C. Sensitivity-Based Voltage Collapse Proximity Indicators

As long-term voltage instability and voltage collapse is
associated with saddle-node bifurcation of the power flow
equations, singularity of the power flow Jacobian or related
matrices has long been used as an indicator of voltage collapse
[31]. Related approaches include modal analysis, singular
value and condition number indicators, sensitivity indices, con-
tinuation methods, optimization, and energy VCPIs. Surveys,
classifications, and comparative studies of various VCPIs are
available in [6]–[8], [32]–[39].

Here we focus on one of the oldest classes of VCPIs,
the sensitivity indices, which are based on the sensitivity of
the system operating point to variations in parameters. The
idea is that small variations in, for example, load demands,
will produce large variations in bus voltages near bifurcation
[32], [40], [41]. While many sensitivity-based VCPIs have
been superseded in practical power system operations by
more accurate, more computationally intensive techniques,
they nonetheless provide intuitive actionable information, and
are relatively straightforward to define and interpret. We recall
three basic indices [42, Sec. 8.2.3] and then comment on the
information needed to compute them.

a) The “dV/dQ” Index: This index measures the sensi-
tivity of load bus voltage magnitudes with respect to changes
in reactive power demands. For a multi-bus network, we may
formulate the appropriate indicator Ii as

Ii ,
∑

j∈L

Qj
Vi

δVi
δQj

, i ∈ L . (2)

The summands are the point elasticities of the voltage at load
bus i with respect to the reactive demand at load bus j. The
sum then evaluates the total elasticity of the voltage at bus
i ∈ L. The index ranges from 0 at open-circuit conditions to
+∞ when the system reaches the point of collapse.
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b) The “dVL/dVG” Index: Also called the “dV/dE”
index, this index measures the sensitivity of load bus voltages
to changes in generator network voltage set points. The
appropriate multi-bus index Ji is

Ji ,
∑

k∈G

δVi
δVk

, i ∈ L . (3)

Near open-circuit conditions Ji should be near unity, indicating
that changes in load voltages track changes in generator
voltages with unity gain (a “controllability” property [32]).
The index tends to +∞ at the point of collapse.

c) The dQG/dQL Index: This index measures the in-
cremental reactive power generation required to supply an
incremental amount of additional load, and therefore quantifies
the (inverse) efficiency of reactive power transport through the
network. The appropriate multi-bus definition is

Ki ,
∑

k∈G

δQk
δQi

, i ∈ L . (4)

With our sign conventions, the Ki ranges from −1 at open-
circuit to −∞ at bifurcation, indicating that the network
transports reactive power inefficiently near voltage collapse.

The important observations regarding the indices (2)–(4)
are (i) that the matrices of derivatives defining them are
generally dense matrices, and (ii) that the matrix elements take
into account the global state of the network. For example,
for a processor at bus i ∈ L to directly compute Ji, it
would need to not only be directly aware of all generators
connected to the network, but also know numerically how
the set point Vk of each influences the local voltage Vi. This
sensitivity is in turn influenced by the presence (or absence)
of loading/compensation at all other buses. Ostensibly then,
(2)–(4) incorporate non-local information, and it would appear
then that only an operator with centralized or near-centralized
state information can evaluate them.

III. DISTRIBUTED COMPUTATION OF SENSITIVITY-BASED
VCPIS

We now detail our approach for distributing the computation
of the VCPIs presented in Section II-C. We present our ap-
proach pedagogically for the dV/dQ index (2) before formally
defining our distributed protocols for all indices (2)–(4) and
addressing protocol convergence. To begin, note that in vector
notation, (2) becomes

I = [VL]
−1 δVL
δQL

QL ,

where I = (I1, . . . , In), QL = (Q1, . . . , Qn), [VL] is the
diagonal matrix of load bus voltages, and δVL/δQL is the
matrix with elements δVi/δQj , i, j ∈ L. Away from the point
of collapse the matrix δVL/δQL is invertible, and we may
equivalently write

δQL
δVL

[VL]I = QL , (5)

which is a (dense) system of equations. Returning briefly to
the power flow (1a)–(1b), around an operating point (θ, VL) ∈
Rn+m × Rn>0 incremental changes (δθ, δVL, δVG) in phase

angles, load voltages, and generator voltages are related to in-
cremental changes (δP, δQL, δQG) in active power injections
and reactive power injections (load and generator) by δP

δQL
δQG

 =


∂P
∂θ

∂P
∂VL

∂P
∂VG

∂QL

∂θ
∂QL

∂VL

∂QL

∂VG

∂QG

∂θ
∂QG

∂VL

∂QG

∂VG


 δθ
δVL
δVG

 , (6)

where all partial derivatives are evaluated at the operating
point. If variations in active power injections δP and generator
voltages δVG are held at zero, the first two blocks of equations
in (6) may be solved to yield

δQL
δVL

=
∂QL
∂VL

− ∂QL
∂θ

(
∂P

∂θ

)†
∂P

∂VL
. (7)

where † denotes the Moore-Penrose pseudoinverse (see Re-
mark 1). The system of linear equations (5) therefore takes
the form

∂QL
∂VL

[VL]I−
∂QL
∂θ

(
∂P

∂θ

)†
∂P

∂VL
[VL]I = QL .

Using an auxiliary variable Iaux ∈ Rn+m, one may verify that
this dense system of equations is equivalent to the expanded
system (

∂QL

∂VL
[VL]

∂QL

∂θ

∂P
∂VL

[VL]
∂P
∂θ

)(
I

Iaux

)
=

(
QL

0n+m

)
. (8)

The coefficient matrix in (8) is sparse, its sparsity pattern
closely related the physical grid topology. Indeed, the sparsity
of such matrices has long been used as an aid for fast
computation of stability margins [43]. In order to propose the
simplest, most intuitive distributed algorithm for calculating
the stability index I, we make the following assumptions.

Assumption 1 (System Matrix Stability): All eigenvalues of
the matrices

∂P

∂θ
,

(
∂P
∂θ

∂P
∂VL

∂QL

∂θ
∂QL

∂VL

)
,

(
∂P
∂θ

∂P
∂VL

[VL]

∂QL

∂θ
∂QL

∂VL
[VL]

)
.

have positive real parts, with the exception of a simple zero
eigenvalue for each with respective right eigenvectors 1n+m,
(1n+m,0n) and (1n+m,0n).

Remark 1 (Comments on Assumption 1): The simple zero
eigenvalues of the matrices in Assumption 1 correspond to a
uniform shift δθ 7→ δθ+α1n+m of all phase angle deviations
δθ. Since phase is defined only up to a reference, this trivial
degree of freedom may be removed by restricting Iaux to lie
in the subspace orthogonal to 1n+m, in which case all three
matrices are effectively invertible. In practice Assumption 1
holds away from the point of collapse [34], and the non-zero
eigenvalues of these matrices are often found to be real or
have small imaginary parts [44, Appendix B.3]. Moreover,
Assumption 1 is quite natural since (1) the matrices under
consideration describe stable small-signal behavior for certain
classes of power system dynamics, and (2) these dynamics are
known to not exhibit Hopf bifurcations, and hence the respec-
tive matrices can only become singular when an eigenvalue
reaches the origin during saddle-node bifurcation [5]. In this
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sense then, Assumption 1 is “necessary and sufficient” for the
linear system (8) to be well-posed. �

Our key observation is that the matrix elements in (8) are
determined by localized information: the ijth element depends
only on the voltage phasors at buses i and j and on the
admittances of the adjoining branches. It follows that by using
phasor measurements and communication among adjacent
buses, the solution of (8) for (I, Iaux) can be distributed among
processors embedded at each bus. With this goal in mind,
to each load bus i ∈ L we associate a pair of scalar states
(xi, yi) ∈ R2, while to each generator bus i ∈ G we associate
a scalar state yi ∈ R. We assume that these states can be
communicated bidirectionally between directly adjacent buses.
Our first formal result gives a simple distributed algorithm in
continuous-time such that limt→∞ xi(t)→ Ii for each i ∈ L.
For notational convenience, for each i, j ∈ V define the data
coefficients

dij , ViVj (Gij sin(θi − θj)−Bij cos(θi − θj)) , (9a)

Dij , ViVj (Gij cos(θi − θj) +Bij sin(θi − θj)) , (9b)

which depend only on known constants, locally measured
PMU data, or PMU data communicated between adjacent
buses.

Theorem 3.1 (Distributed dV/dQ Index): Consider the
dV/dQ indices Ii defined in (2) and let dij and Dij be as in
(9). Let each load bus i ∈ L execute

τ ẋi = Qi(1− xi)− Piyi −
∑
j∈L

dijxj +
∑
j∈V

Dijyj , (10a)

τ ẏi = Qiyi − Pixi −
∑
j∈L

Dijxj −
∑
j∈V

dijyj , (10b)

for some chosen τ > 0, while each generator bus i ∈ G
executes

τ ẏi = Qiyi −
∑
j∈L

Dijxj −
∑
j∈V

dijyj . (11)

Then for any initial condition (x(0), y(0)) ∈ Rn × Rn+m it
holds for each i ∈ L that limt→∞ xi(t) = Ii.
Proof: Let x = (x1, . . . , xn) and y = (y1, . . . , yn+m) be the
state vectors associated with (10)–(11). Comparing the right-
hand sides of (10)–(11) with the power flow Jacobian matrix
elements in Lemma A.1, one finds that in vector notation (10)–
(11) reads as

τ

(
ẋ
ẏ

)
= −

(
∂QL

∂VL
[VL]

∂QL

∂θ

∂P
∂VL

[VL]
∂P
∂θ

)(
x
y

)
+

(
QL

0n+m

)
. (12)

Conversely, (10)–(11) are obtained by writing out (12) in
components, using Lemma A.1 and the definitions of dij and
Dij in (9). Comparing the dynamics (12) to the algebraic
equation (8), it follows that the steady-states of (10)–(11)
are one-to-one correspondence with the solutions (I, Iaux) of
(8). The system matrix in (12) a permutation of the third
matrix in Assumption 1, and is therefore Hurwitz except for
a simple eigenvalue at zero with associated right eigenvector
u1 = (0n, 1√

n+m
1n+m). The component of the state which

evolves parallel to u1 only influences the (average value of

the) auxiliary variable y(t), and does not influence the index
estimates x(t). Since all other eigenvectors are associated with
negative eigenvalues, it follows that limt→+∞ x(t) = I, which
completes the proof. �

The monitoring architecture is depicted in Figure 1 for a
simple power system. While the sums in (10)–(11) run over
all loads or all buses, the coefficients dij and Dij are zero
when {i, j} is not a physical branch of the network, and hence
the only information needed at processor i ∈ V is that from
adjacent buses. Said differently, the proposed monitoring ar-
chitecture requires only peer-to-peer communication, without
centralized coordination. Uniformity of the time-constant τ
across all buses is formally required to infer stability, but as
our case study in Section IV will demonstrate, nonuniform
time-constants τi pose no difficulties when implemented.

We make five observations regarding the above algorithm.
First, note that the storage and computational requirements for
implementation are extremely low. Each agent stores only the
local states (xi(t), yi(t)) or yi(t), and integrates an ordinary
differential equation; storing the detailed time-history of states
is not strictly required, nor is it required that each agent
maintains an estimate of the entire algorithm state. Second,
the method relies only on bus measurements, meaning that
no measurements of branch currents are required. Third, com-
munication is required only between neighboring buses in the
network, which minimizes the effects of any communication
delays should they occur. Fourth, the time variable t in the
algorithm should be interpreted as a computational time-scale;
the time constant τ can be adjusted to achieve any desired
convergence speed, limited ultimately by communication time
scales, measurement sampling time, and system dynamics, but
not by any feature of the algorithm itself. Fifth and finally, our
method does not rely on a linearized power flow model; the
linearity of (10)–(11) comes from examining sensitivities of
the nonlinear power flow (1a)–(1b), with real-time measure-
ments replacing a nonlinear power flow solver.

Remark 2 (Relaxed Algorithms & Communications): As
one can see from (12), the distributed algorithm (10)–(11)
is of the form τ v̇ = −Av + b, and hence can be explic-
itly discretized for distributed synchronous implementation as
v(k + 1) = (I2n+m − hA/τ)v(k) + hb/τ for a time-step
h > 0. Under Assumption 1, this discrete-time system is
stable if and only if h < 2τ maxi

Re(λi)
|λi|2 . Another option

for distributed implementation is Jacobi iteration, where A
is decomposed into its diagonal part T = diag(aii) and off
diagonal part R = A − T , with the iteration taking the form
v(k + 1) = T−1(b − Rv(k)). This iteration converges if and
only if ρ(T−1R) < 1; the authors have observed numerically
that this assumption often holds for the relevant matrices in
Assumption 1, but in general this assumption and Assumption
1 are not equivalent. The easily verified diagonal dominance
conditions for stability of the Jacobi iteration do not hold.

Packets from neighbors may arrive asynchronously or with
delays, and communication may be event-triggered based on
sufficient changes in local measurements. While our focus is
not on detailed communication protocols, we note a particular
approach which is more complex but less restrictive. In [45]
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Fig. 1. Depiction of monitoring architecture for a radial three bus power
system implementing the algorithm (10)–(11). Synchrophasor data is mea-
sured and fed to local processors, while communications between adjacent
processors transfers both synchrophasor measurements Vi∠θi and filter states
xi, yi.

a discrete-time algorithm was developed for the distributed
solution of linear equations such as (8). In the proposed
approach, each bus is assumed to know its respective row of
the coefficient matrix, and updates a local estimate of the entire
system state (x, y) by exchanging estimates with neighbors.
Thus, the requirements on information and communication are
similar to the ones required by Theorem 3.1, with slightly more
local storage requirements. The approach extends to handle
both asynchronism and delays [46], [47]. When Assumption
1 fails during extreme system conditions, the algorithm (10)–
(11) will diverge, and one of these alternatives would be
required to calculate the relevant indices (which may even
change sign under such conditions). �

Remark 3 (Extension to Multi-Area Monitoring): While
we have presented the algorithm (10)–(11) with a direct peer-
to-peer implementation, it is easily extended to the case of
multi-area monitoring. To see this, partition the the buses V of
the network into p ≤ n+m non-overlapping monitoring areas
V = A1 ∪ · · · ∪Ap. Depending on the specific problem setup,
these areas could correspond to ISO regions, substations,
phasor data concentrators (PDCs), or microgrids. Inside area
Ak, assume that a central processor Pk has (i) access to PMU
measurements from each bus in area Ak (ii) knowledge of the
grid topology and parameters in area Ak (iii) knowledge of the
power lines which connect Ak to neighboring areas, and (iv)
the ability to perform basic computations and communicate
data with the processors in neighboring areas. In this case, the
algorithm (12) would simply be block-partitioned according to
the different areas, with central processors implementing the
required blocks. The case of one area p = 1 would correspond
to complete centralized monitoring, where a central processor
aggregates all information and performs all computations,
while p = n + m is the case described in main paper,
where each bus (e.g., substation) constitutes an area, only
local measurements are required, and information exchange is

peer-to-peer. Depending on regional data disclosure policies
and privacy concerns, one architecture may be preferable over
another; these issues are outside the scope of this work. �

Similar filters to (10)–(11) can be designed to calculate the
dVL/dVG index (3) and the dQG/dQL index (4); the proofs
may be found in Appendix A.

Theorem 3.2 (Distributed dVL/dVG Index): Consider the
dVL/dVG indices Ji defined in (3) and let dij and Dij be as
in (9). Let each load bus i ∈ L execute

τ ẋi = −
Qi
Vi
xi − Piyi −

∑
j∈L

dij
Vj
xj +

∑
j∈V

Dijyj −
∑
j∈G

dij
Vj

,

τ ẏi = Qiyi −
Pi
Vi
xi −

∑
j∈L

Dij

Vj
xj −

∑
j∈V

dijyj −
∑
j∈G

Dij

Vj
,

for some chosen τ > 0, while each generator bus i ∈ G
executes

τ ẏi = −
Pi
Vi

+Qiyi −
∑
j∈L

Dij

Vj
xj −

∑
j∈V

dijyj −
∑
j∈G

Dij

Vj
.

Then for any initial condition (x(0), y(0)) ∈ Rn × Rn+m it
holds for each i ∈ L that limt→∞ xi(t) = Ji.

Theorem 3.3 (Distributed dQG/dQL Index): Consider the
dQG/dQL indices Ki defined in (4) and let dij and Dij be
as in (9). Let each load bus i ∈ L execute

τ ẋi = −
Qi
Vi
xi −

Pi
Vi

(yi − zi)−
∑
j∈L

dji
Vi
xj

−
∑
j∈V

Dji

Vi
(yj − zj) +

∑
j∈G

dji
Vi

,

τ ẏi = Qiyi − Pixi +
∑
j∈L

Djixj −
∑
j∈V

djiyj ,

τ żi = Qizi −
∑
j∈V

djizj +
∑
j∈G

Dji ,

for some chosen τ > 0, while each generator bus i ∈ G
executes

τ ẏi = Qiyi +
∑
j∈L

Djixj −
∑
j∈V

djiyj ,

τ żi = −Pi +Qizi −
∑
j∈V

djizj +
∑
j∈G

Dji ,

Then for any initial condition (x(0), y(0), z(0)) ∈ Rn ×
Rn+m × Rn+m it holds for each i ∈ L that limt→∞ xi(t) =
Ki.

A. Incorporating Generator VAR Limits

The distributed algorithms presented in Theorems 3.1–
3.3 ignore an important factor in LTVI studies, namely the
reactive power limitations of generators [48]–[50]. When a
synchronous generator exceeds these reactive power limits
(derived from field and armature current limits) over medium
time-scales, the AVR system becomes unable to regulate the
network-side generator voltage and over-excitation limiters fix
the reactive power output at its limit. On the long-time scales
of interest for us, we can therefore approximate this behavior
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by replacing the PV bus model with a PQ bus model when
the generator is at or above its reactive limit [44].

The approach for incorporating these limits into the dis-
tributed algorithm (10)–(11) of Theorem 3.1 is as follows
(similar approaches hold for the remaining two algorithms).
If the reactive power supplied by generator i ∈ G satisfies
Qi < Qmax

i , then the associated processor executes (11),
just as before. When Qi ≥ Qmax

i , the processor initializes
an additional internal state xi(t) and instead executes (10a)–
(10b). If necessary, this can be accompanied with a binary
alert message to its neighbors signaling that a switch has taken
place. To avoid chattering due to oscillating reactive power
injections during transients, a temporal hysteresis can be used
which ensures that Qi remains above or below Qmax

i for a
sufficient amount of time before a switch in algorithm is made.

B. Monitoring Thresholds and Worst-Case Indices
The algorithms in Theorems 3.1–3.3 give the processor at

load bus i ∈ L a converging estimate of its stability index Ii, Ji
or Ki, as well converging estimates of the same indices for
any adjacent buses which are also load buses. Based on this
information, we highlight two additional steps for monitoring
that may be desirable. We discuss the dV/dQ algorithm (10)–
(11); similar statements apply to the other algorithms.

Monitoring Thresholds: Suppose that to each load bus
i ∈ L we associate a threshold γi > 0 for the index Ii. These
thresholds may be determined by experience, offline trials, or
determined online by yet another distributed algorithm. If dur-
ing monitoring xi(t) increases above γi and remains there, an
alert is triggered and communicated to neighboring processors.
This in turn could trigger localized control responses, or the
alert could be propagated system-wide.

Global Knowledge of Worst-Case Index: Voltage stability
of the network is ultimately limited by the weakest or most
sensitive bus, quantified in our setup by the largest nodal value
‖I‖∞ = maxi∈L Ii of the stability index. It may therefore be
desirable for all buses to maintain an estimate wi(t) of the
worst-case index ‖I‖∞ and continuously update it. A simple
distributed protocol for achieving this is called max-consensus
[51], [52] where each processor executes (in discrete-time)

wi(k + 1) = max

{
wi(k), max

j,{i,j}∈E
wj(k)

}
, (15)

with the initialization wi(t0) = xi(t0) for i ∈ L, where t0
is the time at which execution begins. As generator buses
i ∈ G do not carry a local state xi, each wi(t0) is initialized
to a common value w∗ for each i ∈ G, equaling the open-
circuit value of the voltage stsability index under considera-
tion. For example, for the dV/dQ index w∗ = 0, while for
the dVL/dVG index w∗ = 1. Each processor observes its
own index and the indices of its neighbors and updates its
estimate with the largest value it sees. By re-initializing and
re-executing this periodically, all processors in the network
can be made aware of the largest sensitivity.

IV. CASE STUDY: IEEE 39 BUS SYSTEM

We demonstrate our approach by implementing our algo-
rithm for the dVL/dVG index of Theorem 3.2 on the dynamic

model of the reduced New England power grid, containing
9 generators and 30 load buses. A six-state two-axis model
is used for the generators consisting of two-state mechanical
dynamics, two-state electrical dynamics, a high-gain single-
state excitation system and a single-state governor with droop
[53]; generator and network parameters are drawn from [53]–
[55].

In place of a uniform filter time constant τ , we let each
processor implement its dVL/dVG filter with a time constant
τi, which we draw from a uniform distribution between 10s
and 20s. Synchrophasor measurements are assumed to be
corrupted with uncorrelated zero mean Gaussian noise, with
standard deviation 0.001 p.u. on voltage magnitudes (arising
from quantization and harmonic distortion), and 0.01◦ on
phase angles (due to sampling time discrepancies and inexact
synchronization). At a 2σ level, these values are in compliance
with the maximum total phasor error of 1% specified by IEEE
Standard C37.118-2011 [28]. Beginning from the base load
case [55], power demands are ramped along the base case by
15% between t = 20s and t = 40s, with the newly ramped
load being shed abruptly at t = 200s.

The filter states xi(t) are plotted in Figure 2 for load
buses 3, 12, and 20, and the generator bus 34 whose state
is initialized as x34(0) = 1. The exact steady-state values
of the respective stability indices are plotted in dashed black
for each bus, as computed by a central processor solving the
linear equation (16) at each moment in time. First, we observe
that the algorithm is able to accurately track the ramp in load
between 20s and 40s. The estimates for buses 3, 12, and 20
have effectively converged to their proper values shortly before
t = 50s, but the increase in load has caused the generator at
bus 34 to hit its reactive power limits. The respective estimator
x34(t) comes online at roughly t = 54s and converges rapidly,
contributing to a further increase in the index estimates xi(t)
of all other buses, and in particular at bus 20 which is directly
adjacent to bus 34. At t = 200s the excess load is shed
and filter estimates converge back to their original values;
the centralized computation displays significant ringing due to
transient dynamics, while the filter state converges relatively
smoothly due to its natural first-order dynamics, which act as
a low-pass filter. The generator falls back below its reactive
power limits, and after an anti-chattering delay the estimator
for bus 34 is reset.

Figure 3 displays a close-up of the trace of xi(t) at bus 20
after the load is shed at t = 200s, along with the resulting
dynamics of the corresponding bus voltage V20(t). As our
algorithms use real-time measurements for computing the
sensitivity indices, transients experienced by the physical bus
variables also impact the filter estimates until convergence
occurs. As can be seen from Figure 3 however, transients in
physical variables tend to be damped significantly by the filter.

Figure 4 shows the output for all buses of the max-
consensus iteration (15). Every 30 seconds, generator states
were initialized at wi(t0) = 1, while load bus states were
initialized at xi(t0). Iterations were performed once a second,
and within four to five iterations each bus converges to the
largest bus sensitivity. Comparing Figure 4 to Figure 2, this
largest sensitivity can be seen to belong to bus 12, with the
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Fig. 2. Estimates xi(t) of the dVL/dVG indices for several buses. Black
dashed lines denote the exact index values for the respective buses, as
calculated in a centralized manner. Noise is omitted on the centralized
calculation for clarity.
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Fig. 3. Estimate x20(t) of the dVL/dVG index along with the bus voltage
at bus 20 for t ∈ [195, 230]. The black dashed line denotes the exact index
value. Noise is omitted for clarity.

trend in Figure 4 accurately tracking the green trace of Figure
2. Each bus therefore quickly obtains knowledge of the worst-
case global sensitivity.

V. CONCLUSIONS & FUTURE WORK

We have presented algorithms which distribute the com-
putation of sensitivity-based voltage stability indices among
processors embedded within a smart grid. Using PMU mea-
surements and communication with adjacent buses, each bus is
able to iteratively calculate its exact voltage stability sensitivity
index. This exact computation is achieved without the require-
ment of a central decision maker, and we have illustrated the
feasibility of the approach via simulation study.

While in this work we have used a purely power-flow
based model to calculate sensitivities, an important extension
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Fig. 4. Estimates wi(t) of maxi∈V xi(t) generated from the max-consensus
algorithm (15). The algorithm is reinitialized with the current value of xi(t)
and re-executed every 30 seconds. Generator states are initialized from unity.

is to augment the power flow equations (1a)–(1b) with ad-
ditional equilibrium equations [6, Chapter 6] corresponding
to generator and controller dynamics. As these additional
equilibrium equations are typically not coupled to one another,
designing analogous distributed algorithms should be feasible.
While we have included a basic load-flow type model of
generator reactive power limits, more detailed models could be
incorporated which include limits based directly on field and
armature currents. Future work will also concern relaxing the
assumption of full grid observability to partial observability
by combining the algorithms presented herein with distributed
estimation. Another key direction is the fusion of monitoring
protocols such as the one presented herein with automatic
distributed control and protection. It seems plausible that
optimal control directions in parameter space [56] can be
computed and executed in a distributed way, creating a self-
healing grid.

APPENDIX A
TECHNICAL LEMMAS AND PROOFS

Lemma A.1 (Power Flow Jacobian): Let (θ, VL) ∈ Rn+m×
Rn>0 be a solution of the power flow equations (1a)–(1b), and
let dij and Dij be as in (9). When evaluated at at (θ, VL) the
partial derivatives of (1a)–(1b) are given (for j 6= i) by [42,
Sec. 3.5.1.1]

∂Pi
∂θi

= −Qi + dii ,
∂Pi
∂θj

= dij ,

Vi
∂Pi
∂Vi

= Pi +Dii , Vj
∂Pi
∂Vj

= Dij ,

Vi
∂Qi
∂Vi

= Qi + dii , Vj
∂Qi
∂Vj

= dij ,

∂Qi
∂θi

= Pi −Dii ,
∂Qi
∂θj

= −Dij .

Proof of Theorem 3.2: To begin, note that by setting δP =
0n+m and δQL = 0n in (6) and eliminating δθ from the first
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two blocks of equations, one obtains

0n =
δQL
δVL

δVL +
δQL
δVG

δVG ,

where δQL/δVL is as in (7) and

δQL
δVG

=
∂QL
∂VG

− ∂QL
∂θ

(
∂P

∂θ

)†
∂P

∂VG
.

It follows then from the definition (3) of the index Ji that

J = −
(
δQL
δVL

)−1
δQL
δVG

1m , (16)

where J = (J1, . . . , Jn). Using Lemma A.1 one may deduce
that the distributed algorithm in Theorem 3.2 may be written
in vector form as

τ

(
ẋ
ẏ

)
= −

(
∂QL

∂VL

∂QL

∂θ

∂P
∂VL

∂P
∂θ

)(
x
y

)
−

(
∂QL

∂VG
1m

∂P
∂VG

1m

)
. (17)

Setting the left-hand side of (17) to zero and eliminating the
auxiliary state y, one finds that the unique x-component of
any equilibrium is given uniquely by x = J. Convergence of
x(t) to J follows from arguments similar to those in the proof
of Theorem 3.1. �

Proof of Theorem 3.3: To begin, set δP = 0n+m and δVG =
0m in (6) and eliminate δθ from the second and third blocks
of equations to obtain

δQL =
δQL
δVL

δVL , δQG =
δQG
δVL

δVL ,

where δQL/δVL is as in (7) and

δQG
δVL

=
∂QG
∂VL

− ∂QG
∂θ

(
∂P

∂θ

)−1
∂P

∂VL
.

Eliminating δVL from this pair, we find that

δQG
δQL

=
δQG
δVL

(
δQL
δVL

)−1
.

Comparing to the definition of the index Ki in (4), we find
that in vector form

K =

(
δQG
δQL

)T

1m =

(
δQL
δVL

)−T(
δQG
δVL

)T

1m ,

where K = (K1, . . . ,Kn). Using Lemma A.1 one may deduce
that the distributed algorithm in Theorem 3.2 may be written
in vector form as

τ

ẋẏ
ż

 = −


(
∂QL

∂VL

)T (
∂P
∂VL

)T
−
(
∂P
∂VL

)T
(
∂QL

∂θ

)T (
∂P
∂θ

)T
0

0 0
(
∂P
∂θ

)T


xy
z



+
(

1T
m
∂QG

∂VL
0T
n+m −1T

m
∂QG

∂θ

)T
.

(18)
By setting the left-hand side of (18) to zero and eliminating y
and z, one may verify that the x-component of any equilibrium
is given uniquely by x = K. Convergence of x(t) to the index
K follows from arguments similar to those in the proof of
Theorem 3.1. �
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