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OPINION DYNAMICS AND SOCIAL POWER EVOLUTION
OVER REDUCIBLE INFLUENCE NETWORKS*

PENG JIA', NOAH E. FRIEDKINT, AND FRANCESCO BULLO

Abstract. Our recent work [28] proposes the DeGroot-Friedkin dynamical model for the analysis
of social influence networks. This dynamical model describes the evolution of self-appraisals in a
group of individuals forming opinions in a sequence of issues. Under a strong connectivity assumption,
the model predicts the existence and semi-global attractivity of equilibrium configurations for self-
appraisals and social power in the group.

In this paper, we extend the analysis of the DeGroot-Friedkin model to two general scenar-
ios where the interpersonal influence network is not necessarily strongly connected and where the
individuals form opinions with reducible relative interactions. In the first scenario, the relative inter-
action digraph is reducible with globally reachable nodes; in the second scenario, the condensation
of the relative interaction digraph has multiple aperiodic sinks. For both scenarios, we provide the
explicit mathematical formulations of the DeGroot-Friedkin dynamics, characterize their equilibrium
points, and establish their asymptotic attractivity properties. This work completes the study of the
DeGroot-Friedkin model with most general social network settings and predicts that, under all pos-
sible interaction topologies, the emerging social power structures are determined by the individuals’
eigenvector centrality scores.

Key words. opinion dynamics, reflected appraisal, influence networks, mathematical sociology,
network centrality, dynamical systems, coevolutionary networks
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1. Introduction. Originated from structural social psychology, the develop-
ment of social networks has a long history combining concepts from psychology,
sociology, anthropology, and mathematics. Recently, motivated by the popularity
of online social networks and encouraged by large corporate and government invest-
ments, social networks have attracted extensive research interest from natural and
engineering sciences. Though classic studies on social networks mainly focused on
static analyses of social structures [15,42], much ongoing interest in this field lies
on dynamic models [1, 26, 31,40] and includes, for example, the study of opinion
formation [2,6, 12,21, 34, 38], social learning [3, 23], social network sensing [41] and
information propagation [16, 30, 36].

Among the investigations of social networks, opinion dynamics draw considerable
attention as it focuses on the basic problem of how individuals are influenced by the
presence of others in a social group [4]. In particular, the available empirical evi-
dence suggests that individuals update their opinions as convex combinations of their
own and others’ displayed opinions, based on interpersonal accorded weights. This
convex combination mechanism is considered as a fundamental “cognitive algebra” of
heterogeneous information [5] and appears in the early seminal works by French [18],
Harary [24], and DeGroot [14].

Related to the field of opinion dynamics, the theory of social influence net-
works [21] presents a formalization of the social process of attitude change via en-
dogenous interpersonal influence among a social group. This theory focuses on the
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evolution of self-appraisal, social power (i.e., influence centrality) and interpersonal in-
fluence for a group of individuals who discuss and form opinions about multiple issues.
In particular, social power evolves when individuals’ accorded interpersonal influence
is modified in positive correspondence with their prior relative control over group issue
outcomes. Such a reflected appraisal mechanism was summarized by Friedkin [19] and
validated by empirical data [20]: individuals’ self-appraisals are elevated or dampened
based upon their relative power and their influence accorded to others.

Our recent work [28] introduces the DeGroot-Friedkin model, that is, a theoretical
model of social influence network evolution that combines (i) the averaging rule by
DeGroot [14] to describe opinion formation processes on a single issue and (ii) the
reflected appraisal mechanism by Friedkin [19] to describe the dynamics of individuals’
self-appraisals and social power across an issue sequence. Given a constant set of
irreducible relative interpersonal weights (i.e., a strongly connected relative interaction
network), the DeGroot-Friedkin model predicts the evolution of the influence network
and the opinion formation process. This nonlinear model shows that the social power
ranking among individuals is asymptotically equal to their centrality ranking, that
social power tends to accumulate at the top of the hierarchy, and that an autocratic
(resp. democratic) power structure arises when the centrality scores are maximally
non-uniform (resp. uniform). In other words, the results for the DeGroot-Friedkin
model suggest that influence networks evolve toward a concentration of social power
over issue outcomes.

This article aims to extend the previous work on the DeGroot-Friedkin model
to social groups associated with reducible relative interaction digraphs and complete
the characterization of the DeGroot-Friedkin dynamical system in the most general
network settings. The consideration of reducible networks is a very useful extension of
the mathematical treatment evolving social networks, because many real social groups
and networks are not strongly connected. Reducibility is encouraged by homophily
and the existence of multiple stubborn agents. Thus, this article moves towards
greater realism and widens the scope of analysis. It is interesting and meaningful to
investigate whether the social power configurations converge in general and whether
the social power accumulates regardless of the strong connectivity of the networks.
In particular, we consider two classes of reducible networks: (i) the associated di-
graph of the relative interaction network is reducible with globally reachable nodes
(i.e., there exist some individuals in such a social network to which any other indi-
vidual accords positive influence weight directly or indirectly through the network);
(ii) the associated digraph of the relative interaction network does not have any glob-
ally reachable nodes and its associated condensation digraph has multiple aperiodic
sinks. The main technical difficulties arise twofold. First, we need to redefine the
DeGroot-Friedkin model on reducible networks, as the central systemic parameters,
the centrality scores may include zero value on the digraphs of case (i) above, or the
centrality scores are not well defined for the whole network on the digraphs of case
(ii). Second, as the DeGroot-Friedkin dynamical systems appear in different mathe-
matical formations in reducible digraphs compared to the original work [28], we have
to analyze and re-examine the existence and convergence properties of the equilibria
for the new nonlinear systems.

The main contributions of this paper are as follows. We analyze the DeGroot-
Friedkin model on two classes of reducible social networks, provide the explicit and
concise mathematical formulations of the reflected appraisal mechanism for both cases,
and characterize the existence and asymptotic convergence properties of their equi-
librium points. In particular, for the first class of reducible networks (with globally
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reachable nodes), we show that the DeGroot-Friedkin model has equilibrium points
and convergence properties that are similar to those of the strongly connected net-
works. The final values of social power are independent of the initial states and
depend uniquely upon the relative interpersonal weights or, more precisely, upon the
eigenvector centrality scores generated from these weights. For the second class of re-
ducible networks (without globally reachable nodes), the social power equilibrium still
uniquely depends upon the relative interaction digraph. Precisely, at equilibrium, the
sink components in the associated digraphs share all social power whereas the remain-
ing nodes have zero power. This unique equilibrium is globally attractive. Moreover,
to our best knowledge, the convergence of the DeGroot model on networks without
globally reachable nodes has been little discussed in the literature. Once again, our
results are consistent with the “iron law of oligarchy” postulate [33] in social organi-
zations about the concentration of social power. Finally, we numerically illustrate our
results by applying the DeGroot-Friedkin model to the Sampson’s monastery network,
that is, a well-known example of a reducible network.

Paper organization. The rest of the paper is organized as follows. Section 2
briefly reviews the DeGroot-Friedkin model and its dynamical properties in strongly
connected social networks. Section 3 includes the main results: subsection 3.1 char-
acterizes the DeGroot-Friedkin model in reducible networks with globally reachable
nodes; subsection 3.2 characterizes the DeGroot-Friedkin model in reducible networks
without globally reachable nodes and presents a numerical study of the DeGroot-
Friedkin model on Sampson’s monastery network. Section 4 contains our conclusions
and all proofs are in the Appendices.

Notation. For a vector x € R™, z > 0 and = > 0 denote component-wise in-
equalities, and 27 denote its transpose. We adopt the shorthands 1,, = [1,...,1]7
and 0, = [0,...,0]T. For i € {1,...,n}, we let e; be the ith basis vector with all
entries equal to 0 except for the i-th entry equal to 1. Given z = [z1,...,z,]T € R",
we let diag(z) denote the diagonal n x n matrix whose diagonal entries are x1, ..., ;.
The n-simplex A,, is the set {z € R" | z > 0, 172 = 1}; recall that the vertices of
the simplex are the vectors {ey,...,€,}. A non-negative matrix is row-stochastic (re-
spectively, doubly-stochastic) if all its row sums are equal to 1 (respectively, all its row
and column sums are equal to 1). For a non-negative matrix M = {mi;}i jcq1,...n}>
the associated digraph G(M) of M is the directed graph with node set {1,...,n} and
with edge set defined as follows: (i,7) is a directed edge if and only if m;; > 0. A
non-negative matrix M is irreducible if its associated digraph is strongly connected;
a non-negative matrix is reducible if it is not irreducible. An irreducible matrix M is
aperiodic if it has only one eigenvalue of maximum modulus. A node of a digraph is
globally reachable if it can be reached from any other node by traversing a directed
path. A sink in a digraph is a node without outgoing edges. A subgraph H is a
strongly connected component of a digraph G if H is strongly connected and any
other subgraph of G strictly containing H is not strongly connected. The conden-
sation digraph D(G) of G is defined as follows: the nodes of D(G) are the strongly
connected components of G, and there exists a directed edge in D(G) from node H;
to node Hy if and only if there exists a directed edge in G from a node of H; to a
node of Hs. G has a globally reachable node if and only if D(G) has a single sink.

2. Preliminary studies of the DeGroot-Friedkin model. In this section
we will briefly introduce the previous work on the DeGroot-Friedkin model [28]. The
mathematical formation of the model and its equilibrium and convergence properties
for irreducible social networks will be applied in section 3 as a starting point.
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2.1. The DeGroot-Friedkin model. The DeGroot-Friedkin model was moti-
vated by the DeGroot’s opinion dynamics model on a single issue and the Friedkin’s
reflected appraisal model over a sequence of issues.

As discussed in the Introduction, the available empirical evidence and independent
work by investigators from different disciplines have formulated opinion dynamics
as convex combination mechanisms of heterogeneous information. One well-known
model for opinion dynamics is the DeGroot model [14]. Consider a group of n > 2
individuals, each individual updates its opinion based upon others’ displayed opinions
via the DeGroot model

(1) y(t+1)=Wy(t), ¢t=0,1,2,....

Here the vector y € R™ represents the individuals’ opinions. A row-stochastic weight
matrix W = [w;;] € R™*™ describes the social influence network among the individu-
als, which satisfies w;; € [0,1] for all ¢,j € {1,...,n} and Z;L=1 w;; = 1 for all 4. This
row-stochastic weight matrix assumption is inherited from the DeGroot model [14] and
is consistent with Friedkin’s reflected appraisal model [19]. For interpersonal weights
defined on real numbers, including negative numbers, the reader may be referred to
the topic on balance theory [11,25] and our recent work [27], but we do not do so here.
Each w;; represents the interpersonal (influence) weight accorded by individual ¢ to
individual j. In particular, w;; represents individual ¢’s self-weight (self-appraisal).
For simplicity of notation, we adopt the shorthand x; = w;;. Because 1 — x; is the
aggregated allocation of weights to others, the influence matriz W is decomposed as

(2) W () = diag(x) + (I, - diag())C,

where the matrix C is called relative interaction matriz such that the coefficients c;;
are the relative interpersonal weights that individual ¢ accords to other individuals,
and ¢;; = 0. It is easy to verify that w;; = (1 — x;)c;j, and C is row-stochastic with
zero diagonal as W is row-stochastic.

If C is irreducible, then, by applying the Perron-Frobenius Theorem, the influence
matrix W (z) admits a unique normalized left eigenvector w(x)? > 0 associated with
the eigenvalue 1, such that w(z) € A,,. We call w(z)T the dominant left eigenvector of
W (x) and it satisfies lim;_, o, W (z)! = 1,w(z)T. Moreover, the DeGroot process (1)
converges to an opinion consensus

. . t T
(3) Jim y(t) = (Jim W(2)")y(0) = (w(z)"y(0))1,.
That is, the individuals’ opinions converge to a common value equal to a convex
combination of their initial opinions y(0), where the coefficients w(z) mathematically
describe each individual’s relative control, i.e., the ability to control issue outcomes.
As claimed by Cartwright [10], this relative control is precisely a manifestation of
individual social power.

Different from the DeGroot model defined on a single issue, the DeGroot-Friedkin
model focuses on the evolution of social power over an issue sequence, which is in-
spired by the fact that social groups, like firms, deliberative bodies of government and
other associations of individuals, may be constituted to deal with sequences of issues.
Considering a group of n > 2 individuals who discuss an issue sequence s € Zx, the
individuals’ opinions about each issue s are described by the DeGroot model

(4) y(s,t+1) = W(z(s))y(s 1),
4
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with given initial conditions y;(s,0) for each individual ¢. By assuming an issue-
independent C, the self-weights s — z(s) evolve from issue to issue via Friedkin’s
reflected appraisal model [19]. The Friedkin model assumes that the self-weight of an
individual is updated, after each issue discussion, equal to the relative control over
the issue outcome. That is

T
(5) a(s +1) = (Jim W(a(s))') Ln/n = w(a(s)),
where w(z(s))T is the dominant left eigenvector of the influence matrix W (z(s)).
Notice that, for issue s > 1, the self-weight vector x(s) necessarily takes value inside
A,,. It is therefore natural to assume that x(s) takes value inside A,, for all issues.
By integrating the Friedkin model with the DeGroot model, we have

DEFINITION 1 (DeGroot-Friedkin model [28]). Consider a group of n > 2 indi-
viduals discussing a sequence of issues s € Z>q. Let the row-stochastic zero-diagonal
irreducible matriz C be the relative interaction matrix encoding the relative interper-
sonal weights among the individuals. The DeGroot-Friedkin model for the evolution
of the self-weights s — x(s) € A, is

z(s+1) = w(x(s)),

where w(x(s)) € A, and w(z(s))? is the dominant left eigenvector of the influence
matriz W(x(s)),

W (z(s)) = diag(z(s)) + (I, — diag(z(s)))C.

Let ¢cI' = [c1, ..., ¢,] be the dominant left eigenvector of C'. The explicit expression
for the DeGroot-Friedkin model with irreducible C' is established as follows.

LEMMA 2 (Explicit formulation of the DeGroot-Friedkin model [28]). Forn > 2,
let ¢’ be the dominant left eigenvector of the relative interaction matriz C € R™*"
that is row-stochastic, zero-diagonal and irreducible. The DeGroot-Friedkin model is
equivalent to x(s+1) = F(x(s)), where F : A, — A,, is a continuous map defined by

e, if x =e; forallie{l,...,n},
(6) F(z) ( a ey En ) /Z G , otherwise.
11—z 1—2, Z_le—xi

Note that we regard c; as an appropriate eigenvector centrality score of individual
i in the digraph with adjacency matrix C, as the classic definition of eigenvector
centrality score [7], i.e., the dominant right eigenvector of C, is not informative here.
Lemma 2 implies that the dominant left eigenvector ¢’ of the relative interaction
matrix C plays a key role in the DeGroot-Friedkin model. Eigenvector centrality and
its variations has been widely applied in social networks and other realistic networks
to determine the importance of individuals (see e.g., [17,29,37]). Google’s PageRank
algorithm [8] is also closely related to this concept. We refer the reader to [22] for a
extensive survey of eigenvector centrality. This paper together with the original paper
on the DeGroot-Friedkin model [28] claim eigenvector centrality as the elementary
driver of social power evolution in sequences of opinion formation processes. It is also
noted that the psychological assumption that C' is issue-independent is relaxed in our
recent work [20] and in the work [43].
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2.2. Influence dynamics with irreducible relative interactions. The equi-
librium and convergence properties of a DeGroot-Friedkin dynamical system associ-
ated with an irreducible relative interaction matrix C' is briefly introduced in this
subsection.

Given n = 2, C is always doubly-stochastic and, for any (z1,22)T € Ay with
strictly-positive components, F' satisfies F((z1,22)7) = (21,22)7. We therefore dis-
card the trivial case n = 2 for the following statements.

LEMMA 3 (DeGroot-Friedkin behavior with star topology [28]). For n > 3, con-
sider the DeGroot-Friedkin dynamical system x(s+ 1) = F(x(s)) defined by a relative
interaction matriz C' € R™*™ that is row-stochastic, irreducible, and has zero diagonal.
If C' has star topology with center node 1, then

(i) (Equilibria:) the equilibrium points of F are {e1,...,e,}, and

(ii) (Convergence property:) for all non-autocratic initial conditions x(0) €

Ap\{e1,...,en}, the self-weights x(s) and the social power w(x(s)) converge
to the autocratic configuration €1 as s — 0.

That is to say, for a DeGroot-Friedkin model associated with star topology, the au-
tocrat is predicted to appear on the center node.

THEOREM 4 (DeGroot-Friedkin behavior with stochastic interactions [28]). For
n > 3, consider the DeGroot-Friedkin dynamical system x(s + 1) = F(x(s)) defined
by a relative interaction matriz C € R™*™ that is row-stochastic, irreducible, and has
zero diagonal. Assume that the digraph associated to C does not have star topology
and let ¢T be the dominant left eigenvector of C. Then
(i) (Equilibria:) the equilibrium points of F' are {€1,...,€,,x*}, where x* lies
in the interior of the simplex A, and the ranking of the entries of x* is equal
to the ranking of the eigenvector centrality scores ¢, and
(ii) (Convergence property:) for all non-autocratic initial conditions x(0) €
Ap\{e1,...,en}, the self-weights x(s) and the social power w(x(s)) converge
to the equilibrium configuration =¥ as s — 0.

The DeGroot-Friedkin model in strongly connected networks predicts that the
self-weight and social power for each individual asymptotically converges along the
sequence of opinion formation processes, the equilibrium social power ranking among
individuals coincides their eigenvector centrality ranking (that is to say, the entries
of * have the same ordering as that of c: if the centrality scores satisfy ¢; > c¢j,
then the equilibrium social power x* satisfies z} > xj, and if ¢; = ¢;, then x7 = x;‘),
and the social power accumulation arises over issue discussions (see Proposition 4.2
in [28]). The power accumulation is most evident in the star topology case: the center
individual has all social power.

3. Influence dynamics with reducible relative interactions. The main
results in the previous work [28] (as repeated in section 2) rely on the assumption
that the relative interaction matrix C is irreducible, i.e., the associated digraph is
strongly connected. However, this assumption does not always hold and we may
confront situations where C' is reducible so that the social influence network is not
strongly connected. We consider three exclusive cases for a reducible C'

In subsection 3.1 we assume that the matrix C is reducible and its associated
digraph has globally reachable nodes. Then C admits a unique dominant left eigen-
vector, the DeGroot opinion dynamics (4) are always convergent, and the analysis of
the DeGroot-Friedkin model is essentially similar to that for an irreducible matrix C.

In subsection 3.2 we assume that the matrix C is reducible and its associated

6
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condensation digraph has multiple aperiodic sinks. In this case, the modeling analysis
for the DeGroot-Friedkin influence dynamics is not directly applicable because C' has a
left eigenvector with eigenvalue 1 corresponding to each sink. In our analysis below, we
show that the DeGroot opinion dynamics (4) always converge , so that the DeGroot-
Friedkin dynamics are well posed. We then establish the existence, uniqueness and
attractivity of an equilibrium point even for this general setting.

Finally, we do not analyze the third case where C' has neither globally reachable
nodes nor aperiodic sinks (in its associated condensation digraph). This third case
is similar to the second case (analyzed in subsection 3.2) with, however, the added
complication that the convergence of DeGroot opinion dynamics depends upon the
value of the self-weights. Because the aperiodicity assumption does not appear to be
overly restricting, we find this final third case is least interesting.

3.1. Reducible relative interactions with globally reachable nodes. In
this subsection we generalize Theorem 4 to the setting of reducible C' with glob-
ally reachable nodes. Recall that C' is reducible if and only if G(C) is not strongly
connected. Without loss of generality, assume that the globally reachable nodes are
{1,...,g}, for g < n, and let G(Cy) be the subgraph induced by the globally reachable
nodes. One can show that there does not exist a row-stochastic matrix C' with zero
diagonal and a globally reachable node; if ¢ = 1, then, by assuming that node 1 is
the only globally reachable node, the self-weights converge to * = z(1) = w(0) = €1
for any initial conditions even if C' is not well defined. We therefore assume g > 2 in
the following. For simplicity of analysis, we also assume that the subgraph G(Cj) is
aperiodic (otherwise, the dynamics of opinions about a single issue may exhibit oscil-
lations and not converge). Under these assumptions the DeGroot opinion dynamics
is always convergent. Indeed, the matrix C' admits a unique dominant left eigen-

vector ¢ with the property that ci, ..., cg are strictly positive and cgy1,...,c, are
zero. Moreover, for x € A, \ {e1,...,e,}, there exists a unique w(z) € A,, such that
w(@)TW(z) = w(@)T, wyi1(z) = -+ = wy(z) = 0, and limy_,0o W(z)! = Lw(z)T.

In other words, opinion consensus is always achieved and the individuals who are not
globally reachable in G(C) have no influence on the final opinion. Consequently, the
DeGroot-Friedkin model is well defined via the reflected appraisal mechanism (5).

LEMMA 5 (DeGroot-Friedkin model with reachable nodes). Forn > g > 2, con-
sider the DeGroot-Friedkin dynamical system x(s + 1) = F(x(s)) associated with a
relative interaction matriz C € R™ ™ which is row-stochastic, reducible and with zero
diagonal. Let T be the dominant left eigenvector of C and let {1,..., g} be the glob-
ally reachable nodes of G(C). Assume that the globally reachable subgraph G(Cy) is
aperiodic. Then the map F : A, — A, satisfies

e, ZfﬁC:ei,Z’G{l,...,g},
(7) F(.’E): (dh‘,...,dgi,07...,07dii,0,...0)T, ifx:ei7i€{g+l7...7n},

c1 Cq )T/ g & )
<1_$1,...,1_%,0,...,0 Zi:ll—xi’ otherwise,

for appropriate strictly-positive scalars {di;, . ..,dgi,di; }, ¢ € {g+1,...,n}. Moreover,
the map F is continuous in Ay \ {€g41,...,€,}.

The proof of Lemma 5, together with the expression for {d1;, ..., dg;, di;}, i € {g+
1,...,n}, is presented in Appendix A. Apparently, the irreducible relative interaction
case described in Lemma 2 is a special case of Lemma 5 for g = n.
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THEOREM 6 (DeGroot-Friedkin behavior with reachable nodes). For n > g > 2,
consider the DeGroot-Friedkin dynamical system z(s + 1) = F(xz(s)) under the same
assumptions as in Lemma 5, described by (7). Then

(i) in case g = 2, the equilibrium points of F are {(a,1 — ,0,---,0)T} for any

a € [0,1], and for all initial conditions x(0) € A,,, the self-weights z(s) and
the social power w(x(s)) converge to an equilibrium point in at most 2 steps;

(i) in case g > 3 and G(Cy) has star topology with the center node 1, the equi-
librium points of F' are {€1,...,e4}, and for all initial conditions x(0) €
Ay \{e1,...,e4}, the self-weights x(s) and the social power w(x(s)) converge
toe; as s — 0o,

(iii) in case g > 3 and G(Cy) does not have star topology, the equilibrium points
of F' are {e1,...,e4,2*}, where * € A, \ {e1,...,6,} satisfies: 1) z} >0
forie{l,....g9} and z; =0 for j € {g+1,...,n}, and 2) the ranking of
the entries of ©* is equal to the ranking of the eigenvector centrality scores c;
moreover, for all initial conditions x(0) € Ay, \ {€1,...,e,4}, the self-weights
x(s) and the social power w(x(s)) converge to x* as s — oo;

The social power accumulation occurred in the DeGroot-Friedkin dynamics with
irreducible C' is also observed here. The following proposition is parallel to an equiv-
alent result for the case of irreducible relative interactions in our previous work [28].

PROPOSITION 7 (Power accumulation with reachable nodes). Consider the
DeGroot-Friedkin dynamical system x(s + 1) = F(x(s)) under the same assump-
tions as in Theorem 6 part (iii). There exists a unique threshold cinrshid == 1 —

(o9 +4)"t €[0,1] such that

i=1 T—z7

(i) if Icthrsmd < 0.5, then every individual with a centrality score above the thresh-
old (c; > cinrsnia) has social power larger than its centrality score (x> ¢;)
and, conversely, every individual with a centrality score below the threshold
(ci < cthrshid) has social power smaller than its centrality score (r} < ¢;);
moreover, individuals with ¢; = Cenrshid Satisfy x7 = ¢;;

(ii) 4f ctnrsnia > 0.5, then there exists only one individual with social power larger
than its centrality score (x} > ¢;) and all other individuals have x} < ¢;;

(iii) for any individuals i,j € {1,..., g} with centrality scores satisfying ¢; > ¢; >
0, the social power is increasingly accumulated in individual © compared to
individual j, that is, ¥} /c; > x5 /c;.

REMARK 8 (Interpretation of Theorem 6 and Proposition 7). According to The-
orem 6, for a reducible row-stochastic C' with m > 3 globally reachable nodes, the
vector of self-weights x(s) converges to a unique equilibrium value z* from all initial
conditions, except the autocratic states. This equilibrium value z* is uniquely de-
termined by the eigenvector centrality score c. Those nodes, which are not globally
reachable, have zero self-weights and then zero social power in the equilibrium. If
the topology among the globally reachable nodes is a star, then the autocrat is pre-
dicted to appear on the center node. Otherwise, if the topology among the globally
reachable nodes is not a star, then the entries of x* corresponding to the globally
reachable nodes are strictly positive and have the same ranking as that of ¢. More-
over, according to Proposition 7, an accumulation of social power is observed in the
central nodes of the network. That is, individuals with the large centrality scores
have an equilibrium social power that is larger than their respective centrality scores;
in turn, the individual with the lowest centrality score has a lower equilibrium social
power. Additionally, such a social power accumulation accelerates in the nodes with
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larger centrality scores. (This property, as described in fact (iii) of Proposition 7, also
holds for the DeGroot-Friedkin model with irreducible relative interactions, though
it is not explicitly discussed in [28].) This accumulation phenomenon is especially
evident for the star topology case: the center individual with ¢; = 0.5 has all social
power and all other individuals have zero social powers. These claims are comparable
to the previous results in the irreducible relative interaction case as demonstrated in
subsection 2.2, and their proofs are presented in Appendices B and C, respectively.

3.2. Reducible relative interactions with multiple sink components. In
this subsection we generalize the treatment of the DeGroot-Friedkin model to the
setting of reducible C' without globally reachable nodes. Such matrices C' have an
associated condensation digraph D(G(C)) with K > 2 sinks. Subject to the aperiod-
icity assumption on each sink, the DeGroot opinion dynamical system still converges
for each single issue, even though consensus is not achieved for generic initial opinions.

In what follows, ny denotes the number of nodes in sink k, k € {1,..., K}, of the
condensation digraph; by construction ny > 2. (When ny, = 1, the corresponding sink
node never changes its opinion in issue discussions, and therefore, its self-weight and
social power keep constant.) Assume that the number of nodes in G(C), not belonging
to any sink in D(G(C)), is m, that is, Zszl ng+m = n. After a permutation of rows
and columns, C' can be written as

Ci1 0 - 0 0
0 Cyo 0 0
(8) = : : K : : )
0 0 ... Ckk 0
Cvi Cu2 ... Curx Cum

where the first (n — m) nodes belong to the sinks of D(G(C)) and the remaining
m nodes do not. By construction each Cyp € R™*"™ Lk € {1,...,K} is row-
stochastic and irreducible. If Cyy is also aperiodic, then its dominant left eigenvector
ek = (Crkyy oo os Ckknk) is unique and positive. Under these assumptions, the matrix
C has the following properties: eigenvalue 1 has geometric multiplicity equal to K,
the number of sinks in the condensation digraph D(G(C)); eigenvalue 1 is strictly
larger than the magnitude of all other eigenvalues so that C' is semi-convergent. Con-
sequently, C' has K dominant left eigenvectors associated with eigenvalue 1, denoted
by & e R for k € {1,...,K}, with the properties that: ¢® > 0, >0 cF =1,
c¥ > 0 if and only if node i belongs to sink k, and cf = ki, for j =i — f:_ll ny. We
also denote x = (21,21, ... 2% . 2T )T, where zp; = (xkkl,...,xkknk)T € R"*
are the self-weights associated with sink k. Similarly, z; = xpy; for j =i — Z;:ll nyg.

As mentioned in the beginning of this subsection, we first prove that the DeGroot
opinion dynamics converge for each issue discussion, subject to the assumptions above
(see details in the proof of Lemma 9). That is, lim;_o, W(x(s))! exists for each s,
but the limit is not necessarily equal to a rank-1 matrix (different from the previous
cases of irreducible relative interactions or reducible relative interactions with globally
reachable nodes). The reflected appraisal mechanism (5) still holds here, but the
social power w(z) = (limy_,0o W(x)*)T1,,/n does not satisfy the property that w(z)T
is the dominant left eigenvector of W (z). Now we are ready to discuss the DeGroot-
Friedkin model with multiple sink components. The proofs of the following results
are postponed to Appendices D to F.
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LEMMA 9 (DeGroot-Friedkin model with multiple sinks).  For n > 4, consider
the DeGroot-Friedkin dynamical system x(s + 1) = F(xz(s)) associated with a relative
interaction matriz C' € R™™. Assume that the condensation digraph D(G(C)) con-
tains K > 2 aperiodic sinks and that C is written as in equation (8). Then the map
F: A, — A, satisfies

T . )
) F(x):{(d“"”%dm) , . zfgfel,ZE‘{n m+1,...,n},
(Fu(ac) ooy Frg ()"0, O) , otherwise.
Here the non-negative scalars dj;, j,i € {1,...,n} are strictly positive precisely when
j =1 orj belongs to a sink of D(G(C)). The maps Fyr : Ap \ {€n—m+t1s---s€n}t —
R™ ke {l,...,K}, are defined by

Cr(z)es, ifxp =€ € Ay, i€ {1,...,ni},
(10) Fkk(‘r) = ( Ckk, Ckknk )T/( N Ch, ) .
T ey ————), otherwise,
Ck( ) 1— Tk, 1-— l'kknk zz:; 1-— Tk,

where the functions (i : Ap\{€n—m+1,-..,en} = R, fork € {1,..., K}, are appropri-
ate positive functions satisfying Zle Ck(x) =1 for all x. Moreover, F is continuous
in A, \ {en_m+1, ey €n}.

THEOREM 10 (DeGroot-Friedkin behavior with multiple sinks). For n > 4, con-
sider the DeGroot-Friedkin dynamical system x(s + 1) = F(xz(s)) under the same
assumptions as in Lemma 9, described by (9) and (10). Then

(i) (Social power of sinks:) for all s > 2, (i(x(s)), the sum of the individual

self-weights in each sink k € {1,..., K}, is constant, i.e., (; = Cx(2(2));

(ii) (Equilibrium:) there exists a unique equilibrium point x* of F satisfying

(ii.1) if node i, i € {1,...,n}, does not belong to any sink, then x;(s) = xf =0
for all s > 2,
(ii.2) if node i, i € {1,...,n}, belongs to sink k € {1,...,K} and n; = 2,
then x = (/2, and
(ii.3) if node i, i € {1,...,n}, belongs to sink k € {1,...,K} and n > 3,
then x} > 0; moreover, the ranking of the entries of x7,, is equal to the
ranking of the eigenvector centrality scores cpi in the same sink k;
(iii) (Convergence of Self-weights:) for all initial conditions x(0) € A, the
self-weights x(s) and the social power w(xz(s)) converge to x* as s — oo;

Finally, for all initial conditions x(0) € A, at each issue discussion s > 1, the
influence matriz W (x(s)) has K dominant left eigenvectors, denoted by wlT(s), cee
wKT(s) € A, with the properties that

(iv) (gonvergence of Influence:) for k € {1,...,K} and i € {1,...,n},

wk(s) > 0 if and only if node i belongs to sink k, and wk(s) converges to

xf /¢ as s — oo if node i belongs to sink k.
Note that w(z(s)) in fact (iii) of Theorem 10 does not have the property that
w(z(s))T is the dominant left eigenvector of W (z(s)).

REMARK 11 (Interpretation of Theorem 10). According to Theorem 10, the self-
weight equilibrium is still uniquely determined by the relative interactions C. The
sink components of G(C) share all social power after at most two issue discussions
and the rest nodes have zero power. Moreover, the sink social powers remain constant
(uniquely determined by C) after at most three issue discussions. If a sink component

10

This manuscript is for review purposes only.



includes two nodes, then those nodes have equal social powers in the equilibrium,
independent of initial conditions. Otherwise, if a sink component includes at least
three nodes, then those nodes have strictly-positive self-weights in the equilibrium
(even for the sink component with a star topology) and their self-weights have the
same ranking as that of their centrality scores.

REMARK 12 (DeGroot-Friedkin behavior with disconnected components). In an
extreme case where all entries of one matrix Cyi, k € {1,..., K} are equal to 0,
the corresponding component associated with Cyj is then disconnected from the rest
of the network. If such a Cjj is row-stochastic, irreducible and aperiodic, then the
analysis in Theorem 10 holds similarly. That is to say, for all initial states x(0) € A,,,

(i) the sum of the individual self-weights in the k-th component associated with

Cir 1s equal to ny /n for all s > 1 where ny is the cardinality of the component;

(ii) the equilibrium of the DeGroot-Friedkin dynamics on the k-th component is
uniquely determined, and the self-weight x; of each node ¢ in the component
satisfies: 1) if ny = 2, then lims o x;(s) = xF = 1/n; 2) if ni > 3, then
limy_, 00 zi(s) = af > 0, and for any other node j that belongs to the same

k

. k k s * * k __ . . *
component as i, ¢; > ¢; implies 7 > 27 and ¢ = ¢ implies z7 =z

%
1
REMARK 13 (Eigenvector centrality). We may regard (ckr as the revised indi-
vidual eigenvector centrality scores in sink k. A node has zero eigenvector centrality
score if it does not belong to any sink. When the number of the sinks is K > 2, we
have (ferr, < 0.5 for any sink k € {1,..., K} with at least two nodes. Consequently,
the star topology in a sink does not correspond to an equilibrium point on the center

vertex as previously discussed in Lemma 3 and Theorem 6.

Furthermore, the social power accumulation is observed by comparing the revised
eigenvector centrality scores (;cxr and the equilibrium self-weights x7,..

PROPOSITION 14 (Social power accumulation with multiple sinks). Consider the
DeGroot-Friedkin dynamical system x(s + 1) = F(x(s)) under the same assump-
tions as in Theorem 10 part (1i.3). There exists a unique threshold Cihrshid® 1=

1— (OO0, 24 )= such that

=1 T—aj,

(i) if Cehrshid® < 0.5, then every individual with o revised centrality score above the
threshold (Cfcrr, > cthrshldk) has social power larger than its revised centrality
score (Tiy. > (ickr,) and, conversely, every individual with a revised central-
ity score below the threshold ((ickr, < cthrshldk) has social power smaller
than its revised centrality score (xj, < (jickk,); moreover, individuals with
Crckk, = Ctirshid” satisfy xpy, = Cicun, ;

(ii) of Cenrshia” > 0.5, then there exists only one individual with social power larger
than its revised centrality score (xy, > (jckk,) and all other individuals have
Z’Zki < C};kckki-

(iii) for any individuals i,j € {1,...,n,} with centrality scores satisfying cgr, >
ckk; > 0, the social power is increasingly accumulated in individual i compared
to individual j, that is, x3;. [ckk, > kaj /Cri; -

An example application to Sampson’s monastery network. The social in-
teractions among a group of monks in an isolated contemporary American monastery
were investigated by Sampson [39]. Based on his observations and experiments, Samp-
son collected a variety of experimental information on four types of interpersonal re-
lations: Affect, Esteem, Influence, and Sanctioning. Each of 18 respondent monks
ranked their first three choices on these relations, where 3 indicates the highest or

11
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494 first choice and 1 indicates the last choice in the presented interaction matrices. Some
495 subjects offered tied ranks for their top five choices. Here we focus on a monastery
496 social structure from the ranking of the most esteemed members in Sampson’s em-
497 pirical data. The underlying empirical matrix has been normalized to conform to the
498 relative interaction matrix C employed in this paper as follows:

fo 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000
0 0 0 0 0 125 0 0 0 375 0 0 25 25 0 00 0
0 0 0 0 0 0 33 5 17T 0 0 0 0 0 0 000
0 0 0 0 0 0 143 428 0 0 143 0 .28 0 0 000
0 0 0 0 0 0 0 0 167 0 0 0 0 33 5 000
0 0 0 0 0 0 0 33 0 5 0 0 167 0 0 000
0 0 0 5 0 0 0 0 0 0 0 167 33 0 0 000

499 C=|0 00 2 2 o0 0 0 0 0 0 33 0 a1 11 0 0 0|
0 0 3 2 0 2 0 0 0 0 0 0o 2 1 0 000
0 0 0 375 0 0 0 0 0 0 0 0 25 25 .125 0 0 O
0 0 5 0 0 0 0 33 0 0 0 0 167 0 0 000
0 0 33 5 0 0 0 167 0 0 0 0 0 0 0 000
0 0 5 33 0 .67 0 0 0 0 0 0 0 0 0 000
0 0 0 375 125 0 0 0 0 0 0 0 .25 125 .125 0 0 O
0 0 0 0 0 0 0 0 0 0 0 0 167 5 33 0 0 0
0 0 0 0 0 0 0 0 0 0 0 167 0 5 33 000
125 0 25 25 0 375 0 0 0 0 0 0 0 0 0 0 0 0

500 The condensation digraph associated with C' includes two sinks: sink 1 consists of
501 the nodes {1,2}, and sink 2 counsists of the nodes {3,...,15}, see Figure 1. The
502 corresponding two dominant left eigenvectors of C' are:

503 01T=[0.50.50000000000000000],
504 2l = [0 0 0.1184 0.2060 0.0127 0.0407 0.0705 0.1677 0.0411 0.0796...
505 0.0018 0.0417 0.1314 0.0597 0.0287 0 0 0.

Fic. 1. Sampson’s monastery network

506 We simulated the DeGroot-Friedkin model on this monastery network with ran-
507 domly selected initial states x(0) € Ajg. The simulation shows that all dynamical
508 trajectories converge to a unique equilibrium self-weight vector z*, given by

509 ¥ =1[0.0590 0.0590 0.1029 0.2009 0.0100 0.0328 0.0583 0.1547...
510 0.0331 0.0665 0.0014 0.0336 0.1158 0.0490 0.0229 0 0 0]”.

511  Meanwhile, (7 = 0.118, (5 = 0.882, the revised eigenvector centrality scores, denoted
12
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by ¢", can be calculated as follows:

¢ = (et + ¢Gc® =[0.0590 0.0590 0.1044 0.1817 0.0112 0.0359 0.0622 0.1479...
0.0363 0.0702 0.0016 0.0368 0.1159 0.0527 0.0253 0 0 0]7,

and the social power accumulation threshold for sink 2 is c¢nrsnia? = 0.1162.

The dynamical trajectories of 6 selected nodes in Sampson’s monastery network
(as shown in Figure 1) are illustrated in the first 6 subgraphs of Figure 2, where
ten different initial conditions are considered. The trajectories of the summed self-
weights in two sinks under the same set of initial conditions are shown in the last two
subgraphs of Figure 2.

Node1 Node2 02 Node4 Node6
) ' ff’f 0.08M,
= 01 = 01y = 0.15| gt - X
IS g | 5 006,
$ p= ‘\)-'-—-—_ g = =‘>—--—-—‘ ) $ 0.1 f’":” g 0.04 P
E_’ 0.05] 77 “g; 005} -7 ;5 i :}JG ",};;...____
¥ 0.05{/ 0.02477
g 4
, , i
0 0 0 0
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Issue Issue Issue Issue
Node11 Node18 Sink1 Sink2
0.1 \ 021 0.85 /,/
: Al \ \ ’
- N = > \ > ¢ /]
Boosly ERAN g015, 2 oo
20.06 3\ g N R - SR
E E \ = - =
20.048\ Y Zooshiy g 01r’y g orfff
0.02 Wy \\\\\\‘ n :1' on H
. ) -.\\\\\\ . l‘\\}\ﬁ‘ 0.05%" 0.65
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 38 4
Issue Issue Issue Issue

Fic. 2. DeGroot-Friedkin dynamics for Sampson’s monastery network: ten different initial
states converge to a unique self-weight configuration x* with the properties that 1) for two nodes
{1,2} in sink 1 with n1 = 2, the equilibrium self-weights are strictly positive and equal; 2) for the
nodes in sink 2 with na = 13, all equilibrium self-weights are strictly positive and x7 > m;‘ if and

only c? > c?, in particular, node 4 has the maz eigenvector centrality score in the sink, node 11 has

the min score, and node 6 has a score in between; 3) the nodes {16,17,18}, which do not belong to
any sink, have zero equilibrium self-weights; 4) the convergence of the self-weight sum at each sink
occurs in two issues.

It has been verified in the simulation that, 1) the DeGroot-Friedkin dynamics
converge to a unique equilibrium point z*given any initial condition; 2) all social power
is shared by the sinks and each sink’s social power remains constant after a few issue
discussions; 3) for the nodes in sink k, the ranking of the corresponding entries in z* is
consistent with the centrality score ranking of those nodes in ¢*. These observations
are consistent with Theorem 10. Moreover, the social power accumulation can also be
examined: for 4,7 € {3,...,15} in sink 2, ¢/ > Cehrshig? implies z; >cp,c < Cthrshld >
implies z7 < ¢f, and z} /x} > ¢[/c} for ¢ > ¢}. This is consistent with Proposition 14.

4. Conclusion. This article studies the evolution of the influence network in
a social group, as the group members discuss and form opinions over a sequence of

issues. The paper focuses on reducible networks of relative interactions. The DeGroot-
Friedkin model is employed to provide a mechanistic explanation for the evolution of

13
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self-appraisal and social power of individuals. This model characterizes the individual
self-weights and social power as a function of the individual eigenvector centrality of
the relative interaction network. We provide a rigorous mathematical analysis of the
DeGroot-Friedkin dynamics on reducible digraphs: we derive the explicit formulations
of influence network evolution, characterize the equilibrium points, and establish the
convergence properties for two classes of reducible social networks (with or without
globally reachable nodes, respectively). The analytical and numerical results in this
article complete and confirm the predictions of the DeGroot-Friedkin model on general
social influence networks: (i) the individuals’ social power ranking is asymptotically
equal to their eigenvector centrality ranking, and (ii) social power tends to accumulate
in the individuals with higher centrality scores.

The scope of the DeGroot-Friedkin model. The DeGroot-Friedkin model
assume that each individual perceives her relative control over discussion outcomes.
Subject to this implicit fundamental assumption, the model is most relevant for small
to moderate size social groups and is also applicable with some assumptions to large
social networks. First, small and moderate-size social groups, e.g., deliberative as-
semblies, boards of directors, judiciary bodies, and policy making groups, play an
important role in modern society. Individuals in such groups are typically able to
directly perceive who shaped the discussion and whose opinion had an impact in the
final decisions. Therefore, the DeGroot-Friedkin model is well-justified in this setting.
Second, as discussed in the our original work on DeGroot-Friedkin model [28], even in
large networks, the relative control over discussion outcomes can be perceived by indi-
viduals, provided that the individuals are dealing with a common sequence of issues.
Consequently, the DeGroot-Friedkin model is applicable in these large social groups.
In both cases, the topologies of the influence networks occurred in social groups could
be strongly connected, or reducible with or without globally reachable nodes.

Future work. The development of the DeGroot-Friedkin model has motivated
various ongoing research directions on social influence networks, that include a re-
fined description of the DeGroot-Friedkin model scope and justification (which was
incorporated in [28] and also discussed in [13,43,44]), the extension of the model and
analysis to the setting of influence networks with stubborn individuals (e.g., a prelim-
inary work was published in [35]), and the extension of the model and analysis to a
more general setting of interpersonal influence. Moreover, the model and its associ-
ated analytical techniques may be applicable to other classes of multi-agent network
problems.
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Appendix A. Proof of Lemma 5.

Proof. The proof of Lemma 5 is parallel to the proof of Lemma 2. In what follows
we mainly focus upon the differences of Lemma 5 compared to the existing results
in section 2, and show how to derive the new results from those established theories.
We then refer to [28] for supplemental reading. The same strategies are also applied
in all the following proofs.

If G(C) contains g, g > 1, globally reachable nodes {1,..., g}, then the dominant
normalized left eigenvector ¢! of C exists uniquely satisfying 1) ¢; > 0 for all i €
{1,...,9},2) ¢j=0forall j € {g+1,...,n}, and 3) > 7 ¢; = 1. Consequently, F
satisfies equation (6) if  # e; for i € {g+ 1,...,n} with the same arguments as in
the proof of Lemma 2 (see [28, Appendix B] for details).

If £ = e; for some i € {g+1,...,n} (without loss of generality, let ¢ = n), then
the corresponding W (x) has the form:

(11) W(e,) = diag(0, ...,0,1) + diag(1, ..., 1,0)C
C Ci1 0 0

= [ U"é'jﬂ"_l}} = |Ca Cy Cof,
n 0 0 1

where Cyy,.. -1} is the (n — 1) x n matrix obtained by removing the last row from
C, Cy; is the g X g matrix obtained by removing the last (n — g) rows and the last
(n — g) columns from C, Ca1, Cae and Chs are respectively the (n — g — 1) x g,
(n—g—1)x(n—g—1), (n—g—1) x 1 matrices obtained by removing the first g rows
and the last row from C. 0 and 1 in the matrix correspond to block matrices with
all entries equal to 0 or 1, respectively. The condensation digraph of G(W(e,)) has
at least three nodes, two of which are aperiodic sinks (i.e., the node corresponding to
the first m individuals and the node corresponding to individual n).
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By linear algebra calculations (see similarly in [32, Chapter 8.3]),

L(c1,...,¢q) 0 0
(12) ll_i>m W(en)l = (I — 022)7102119(617 - ,Cg) 0 (I — 022)71023
* 0 0 1

Since F(z) := (lim_e0 W(x)l)Tln/n as from equation (5),

Fle,) = (dln, oy, 0, . .,O,dm)T,

where d;, > 0 for all j € {1,...
not continuous on these vertices {ey41,.

,g} U {n} and can be calculated from (12). F(z) is
...y} since Fj(xz) > 1/n if = e; for all

6985 je{g+1,...,n}, and Fj(x) = 0 for any other z. But F' is continuous everywhere in
699 the simplex except {€441,...,€,}, that can be proved in the same way as we did in
700 Lemma 2 (see [28, Appendix B] for details). Moreover, the vertices {€441,...,€,} are
701 mnot in the image of F, that is to say, for all initial conditions x(0), Given F' defined
702 in (7), F(x(s)) ¢ {€g+1,...,€,} for all s > 1. d
703 Appendix B. Proof of Theorem 6.
704 Proof. Fact (i) is from the claim for n = 2 discussed in subsection 2.2, and note
705 that x(1) may not be the equilibrium point if (0) = €; for ¢ € {g+ 1,...,n} but
706 x(s) = x(s+1) for all s > 2. Facts (ii) and (iii) can be directly derived from Lemma 3
707 and Theorem 4, respectively, because F' defined in (7) is exactly the same as F' defined
708 in (6) given 2(0) € Ap\{e1,...,e,} and ¢; =0for j € {g+1,...,n}. (See the detailed
709 proofs in [28, Appendices E and F].) d
710 Appendix C. Proof of Proposition 7.
711 Proof. The social power accumulation fact (i) and (ii) can be deduced from Propo-
712 sition 4.2 in [28] (see the detailed proof in [28, Appendix G]). The reason is as follows.
713 As F defined in (7) is exactly the same as F' defined in (6) given z(0) € A, \{e1,...,e4}
714 and ¢; = 0 for j € {g+1,...,n}, one can check that the analysis remains the same no
715 matter the values of {cg41,...,¢n} are zero or non-zero. Regarding fact (iii), because
716 x* = F(z*) for F defined in (7), we have z}/z% = (¢;/(1 — 7)) /(c;/(1 — x7)) for
717 ¢; > ¢; > 0. Moreover, ¢; > ¢; implies 7 > 27 from fact (iii) of Theorem 6. Hence,
718 1—a7 <1—zj implies 2} /2] > ¢;/c; or equivalently, x} /¢; > z7 /c;.
719 Appendix D. Proof of Lemma 9.
720 Proof. Formulation of F: Two cases are considered. First, if z = e; and 4 does
721 not belong to any sink of D(G(C)), i.e., i € {n —m + 1,...,n} (without loss of
722 generality, let ¢ = n), then, given C' in (8), the influence matrix W (e;) is as follows:
. N . _1Can-1y
723 W(e;) = diag(0,0,...,1) + diag(1,1,...,0)C = o
[ C11 0 0 0 0

0 Caa 0 0 0
724 (13) =] : : : : :

0 0 Ckrk 0 0

Cumir Cumzr Cukr Cuvmrt Cuvmre
0 0 0 0 1]
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725 where the matrix [Cpsir, ..., Caraiee] is derived from [Cyyg, ..., Carae] by deleting
726 the last row. It is clear that W(e,) in equation (13) has the similar form as in
T
727 equation (11). By the similar analysis, we have F(e;) = (dli, . ,dm-> with dj; > 0
728 for j belonging to a sink of D(G(C')) or j = i, and dj; = 0 otherwise.
729 Second, for a more general z € A, \ {€,—m+1,-.-,€n}, we have
Wll(l‘) 0 ce 0 0
730 W) =X+, - X)C = : : ; ; ,
0 0 . WKK(.’L‘) 0
731 where, by denoting diag(x;;) = X;; for i € {1,..., K, M},
Z11 X11 0 R 0 0
I22 0 X22 . 0 0
732 X = diag(z) = diag : =] : : : ,
TKK 0 0 ‘e XKK 0
TMM 0 0 cen 0 XMM
733 Wkk(x) = Xk + (Ink —ka)Ckk, WMk(x) = (Im _XMM)CMk for all k € {1, ceey K},
734 and Wy (z) = Xvmr + (L — Xarar)Carag- Consequently,
1, wi(z) 0 . 0 0
0 1,,wl(z) e 0 0
735 lim W(z)! = : : . : .
frees : : : :
0 0 . 1wk (z) 0
Ni(2)1n,wii(z) Na(@)lp,wiy(z) .. Ni(2)locwig(z) 0
736 where
737 Ni(x) := (I = W () " Wags(x) forall k € {1,..., K},
738 and in particular
739 Nk(x):N]: = (I—CMM)ichk, if Xprar = 0y,

10 The dominant left eigenvectors {wf, (z) € R™ k € {1,...,K}} exist uniquely and
741  positively since the associated matrices {Wy(z),k € {1,..., K}} are row-stochastic,
742 aperiodic, irreducible. Moreover,

e €A, fay=ce;foralje{l,... ,ng},
c Ckk T
LL3) ng
743 (14) wkk(x) = wkk(xkk) = (1_3;kk1 v T-wg,, )

744

, otherwise,

j:1 lfévkkj

and 17 wir(z) = 1 for all k € {1,...,K}. According to the reflected appraisal
18
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748
749

~
ot
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ot
=

T
mechanism (5), F(z) = w(x) := (liml_,oo W(x)l) 1,,/n, and hence, we have

[ F11($) wll(x)lz;1(1n1 + Nl(l’) 1n1)/n
Fao(x) w22(35)122(1n2 + Na(2)"1,,) /0
) Fw=| : |- :
Fr () wicr (2) 1], (Lo + N (2) 15, ) /0
0., O

[ win(2)(nn + 3000, 2004 Ny () /n
was () (na + 370, 2552, Noyj () /n

wick (@) (nxe + X7 S Nic,, (2))/n
O,

Here (nj, + 32, 32 Ni,;(z))/n < 1 for all k € {1,..., K} since the row-stochasticity
of W(x) implies

K
> Wik (@) I, + Warns (@) I = In,
k=1

and since p(Wara(x)) < 1, we have

K

> T = Warnt ()" Wtk (2) Iy, = > Np(@) Iy, = I,
k=1 k=1

=

which implies that S0 S > 5% Ni,; (z) = m or equivalently,

YK (i + 0,5, Nig, () /n = 1, and

i

K
ZZNk7(x) <m=mn-— Zni, forall k € {1,...,K}.
j i=1
Denoting (x(z) := (nk + 32, >~ ; Niy; (%)) /n, from (15), the social power w(z) satisfies

w(@) = (wi(),..., wa (@) = (C@)wn (@), Cx(@wrr (@), 00)" .

Note that w(x) € A, and wgr(x) >0for k€ {1,..., K} ifx ¢ {e1,...,en—m}-

Overall, for z € A, \ {€n_m+1,...,8n}, F(z) satisfies that each entry Fj(z) >0
for all j € {1,...,n}:

- if j belongs to a sink k, then Fj(z) = wj(z) = (x(z)wik, (x) for i = j —
Z;:ll ne as described in (10). Since wyg, (z) > 0 and (x(z) > 0, Fj(x) > 0;
- if j does not belong to a sink, then F;(x) = 0.

Continuity of F': Next, we show the function F' is continuous everywhere except
{en—m+1,--.,6n}. First, we claim wyr(x),k € {1,..., K}, is continuous w.r.t z for
x € Ap\{€n—m+1s---,€n}. By the definition (14), wyg(zx) is continuous w.r.t. all
Zgk such that z € A, \ {€,—m+1,...,8n} (see a similar analysis as in the proof of
Lemma 2 [28, Appendix B]). Additionally, since wyg(zxr) is continuous w.r.t. Ty,
given an e > 0, there exists a d(¢) such that if ||zgg — 2, || < 0(¢) then ||wrk(zrr) —
wik(x),,)|| < €. Moreover, if ||z —2'|| < d(e), then ||k, — z},|| < d(e). That is to say,
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for such d(¢) satisfying ||z—a'|| < §(€), ||wrr (x) —wrr (2")|] = [|wrk (Trr) —wre (2),)]] <
€. Hence, wyy () is continuous w.r.t. all x € Ay \ {€,—m41,...,€n}. Second, Ni(x)

is continuous w.r.t. x for all z € A, \ {€4—m+1,...,€n} by its definition.

Overall, by the definition (15), F' is continuous for all x € A, \ {€,—m+1,---,€n}
The continuity of F' on the vertices {ei,...,e,_,,} inherits from the continuity of
{wgr} on these vertices. F' is not continuous on the vertices {€,_m+1,--.,€,} since
Fi(z) = d;; is strictly greater than 1/n if z € {€,_m+1,...,6n}, and F;(z) = 0 for
any other z € A,,. ]

Appendix E. Proof of Theorem 10.

Proof. Properties of F': Regarding fact (i), note that for any initial state z(0) €
A, we always have xp7p(2) = 0y, via the mapping F'. Then for all s > 2 and all
ke {]., .. .,K}7 Nk(x(s)) = N,: = (I — CMM)ichk, and

l xkk(s—l—l)—l wkk nk+ZZNkU /n— nk—l—ZZNk” n,

which is a constant. That is to say, the sum of the individual social powers in each
sink is constant for all s > 2. We denote

G = (ng + ZZN,;"“)/n.

Ezistence of equilibrium points: Regarding fact (ii), from the definition of F', we
have z(s) € A, \{e1,...,e,} forall s > 1 and for all initial states (0). It is true since
1) if 2(0) € {€n—m—+1s---,€n}, then 1/n < 2;(1) < m/n and z(1) € A, \{e1,...,en};
2) if 2(0) € Ay \ {€n—m+1,---,€n}, then z(1) € A, \ {e1,...,e,} by (15).

We may define aset A ={x € A, | m/n>xz >0,i€ {n—m+1,...,n}t}
which is compact. It is clear that F(4) C A and F(z(0)) € A for any z(0) € A,,. By
Brouwer fixed-point theorem, there exists at least one equilibrium point z* € A and
no equilibrium point in A,, \ A.

For an equilibrium point z* of F, we have the following properties between cg
and zj, for all k € {1,..., K}: considering 4,5 € {1,...,ng}, ng > 2,

- if g, > Cp,, then apy > ag,

- if cpr, = cky, then i, = a7, .
The proof of the two statements above f70r ng > 3 is the same as the proof of Theorem 4
fact (i) [28, Appendix F|. If ny = 2, then cpr, = crr; = 1/2, and we can prove
Ty, = Ty, by direct calculations from the equations (14) and (15).

Umqueness of the equilibrium point: In the following we show the equilibrium

point z* is unique. Given i € {1,...,n}, it is clear that
(ii.1) if ¢ does not belong to a sink, then zf = 0,
(ii.2) if i belongs to sink k and nj = 2, then cpr, = cpr, = 1/2 and z} = (}/2,
(ii.3) if 4 belongs to sink k and nj = 3, then assume that there exist two different
vectors Tk, yrr > 0 such that 1§kwkk = 1Zkykk = (5, Wik (Tkk) = Trk, and
Wk (Yrk) = Yrk- Since

Tk, (1 — wpr,) = a(Trr)Crry,  Yrk; (1 — Yrr;) = a(Yrr)Crr,
with two positive constants a(xyx) and a(yx) for all j € {1,...,nx}, we can
write Tk, (1 — ijkj) = 'Yykkj(l — ykkj) for all ] S {1, - ,nk}. Without loss
of generality, 1 > v > 0.
20
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If v = 1, then wxx, = yrr, because wxx;, < (i < 1—yr,; forall j € {1,... 0y},
which is a contradiction of zpi # ykk-

If v < 1, then, by assuming that cgxr, = max{cgx,,- ., Chk, }, we have

Tk, = max{Trk,,. .. 795kknk} and yrr, = max{Yrk,,- - - s Yk, }, which imply
Trk, < 0.5¢; and ygp, < 0.5¢; for all j € {2,...,nx}. Forall j € {2,...,n4},
the facts xpr, + yrr, < ¢ < 1 and zpp; (1 — 2pr;) < Yrk; (1 — Yrr,) together
imply zxx; < yrk;, and hence, xxr, > Yk, Moreover, for all j € {2,...,nx},

Tk, kk; 1—wpr, 1= yrk,
(16) Thky o Yhky L < Ykk;
Tk Yk, Trky Ykl

Additionally, we have Y., Tk, (1 — Zrk,) = ¥ Do Yik, (1 — Yk, ), which,
together with the inequality (16), implies that

n n
(7)Y kb ok, >V Y UkkiYhky <= (G = k) Thky > VG = Yk Uiy
=2 1=2

= (1 — Tr,)Zrry > Y1 — Yky )Yk, -

The statement (17) is from the fact that, since zpg, > ik, and v < 1,
(1=¢)xre, > v(1—C)ykk, , which, however, is a contradiction of the previous
hypothesis gk, (1 —2rr;) = YUk, (1 —yrx,) for all j € {1,...,nx}. Therefore,
if x = F(x), then z is uniquely determined.

Convergence to the equilibrium point: Regarding fact (iii), based upon the analysis
above, if i does not belong to a sink, then z;(s) = 7 = 0 for all s > 2. In the rest,
we prove the convergence of z; to the equilibrium point z} for i belonging to a sink k
with ng 2 2.

For each k € {1,..., K} with nj > 2, denote Zxy, (s) = @k, (s)/ayy, for all j €
{1, e}, Zrkpa (8) = max{Zer, (s),5 € {1,...,n}}, and Zpp,,, (5) = min{Zes, (s),
j e {1,...,7’Lk}}.

Define a Lyapunov function candidate Vi (2xk(8)) = Zgk,., (8)/Tkk,,, (s) for each
ke {1,...,K}. Tt is clear that 1) any sublevel set of V}, is compact and invariant,
2) Vj, is strictly decreasing anywhere in Ay := {z € R™ | z > 0, 1} = = ¢;}
except x},, which can be proved in the similar way as in Theorem 4 [28, Appendix
F], (3) V4 and F are continuous. Therefore, every trajectory starting in A converges
asymptotically to the equilibrium point zj, by the LaSalle Invariance Principle as
stated in [9, Theorem 1.19]. Moreover, since zxi(s) € Ay for all s > 2 and for all
initial states x, limg_, o0 Trk(s) = iy

Regarding fact (iv), the results are derived based upon two facts that 1) W (x(s)),
consistent with C, has K left eigenvectors associated eigenvalue 1 for s > 1, and 2)
the dominant left eigenvectors of W (z(s)) can be described by (14) and x(s+ 1) can
be calculated by (15) for s > 1. O

Appendix F. Proof of Proposition 14.
Proof. Denote a* = 1/(2% Chk

i 1=+ ). Define Cthrshid” = 1 — o, or equivalently
k:kj

ng

1 72 Ckk,

k k)
1 Tk;

1 — Cthrshia —
J=1

. : . : * * k * *
which implies that min{zy, ,... ,xkkw} < Cohrshid” < max{zy - .- $Thk,, }. More-
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over, since F(z*) = «* with F' defined in (9), for all j € {1,...,n}, from (10)

(18) kaj(l - kaj) ot — Cehrshld® (1 = Cinrshia®)
Crckk; Cthrshld”

For Cthrshldk < 0.5: First, if C]:Ckkj > Cthrshldka then l‘zkj(l — a:’]gk]) > chkkj(l —
C;ckkj). Since (jcgr; < 0.5, it is clear that kaj > (pegk;- Second, if (fexr, <
Cthrshid ", then kaj(l — ac,";kj) < (perr; (1 — Cckr,; ), which implies kaj < (pckr, or
33ij >1-— C;ckkj > 0.5. Furthermore, since cinrshia® < 0.5, we can show Cinpsnia® <
max{(} ik, , - - - ,(chknk} (otherwise, if 0.5 > cynrsnia® > max{(}ci,, - - - s Ch Chikon, I3
then by simple calculation we can show Cehrshid® > max{xzkl, ... ,xzknk }, which is a
contradiction). Thus, there exists another individual ¢ such that cg, > Chk; which by
fact (ii.3) of Theorem 10 implies xy, > mij’ Therefore, ka,- < (e, for (epr; <
Cthrshia™, otherwise, Tiy, > a:,tkj > 0.5 contradicts the fact that z,*;kj +25, < 1. Third,
if (fer, = Cehrshla”, then kaj(l — x’,gkj) = (perr; (1 — (icrr,) from (18). Similarly,
we can show zy, < 0.5 and hence x;, = (yckr,; -

For ciprshia® > 0.5: Denote

* _ * * _
xpy o =max{xg, ... s Tk, Y, and  cgg,,., = max{cgk,,. -, Chkp, }.

By fact (ii.3) of Theorem 10 and the fact that 0.5 < cinrsnia® < xy,. , there exists
only one individual denoted by jmax associated with cgg,, .. and her equilibrium self-
weight is 2}, . Since Cinrshia” < Ty, 5 equation (18) implies (icpr,, < Ty,
For any other individual ¢ # jmax, we have (fcpr, < 0.5 < Cthrshld©, which implies
T (L= ) < Cenrshia™ (1 — Conrsnia®) from (18). As cinpstia® + a7, < @ +ah
we obtain xy, < 0.5 < Cenrshia” and hence Ty, < Cickk, from (18).

Regarding fact (iii), since F(z*) = z* for F defined in (9), for any individuals
i,5 € {1,...,n%}, we have kaj/kaj = (ckki/(l - xzkj))/(ckkj/(l - kaj))- By
using the similar argument in the proof of Proposition 7 fact (iii), cxx, > cxx, implies
Thg, > Ty, and then implies @}, /cpe, > @jy /Chr, - 0

Jmax
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