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THE HITTING TIME OF MULTIPLE RANDOM WALKS∗

RUSHABH PATEL† , ANDREA CARRON‡, AND FRANCESCO BULLO§

Abstract. This work provides generalized notions and analysis methods for the hitting time of
random walks on graphs. The hitting time, also known as the Kemeny constant or the mean first
passage time, of a random walk is widely studied; however, only limited work is available for the
multiple random walker scenario. In this work we provide a novel method for calculating the hitting
time for a single random walker as well as the first analytic expression for calculating the hitting
time for multiple random walkers, which we denote as the group hitting time. We also provide a
closed form solution for calculating the hitting time between specified nodes for both the single and
multiple random walker cases. Our results allow for the multiple random walks to be different and,
moreover, for the random walks to operate on different subgraphs. Finally, using sequential quadratic
programming, we show that the combination of transition matrices that generate the minimal group
hitting time for various graph topologies is often different.
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1. Introduction. Random walks appear in many active research areas. They
are used to describe electrical networks [10, 39], how information propagates in social
networks [15], vehicle surveillance strategies [37], and network searches [36], among
others. Our initial motivation comes from one application in particular: surveillance
strategies. Vehicle surveillance and routing strategies are used in various fields in both
single-agent and multiagent cases. In the context of robotics, single- and multiagent
surveillance/routing strategies appear in environmental monitoring [12, 31], minimiz-
ing emergency vehicle response times [4], and traffic routing and border patrol [30, 38].

In this paper, we focus on multiagent stochastic surveillance strategies. More
specifically, we look at the hitting time of a random walk for multiple random walkers;
each random walk is governed by its own Markov chain. This problem is not only of
interest in the context of robotic surveillance, but is also of general interest in various
other fields. Some direct applications include, but are not limited to, determining how
quickly epidemics spread [41], how information propagates in a social network [3], and
how quickly information packets get transferred in a wireless node network [34].

The hitting time of a random walk governed by a Markov chain is the expected
time taken by a random walker to travel between any two nodes in a network. For
a single finite discrete-time Markov chain, this quantity is also well known as the
Kemeny constant of the Markov chain, the mean first passage time of a Markov
chain, the first hitting time of a Markov chain or, for the case of reversible Markov
chains, the eigentime of a Markov chain. We refer to this quantity as the first hitting
time or simply hitting time of a Markov chain, both due to the descriptive nature of
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934 RUSHABH PATEL, ANDREA CARRON, AND FRANCESCO BULLO

this coinage as well as its prevalence in the literature. The hitting time of a finite
irreducible Markov chain first appeared in [18], but it was rediscovered for finite
reversible Markov chains in [5]. Since its original discovery, the hitting time has been
further developed by several groups [17, 19, 32]. The authors of [17, 23] give bounds
on the hitting time for various graph topologies, and in [7] an alternate formulation
is explored. Recently, the authors of [32] extended the notion of the hitting time to
networks with travel distances and provided a scheme for its optimization, and the
authors of [1] provided the first formulation of the hitting time for continuous time
reversible Markov chains.

The hitting time is closely related to several other well-studied Markov chain
properties. We focus on three quantities that are of particular interest; however,
several others exist. The first and most closely related quantity is the pairwise hitting
time between two nodes, which is the expected time to travel between a specified
pair of nodes. Clearly, the hitting time is simply the expectation of all possible
pairwise hitting times of a Markov chain, where the underlying probability measure is
determined by the Markov chain’s stationary distribution. Using the relation between
reversible Markov chains and electrical networks [10], the authors of [39] gave analytic
expressions for hitting times in terms of effective resistance. Using the electrical
framework, closed form expressions for pairwise hitting times have also been given
for special cases of certain Markov chains [29, 28]. Second, the cover time of a graph
is the expected time it takes to reach every node in the graph at least once. This
quantity is sometimes interpreted as a function of a single node or, more generally, in
the context of an arbitrary set of nodes. There are several works relating the cover
time to the hitting time of a transition matrix [27]; many of these works bound the
cover time in terms of pairwise hitting time (most often the worst-case pairwise hitting
time). Finally, the mixing rate of an irreducible Markov chain is the rate at which
an arbitrary distribution converges to the chain’s stationary distribution. A good
relationship between Markov chain mixing and hitting times can be found in [24].

In this work, we look at the hitting time of multiple random walkers. More
specifically, we analyze the expected first time to reach any single node in a network
given that there are an arbitrary number of random walkers in that network. Recently,
the authors of [11] looked at bounds on hitting times and cover times for multiple
random walkers. In [2] alternate bounds on cover time were formulated for reversible
Markov chains, and tight bounds were explored in [13, 14]. The authors of [9, 8]
found solutions for cover times in the limit as the number of nodes in the graph
becomes infinite. However, as far as we can discern, a key assumption made by all
work presented thus far in the literature is that results are based on k copies of a
simple random walk over a single graph. We make no such assumptions in our work;
every random walker can move according to a different and arbitrary random walk
and need not share the same underlying graph topology. Also, as opposed to prior
work, our results are not bounds but exact analytic expressions.

To achieve our results, we utilize the notion of Kronecker graphs. Preliminary
results for undirected Kronecker graphs were introduced in [40], showing conditions
under which the Kronecker product of two graphs generates a connected graph. In
[21, 22] the authors consider and analyze special Kronecker graphs that are created
by products of the same n× n edge matrix in order to model large networks and also
introduce the concept of “stochastic” Kronecker graphs to generate large networks.
This method of generating networks has been further refined for the special case of
n = 2 in [25, 35]. In our work we also utilize the notion of Kronecker products between
stochastic matrices, but this should not be confused with the notion of “stochastic”
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THE HITTING TIME OF MULTIPLE RANDOM WALKS 935

Kronecker graphs previously mentioned. In this work we are not attempting to gener-
ate network models, but instead are utilizing novel aspects of Kronecker products and
stochastic matrices that have, to the best of our knowledge, not been deeply explored;
the ideas presented here would most closely be linked to that of [40] of the previously
mentioned works.

Given the above, there are several key contributions of this paper. First, we
provide a novel method for the computation of the mean first passage time (hitting
time) of a Markov chain. In the process, we also provide an alternate closed form
method for calculating pairwise hitting times between any two nodes for an arbitrary
irreducible Markov chain. Second, we define and provide the first closed form solution
for computing the hitting time given multiple (different) Markov chains on the same
graph. We denote this extension the “group” hitting time. Third, our results also
allow for the extension and calculation of the pairwise hitting time to the hitting
time between any set of nodes for multiple random walkers; for any combination of
specified starting nodes, we can calculate the first hitting time to a specified desired
node. Fourth, we further extend the notion of group hitting time and hitting times
between sets of nodes from multiple random walks on the same graph to random
walks on multiple subgraphs. Finally, we provide a detailed numerical analysis to
build intuition on the transition matrices that generate a minimal group hitting time.
Before stating the paper organization, it is worthwhile to note that we achieve our
analytic results by introducing a method of proof that utilizes the Kronecker product;
thus our work not only provides results in Markov chain behavior, but also gives
general insight into Kronecker graphs and stochastic matrices.

The paper is organized as follows. In section 1.1 we introduce notation that
will be used throughout the paper and review useful concepts of Kronecker products
and Markov chains. In section 2 we provide background on the hitting time of a
Markov chain and provide our alternate formulation. In section 3 we introduce the
group hitting time and hitting time between sets of nodes for a Markov chain and
provide a detailed characterization. In section 4 we provide insight into optimal group
hitting times through numerical optimization, and finally in section 5 we present our
conclusions and future research directions.

1.1. Notation. In this section we define various useful concepts and notation.
First, we provide an overview of some facts and results on Markov chains. Then we
introduce the notation that will be used throughout the paper to deal with tensors,
and we conclude with a brief summary of the Kronecker product (also known as a
tensor product) and some of its properties.

1.1.1. Markov chains. A Markov chain is a sequence of random variables tak-
ing value in the finite set {1, . . . , n} with the Markov property, namely, that the future
state depends only on the present state. Let Xk ∈ {1, . . . , n} denote the location of
a random walker at time k ∈ {0, 1, 2, . . .}; then a Markov chain is time-homogeneous
if P[Xn+1 = j|Xn = i] = P[Xn = j|Xn−1 = i] = pi,j , where P ∈ R

n×n is the
transition matrix of the Markov chain. By definition, each transition matrix P is
row-stochastic, i.e.,

∑n
i=j pi,j = 1 for all i ∈ {1, . . . , n}. The vector π ∈ R

n×1 is a

stationary distribution of P if
∑n

i=1 πi = 1, 0 ≤ πi ≤ 1 for all i ∈ {1, . . . , n}, and
πTP = πT .

We will use the following well-known results on Markov chains. A Markov chain
is irreducible if, for each i, j ∈ {1, . . . , n}, there exists t ∈ N such that (P t)i,j > 0. If
the Markov chain is irreducible, then there is a unique stationary distribution π, and
the corresponding eigenvalues of the transition matrix, λi for i ∈ {1, . . . , n}, are such
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936 RUSHABH PATEL, ANDREA CARRON, AND FRANCESCO BULLO

that λ1 = 1, |λi| ≤ 1, and λi �= 1 for i ∈ {2, . . . , n}. We let ρ[P ] denote the spectral
radius of the matrix P , i.e., the largest magnitude of the eigenvalues of P .

Unless otherwise mentioned, in this paper we consider finite irreducible time-
homogeneous Markov chains. For more details on Markov chains or irreducible ma-
trices, see [18] or [26, Chapter 8], respectively.

1.1.2. Tensor notation. We use the notation A = [ai1...ik,j] to denote the
matrix generated by elements ai1...ik,j, where the j index denotes the jth column of
A and the rows of A are determined by cycling through index ik, then ik−1, and so
forth. For example, consider i1, i2, j ∈ {1, . . . , n}; then

A = [ai1i2,j] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11,1 a11,2 . . . a11,n
a12,1 a12,2 . . . a12,n
...

... . . .
...

a1n,1 a1n,2 . . .
...

a21,1 a21,2 . . .
...

...
... . . .

...
...

... . . . . . .
ann,1 . . . . . . ann,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the case where A = [ai,j ] this corresponds to the classic interpretation with
element ai,j in the ith row and jth column of A. To avoid ambiguity, especially in
cases when A = [ai1...ik,j ], at times we will refer to the (i, j) element of A by A(i, j).
Unless otherwise mentioned, vectors will be denoted by boldfaced letters (i.e., a). We
use the notation diag[a] to indicate the diagonal matrix generated by vector a and
vec(A) to indicate the vectorization of a matrix A ∈ R

n×m, where

vec(A) = [A(1, 1), . . . , A(n, 1), A(1, 2), . . . , A(n, 2), . . . , A(m, 1), . . . , A(n,m)]T .

In other words, even if we define A asA = [ai1...ik,j], the vector vec(A) = vec([ai1...ik,j ])

is simply a stacking of the columns of A. We also define the special matrix [Ih1...hn,k
i1...in,j

]
as the matrix whose entries are all zero except for a single entry at (h1 . . . hn, k)
which has a value of 1, where h1, . . . , hn, k can only take values within the range
of values that i1, . . . , in, j take. With this matrix definition, it is easy to verify for
A = [ai1...in,j ] that ah1...hn,k = vec([Ih1...hn,k

i1...in,j
])T vec(A). This enables us to go back

and forth between the vectorized notation to the individual matrix elements. We
denote In ∈ R

n×n as the identity matrix of size n, �n as the vector of ones of size n,
and �n×n as the matrix zeros of size n× n. We define a generalized Kronecker delta
function δi1i2...in,j , by

δi1...in,j =

{
1 if there exists k ∈ {1, . . . , n} such that ik = j,

0 otherwise.

Then, with a slight abuse of notation, Ad = [δi1i2···n,jai1...ik,j ] represents the “diago-
nal” matrix generated by the elements of A. In reality, only when A = [ai,j ] is the
matrix truly diagonal. Finally, since the subscript operator is already in use, we use
the superscript operation in parenthesis to delineate between two variables with the
same name. For example, we write A(1) and A(2) to distinguish that the matrices are
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THE HITTING TIME OF MULTIPLE RANDOM WALKS 937

different. A superscript without parentheses denotes a matrix raised to that power
(i.e., A2 = AA and (A(2))2 = A(2)A(2)).

We are now ready to review some useful facts about Kronecker products. The
Kronecker product, represented by the symbol ⊗, of two matrices A ∈ R

n×m and
B ∈ R

q×r is an nq ×mr matrix given by

A⊗B =

⎡
⎢⎢⎣

a1,1B . . . a1,mB
...

. . .
...

an,1B
. . . an,mB

⎤
⎥⎥⎦ .

To build some intuition, notice for A ∈ R
n×n that In ⊗A is the block diagonal matrix

with n copies of A on the diagonal:

In ⊗A =

⎡
⎢⎢⎢⎢⎣

A �n×n . . . �n×n

�n×n
. . .

. . .
...

...
. . .

. . . 0n×n

�n×n . . . �n×n A

⎤
⎥⎥⎥⎥⎦ .(1.1)

This implies for A = In that In ⊗A = In ⊗ In = In2 . The Kronecker product is
bilinear and has many useful properties, two of which are summarized in the following
lemma; see [16] for more information.

Lemma 1.1. Given the matrices A,B,C, and D, the following relations hold for
the Kronecker product:

(i) (A⊗B)(C ⊗D) = (AC)⊗(BD),
(ii) (BT ⊗A) vec(C) = vec(ACB),

where it is assumed that the matrices are of appropriate dimension when matrix multi-
plication or addition occurs. In addition, for matrices A ∈ R

n×n and B ∈ R
m×m with

respective eigenvalues λA
i , i ∈ {1, . . . , n}, and λB

j , j ∈ {1, . . . ,m},
(iii) the eigenvalues of A⊗B are λA

i λ
B
j for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.

2. The hitting time of a Markov chain. We begin by first reviewing prop-
erties of the single random walker hitting time and then provide a new formulation
for determining this quantity. We show that this alternative formulation gives rise
to new results for the pairwise hitting time between two specified nodes, and, in the
subsequent section, we utilize it to extend the notion of the hitting time and pairwise
hitting time to the multiple random walker case.

2.1. The hitting time of a Markov chain. Consider a strongly connected
directed weighted graph G = (V, E , P ) with node set V := {1, . . . , n}, edge set E ⊂
V ×V , and irreducible row-stochastic matrix P = [pi,j ] with the property that pi,j ≥ 0
if (i, j) ∈ E and pi,j = 0 otherwise, and

∑n
j=1 pi,j = 1 for all i ∈ {1, . . . , n}. We

interpret the weight, pi,j , of edge (i, j) as the probability of moving along that edge
and, therefore, P as the transition matrix of a Markov chain.

LetXt ∈ {1, . . . , n} denote the location of a random walker at time t ∈ {0, 1, 2, . . .}.
For any two nodes i, j ∈ {1, . . . , n}, the first passage time from i to j, denoted by Ti,j ,
is the first time that the random walker starting at node i at time 0 reaches node j,
that is,

Ti,j = min{t ≥ 1 | Xt = j given that X0 = i}.
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938 RUSHABH PATEL, ANDREA CARRON, AND FRANCESCO BULLO

The mean first passage time from i to j is then given by mi,j = E[Ti,j ]. It is convenient
to define the mean first passage time matrix M as the matrix whose (i, j)th entries
are given by mi,j . The mean first passage time from start node i, denoted by hi, is
the expected first passage time from node i to any other node in the graph. For a
random walk described by transition matrix P with stationary distribution π, the
mean first passage time from node i is given by

hi =

n∑
j=1

mi,jπj .

Remarkably, the mean first passage time is independent of the start node, that is,
hi = hj for all i, j ∈ {1, . . . , n} [17]. For convenience, we let H(P ) = hi, for all
i ∈ {1, . . . , n}, denote the hitting time. Given the definition of the hitting time, one
quickly sees that it can also be determined using the matrix M as follows:

πTMπ = (π⊗π)T vec(M) =

n∑
i=1

πi

n∑
j=1

πjmi,j = H(P ),(2.1)

where the relation πTMπ = (π⊗π)T vec(M) follows from identity (ii) in Lemma 1.1.
We now provide an overview of the formulas for these quantities. The first passage
time from i to j satisfies the recursive formula

Ti,j =

{
1 with probability pi,j ,

Tk,j + 1 with probability pi,k, k �= j.

Taking the expectation, we get the following formula for mi,j :

mi,j = pi,j +

n∑
k=1,k �=j

pi,k(mk,j + 1) = 1 +

n∑
k=1,k �=j

pi,kmk,j .

The above formula can be expressed in various vectorized forms. The classical form
as seen in the literature utilizes the matrix representation of M and is given by

(I − P )M = �n�
T
n − PMd,(2.2)

where P is the transition matrix of the Markov chain andMd = diag[{1/π1, . . . , 1/πn}];
the value for Md is determined by premultiplying (2.2) by πT . For reasons which will
become clear later, we vectorize the matrix M to generate a different representation
of (2.2). Applying property (ii) of Lemma 1.1 to (2.2) gives

(In ⊗(In − P )) vec(M) = �n2 − (In ⊗P ) vec(Md).(2.3)

In a similar way as before, Md can be determined from (2.3) with appropriate vector
premultiplication.

The following classic result, derived from the matrix representation of M , shows
that the hitting time can be written as a function of the eigenvalues of P [17].

Theorem 2.1 (hitting time of an irreducible Markov chain). Consider a Markov
chain with an irreducible transition matrix P with eigenvalues λ1 = 1 and λi, i ∈
{2, . . . , n}. The hitting time of the Markov chain is given by

H(P ) = 1 +

n∑
i=2

1

1− λi
.
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The proof for Theorem 2.1 relies on the fact that Md is known or determined
a priori; however, as will be seen next, there exists an equivalent expression for H(P )
which requires no such knowledge. Before presenting the alternative formulation for
H(P ), we introduce the following useful result.

Lemma 2.2 (eigenvalue shifting for stochastic matrices). Let P ∈ R
n×n be an

irreducible row-stochastic matrix, and let E be any diagonal matrix with diagonal
elements Eii ∈ {0, 1}, with at least one diagonal element which is zero. Then the
eigenvalues λi of PE satisfy |λi| < 1 for all i ∈ {1, . . . , n}.

Proof. The stochastic matrix P is nonnegative by definition, and therefore so is
PE. Since P is irreducible, then 0 < PE < P and ρ[PE] < ρ[P ] = 1 [33, Chapter 1,
Exercise 1.16].

We are almost ready to present our alternative representation of the hitting time,
but first we must introduce the following equality: notice that vec(Md) = E vec(M),
where E is defined by E = diag[δ], where δ = vec([δi,j ]). Using this interpretation of
vec(Md), we are ready to state our result.

Theorem 2.3 (hitting times of an irreducible Markov chain). Consider a Markov
chain with an irreducible transition matrix P ∈ R

n×n. Then the following properties
hold:

(i) the hitting time of the Markov chain is given by

H(P ) = (π⊗π)T vec(M), where

vec(M) =
(
In2 − (In ⊗P )(In2 − E)

)−1
�n2 ; and

(ii) the pairwise hitting time between nodes h and k, denoted mh,k, of the Markov
chain is given by

mh,k = vec([Ih,k
i,j ])T vec(M).

Proof. First, notice that rearranging (2.3) and substituting E vec(M) for vec(Md)
gives that (

In2 − (In ⊗P )(In2 − E)
)
vec(M) = �n2 .(2.4)

From (2.1) we know that H(P ) = (π⊗π) vec(M), and therefore it only remains to
show that In2 − (In ⊗P )(In2 − E) is in fact invertible. First, recall from (1.1) that
In ⊗P results in the block diagonal matrix, whose diagonal blocks consist of copies
of P . Second, notice that (In2 −E) is simply the identity matrix with some diagonal
entries set to zero. It can be easily verified that (In ⊗P )(In2 −E) results in the block
diagonal matrix where each block contains the matrix P with one column set to zero.
For example, for P ∈ R

3×3 we have that

(In ⊗P )(In2 − E) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣ 0 p12 p13

0 p22 p23
0 p32 p33

⎤
⎦ 0 0 0

0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

⎡
⎣ p11 0 p13

p21 0 p23
p31 0 p33

⎤
⎦ 0 0 0

0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

⎡
⎣ p11 p12 0

p21 p22 0
p31 p32 0

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Notice that each diagonal block will have at least one column set to zero. Hence, using
Lemma 2.2, we have that the maximum eigenvalue of each block is strictly less than
one in magnitude, and thus ρ[(In ⊗P )(In2 −E)] < 1. Let λi denote the eigenvalues of
(In ⊗P )(In2 −E). Then, since the eigenvalues of In2 − (In ⊗P )(In2 −E) are simply
1−λi and |λi| < 1 for all i ∈ {1, . . . , n2}, this implies the matrix In2−(In ⊗P )(In2−E)
is invertible and vec(M) is the unique solution to (2.4).

Remark 2.4. Notice that when the transition matrix P is reducible, the hitting
time H(P ) as defined in Theorem 2.3 is ill-posed (i.e., due to In2 − (In ⊗P )(In2 −
E) being singular). However, for reducible Markov chains with a single or multiple
essential classes, i.e., for Markov chains whose condensation has a single or multiple
sinks, there is a natural notion of hitting time for each essential class.

It should be noted that determining the closed form solution for pairwise-hitting
time, and hence hitting time, can also be found using a technique which leverages the
absorbing states of the chain, the details of which can be found in [33, Chapter 4].
We leverage our alternate construct in order to generalize the hitting time to multiple
random walkers, as will be seen in the following sections.

3. Group hitting time of multiple Markov chains. In the following sections,
we will expand the single-agent hitting time to the N -agent group hitting time. To
build intuition, we initially assume that every agent can reach all nodes in the graph,
and then move to the case where each agent only needs to have access to a subset of
nodes in the graph.

3.1. Random walkers covering the full graph. Consider h ∈ {1, . . . , N}
strongly connected directed weighted graphs G(h) = (V,E(h), P (h)) with same node
sets V := {1, . . . , n} and different edge sets E(h) ⊂ V × V with corresponding ir-

reducible row-stochastic matrices P (h) = [p
(h)
i,j ] for h ∈ {1, . . . , N} satisfying the

property p
(h)
i,j ≥ 0 if (i, j) ∈ E(h) and p

(h)
i,j = 0 otherwise, and

∑n
j=1 p

(h)
i,j = 1 for all

i ∈ {1, . . . , n}. As before, each matrix P (h) is a transition matrix and describes a
Markov chain on the graph.

Let X
(1)
t , X

(2)
t , . . . , X

(N)
t ∈ {1, . . . , n} denote the location of N random walkers at

time t ∈ {0, 1, 2, . . .}. For any N +1 nodes i1, . . . , iN , j ∈ {1, . . . , n}, the first passage
time from any ih, h ∈ {1, . . . , N} to j, denoted by Ti1...iN ,j , is the first time that any
random walker reaches node j when starting from nodes ih, h ∈ {1, . . . , N}. More
formally,

Ti1...iN ,j = min
{
t ≥ 1

∣∣X(1)
t = j or . . . or X

(N)
t = j(3.1)

given that X
(h)
0 = ih for all h ∈ {1, . . . , N}}.

With this definition, we are ready to state our first result for the N -random-walker
system.

Lemma 3.1 (recursive formulation of first passage time for multiple random walk-
ers). Let mi1...iN ,j = E[Ti1...iN ,j ] denote the first passage time from any ih, h ∈
{1, . . . , N} to j. Also, let P (h) be the irreducible transition matrix associated with
G(h). Then

mi1...iN ,j = 1 +
∑

k1,...,kN �=j

mk1...kN ,jp
(1)
i1,k1

. . . p
(N)
iN ,kN

,
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THE HITTING TIME OF MULTIPLE RANDOM WALKS 941

or, in matrix notation,

M = �nN�
T
n + (P (1) ⊗ · · · ⊗P (N))M − (P (1) ⊗ · · ·⊗P (N))Md,(3.2)

where M = [mi1...iN ,j] and Md = [δi1...iN ,jmi1...iN ,j ].

Proof. For clarity, we first study the 2-agent case and then generalize. By defini-
tion, the 2-agent first passage time satisfies the recursive formula

Ti1i2,j =

{
1 with probability p

(1)
i1,j

+ p
(2)
i2,j

− p
(1)
i1,j

p
(2)
i2,j

,

Tk1k2,j + 1 with probability p
(1)
i1,k1

p
(2)
i2,k2

such that k1, k2 �= j.

First, notice that the probability of moving to node j directly from nodes i1 or i2 is

given by the non-mutually-exclusive probability p
(1)
i1,j

+ p
(2)
i2,j

− p
(1)
i1,j

p
(2)
i2,j

and that this

probability can also be described by the equivalent expression 1− (1−p
(1)
i1,j

)(1−p
(2)
i2,j

).
Substituting in the alternate expression for the probability and taking the expectation
of Ti1i2,j , we have that

E[Ti1i2,j] = 1− (1− p
(1)
i1,j

)(1− p
(2)
i2,j

) +
∑

k1,k2 �=j

(E[Tk1k2,j] + 1)p
(1)
i1,k1

p
(2)
i2,k2

= 1− (1− p
(1)
i1,j

)(1− p
(2)
i2,j

) +
∑

k1,k2 �=j

mk1k2,jp
(1)
i1,k1

p
(2)
i2,k2

+
∑

k1,k2 �=j

p
(1)
i1,k1

p
(2)
i2,k2

.

(3.3)

Utilizing the row-stochastic property of P (1) and P (2), expand (1 − p
(1)
i1,j

)(1 − p
(2)
i2,j

)
above to get

(1 − p
(1)
i1,j

)(1 − p
(2)
i2,j

) =

⎛
⎝∑

k1 �=j

p
(1)
i1,k1

⎞
⎠

⎛
⎝∑

k2 �=j

p
(2)
i2,k2

⎞
⎠

=
∑

k1,k2 �=j

p
(1)
i1,k1

p
(2)
i2,k2

;

substituting this back into (3.3) gives the result

mi1i2,j = 1 +
∑

k1,k2 �=j

mk1k2,jp
(1)
i1,k1

p
(2)
i2,k2

or, in matrix notation,

M = �n2�
T
n + (P (1) ⊗P (2))M − (P (1) ⊗P (2))Md,

where M = [mi1i2,j ] and Md = [δi1i2,jmi1i2,j ].
Similarly to the 2-agent case, the N -agent first passage time satisfies the recursive

formula

Ti1...iN ,j =

⎧⎪⎪⎨
⎪⎪⎩
1 with probability 1− (1− p

(1)
i1,j

)(1 − p
(2)
i2,j

) . . . (1− p
(N)
iN ,j),

Tk1...kN ,j + 1 with probability p
(1)
i1,k1

p
(2)
i2,k2

. . . p
(N)
iN ,kN

such that k1, . . . , kN �= j.

As in the 2-agent case, we take expectations and utilize the row-stochastic properties

of each P (h) (i.e., (1− p
(h)
ih,j

) =
∑

kh �=j p
(1)
ih,kh

) to reach the result.
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942 RUSHABH PATEL, ANDREA CARRON, AND FRANCESCO BULLO

Similarly to how the random variable Ti,j arises from the Markov chain described
in the transition matrix P , we can think of the random variable Ti1...iN ,j as being
generated from the Markov chain described by the stochastic matrix P (1) ⊗ · · · ⊗P (N).

Given the formulation for the N -agent first passage time matrix, we can define
a quantity similar to the mean first passage time given by (2.1). In order to do this,
we first need to define the frequency of being at any given node in the graph. This
quantity should take into account the probability of being at one node instead of
another in the limit of the random walks. Since the random walks are evolving in
parallel, the relative frequency of being at a specific node is simply the average of theN
random walkers visit frequency at that node. More explicitly, πave =

∑N
h=1(π

(h))/N .
Then, similarly to the single-agent case, the N -agent mean first passage time from
start nodes ih, h ∈ {1, . . . , N}, denoted hi1...iN , is given by

hi1...iN =

n∑
j=1

mi1...iN ,jπave,j .

Therefore, the average time to go from any set of N nodes to a single node in a graph
is given by

HN =

n∑
i1=1

π
(1)
i1

· · ·
n∑

iN=1

π
(N)
iN

n∑
j=1

mi1...iN ,jπave,j

= (π(1) ⊗ · · · ⊗π(N))TMπave

= (πave ⊗π(1) ⊗ · · · ⊗π(N))T vec(M),

where we denote HN as being the N -agent group hitting time. It is clear the group
hitting time can be written as the function P (1) × · · · × P (N) �→ HN (P (1), . . . , P (N)),
but to ease notation we simply write HN .

Given the definition of HN we are almost ready to state our next result. First,
we must introduce the following equality: notice that vec(Md) = E vec(M), where
E is defined by E = diag[δ], where δ = vec([δi1...iN ,j ]). Using this interpretation of
vec(Md) we are ready to state our result.

Theorem 3.2 (group hitting time for irreducible Markov chains). Consider N
multiple Markov chains, each with an irreducible transition matrix P (h) ∈ R

n×n.

Let πave = (
∑N

h=1π
(h))/N , and let E ∈ R

nN+1×nN+1

be the diagonal matrix which
satisfies the equality E vec(M) = vec(Md). Then the following properties hold:

(i) the group hitting time of the Markov chain is given by

HN = (πave ⊗π(1) ⊗ · · · ⊗π(N))T vec(M), where

vec(M) =
(
InN+1 − (In ⊗P (1) ⊗ · · ·⊗P (N))(InN+1 − E)

)−1
�nN+1; and

(3.4)

(ii) the hitting time between nodes h1, . . . , hN and k, denoted mh1...hN ,k, of the
Markov chain is given by

mh1...hN ,k = vec([Ih1...hN ,k
i1...iN ,j ])T vec(M).

Proof. Letting P = P (1) ⊗ · · · ⊗P (N), notice that (3.2) can be written in the
vectorized form

vec(M) = �nN+1 + (In ⊗P ) vec(M)− (In ⊗P ) vec(Md).
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Rearranging terms and substituting E vec(M) for vec(Md) gives

(
InN+1 − (In ⊗P )(InN+1 − E)

)
vec(M) = �nN+1.(3.5)

To ease the complexity of our notation, we move forward by looking at the 2-agent
case and then generalizing from there. For the 2-agent case with P = P (1) ⊗P (2) the
system (3.5) becomes

(
In3 − (In ⊗P )(In3 − E)

)
vec(M) = �n3 ,

indicating a unique solution exists if In3 − (In ⊗P )(In3 − E) is invertible. Let the

eigenvalues λ
(1)
i and λ

(2)
i be associated with transition matrices P (1) and P (2), re-

spectively. Then, from property (iii) of Lemma 1.1, the eigenvalues of P (1) ⊗P (2) are

λ
(1)
j λ

(2)
k for j, k ∈ {1, . . . , n}. This means that when just two P (i) are periodic, the

Kronecker product can result in a Markov chain which has multiple eigenvalues at 1,
making this chain reducible. Therefore, we must show that irreducible blocks can be
constructed that allow the application of Lemma 2.2 as before. We begin by noting
that for a reducible P = P (1) ⊗P (2) we can apply a series of permutation matrices
S(i) for i ∈ {1, . . . ,m} to P [26, Chapter 8.3] such that

P̄ =

⎡
⎢⎢⎢⎢⎣

A(1) ∗ . . . ∗
� A(2) . . .

...
...

. . .
. . . ∗

� . . . � A(k)

⎤
⎥⎥⎥⎥⎦ ,(3.6)

where P̄ = SPST with permutations S = (S(m)) . . . (S(1)), and each A(i) is irre-
ducible. Since P is row-stochastic, each irreducible component is either substochastic
(ρ[A(i)] < 1) or stochastic (ρ[A(i)] = 1). Since we only need to consider the case
in which A(i) is stochastic, let B ∈ R

r×r denote an irreducible stochastic matrix
A(i) ∈ R

r×r in (3.6). For B irreducible, P̄ has the form

P̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(1) ∗ . . . . . . . . . ∗
�

. . .
. . .

. . .
. . .

...
...

. . . B � . . . �

...
. . .

. . . A(l) . . . ∗
...

. . .
. . .

. . .
. . .

...

� . . . . . . . . . � A(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice from the definition of vec(M) and the block diagonal structure of (In ⊗P ) that
the jth block in (In ⊗P ) corresponds to mean first passage times, mi1i2,j , to node j.
Since a permutation matrix simply acts as a relabeling of elements, assume without
loss of generality that the elements associated with B vary from i1, i2 ∈ {1, . . . , r}.
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Therefore, the equations associated with B have the form

mi1i2,j = 1+
∑
k1,k2

mk1k2,jp
(1)
i1,k1

p
(2)
i2,k2

−
∑
k1=j
k2 �=j

mjk2,jp
(1)
i1,j

p
(2)
i2,k2

−
∑
k2=j
k1 �=j

mk1j,jp
(1)
i1,k1

p
(2)
i2,j

−mjj,jp
(1)
i1,j

p
(2)
i2,j

= 1+
∑

k1,k2 �=j

mk1k2,jp
(1)
i1,k1

p
(2)
i2,k2

,

where the subtracted terms in the expression above are associated with the non-
zero entries of E (i.e., to the columns of P that are set to zero). If all subtracted
terms are zero for each mi1i2,j , i1, i2 ∈ {1, . . . , r}, this implies that there exist no

i1, i2 ∈ {1, . . . , r} such that p
(1)
i1,j

> 0 or p
(2)
i2,j

> 0; that can only be true if there exists
no path to node j from any node i1 or i2, which is impossible by definition of each
P (i). Therefore, for each irreducible row-stochastic component of P̄ , there is at least
one nonzero element E such that a column of that component is set to zero, allowing
us to apply Lemma 2.2.

In the N -agent case, similarly to the 2-agent case, a unique solution exists if
(InN+1 − (In ⊗P )(InN+1 − E)) from (3.5) is invertible. For this to hold true it must
be that (In ⊗P )(InN+1 − E) has a spectral radius less than 1. Similarly to before,
given that In ⊗P and hence (In ⊗P )(InN+1 −E) is a block diagonal matrix, we need
only show that each block has a spectral radius less than 1. The proof follows a line of
argument parallel to the 2-agent case. More explicitly, each P can be deconstructed
into a block upper triangular matrix, as in (3.6), composed of square matrices along
the diagonal, each of which is irreducible. Since P is row-stochastic, then each ir-
reducible block is either row-stochastic or substochastic. If the irreducible block is
substochastic, then its spectral radius is less than 1. If an irreducible block is row-
stochastic, then all we must show is that a column of the row-stochastic block is
necessarily set to zero when In ⊗P is multiplied by (InN+1 − E). As in the 2-agent
case, at least one negative entry in the definition of the mi1...iN ,j must be nonzero
due to the connectivity of the graph. Therefore there is a nonzero entry in E which
forces a column of the irreducible block to be zero in (In ⊗P )(InN+1 −E). Therefore,
by Lemma 2.2, (In ⊗P )(InN+1 − E) has a spectral radius less than 1.

Given this representation of the N -agent group hitting time, a natural question
is whether one can determine a simplified expression for this quantity which is a
function of the eigenvalues of P (h), similar to the expression in Theorem 2.1. As
mentioned earlier, proof of that theorem relies on the ability to extort knowledge of
Md. Consider, for example, the 2-agent case; if we try to find the entries of Md in a
similar fashion to the single-agent case by premultiplying (3.2) with π(1) ⊗π(2), we
have that

�
T
n = (π(1) ⊗π(2))TMd.

This is a system of n equations and n(2n− 1) unknowns, and thus the solution of Md

is underdetermined. Therefore, even though one may be able to express the group
hitting time as a function of the eigenvalues, it is currently not well understood how.

3.2. Random walkers covering subgraphs. The group hitting time as stated
thus far is of interest in its own right. However, in many applications it is often
desirable to have a notion of the same quantity when multiple agents don’t have
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access to the entire graph. In the following section we tackle this problem by utilizing
reducible graphs. We will leverage the framework of the N -agent group hitting time
for irreducible Markov chains in order to generalize our results to reducible Markov
chains.

Consider h ∈ {1, . . . , N} directed weighted graphs G(h) = (V (h), E(h), P (h)) with
node sets V (h) ⊂ {1, . . . , n} such that ∪N

h=1 V
(h) = {1, . . . , n}. The edge sets satisfy

E(h) ⊂ V (h) × V (h) and have corresponding row-stochastic matrices P (h) = [p
(h)
i,j ] for

h ∈ {1, . . . , N} with the property p
(h)
i,j ≥ 0 if {i, j} ∈ E(h) and p

(h)
i,j = 0 otherwise. As

before, each matrix P (h) is the transition matrix of a Markov chain on V (h).

LetX
(h)
t ∈ V (h) denote the location ofN random walkers at time t ∈ {0, 1, 2, . . .}.

For any N + 1 nodes ih ∈ V (h) and j ∈ {1, . . . , n}, the first passage time from any
ih, h ∈ {1, . . . , N} to j, denoted by Ti1...iN ,j, is the first time that any random walker
reaches node j, when starting from nodes ih, h ∈ {1, . . . , N}, and is given by

Ti1...iN ,j = min
{
t ≥ 1

∣∣X(1)
t = j or . . . or X

(N)
t = j

given that X
(h)
0 = ih for all h ∈ {1, . . . , N}}.

Similar to the case where each agent has access to the entire graph, we have the
following lemma, whose proof is equivalent to that of Lemma 3.1.

Lemma 3.3 (recursive formulation of first passage time for multiple random walk-
ers over subgraphs). Consider the graphs G(h) = (V (h), E(h), P (h)) satisfying the prop-
erty ∪N

h=1 V
(h) = {1, . . . , n}, and let P (h) be the transition matrix associated with G(h).

Also, let |V (h)| denote the cardinality of each node set, and let mi1i...iN ,j = E[Ti1...iN ,j ]
denote the first passage time from any ih ∈ V (h) to j ∈ {1, . . . , n}. Then

mi1...iN ,j = 1 +
∑

k1,...,kN �=j

mk1...kN ,jp
(1)
i1,k1

. . . p
(N)
iN ,kN

,

or, in matrix notation,

M = �α�
T
n + (P (1) ⊗ · · ·⊗P (N))M − (P (1) ⊗ · · · ⊗P (N))Md,(3.7)

where α =
∏N

h=1 |V (h)|, M = [mi1...iN ,j ], and Md = [δi1...iN ,jmi1...iN ,j ].

Proof. The formulation of this system follows in a similar fashion the N -agent
case, with the exception that now, if node ih has the property that ih /∈ V (h) ⊂
{1, . . . , n}, then the corresponding mi1...iN ,j value is zero.

Given the formulation for the N -agent first passage time matrix over multiple
subgraphs, we now determine the average first visit time to any node in the full
graph. Like before, first we calculate the relative frequency of being at any given
node. Unlike before, however, each agent operates over a subset of the nodes in
the graph. Let π(h) be the stationary distribution associated with Markov chain
P (h) ∈ R

r×r, where r ≤ n, and for convenience assume that V (h) ⊂ {1, . . . , n} is

an ordered ascending set (i.e., V h = {3, 9, 20}). Then let π̃(h) be the vector whose

entries are given by π̃
(h)

V
(h)
i

= π
(h)
i for i ∈ {1, . . . , |V (h)|} and π̃

(h)
i = 0 otherwise. In

other words, π̃(h) corresponds to the stationary distribution of each agent over the
entire graph, not just its subgraph. Therefore, if an agent never visits a node, its visit
frequency to that node is 0. Given the padded vector π̃(h), we write the average visit
frequency as π̃ave =

∑N
h=1(π̃

(h))/N . Notice that this interpretation of average visit
frequency takes into account that multiple Markov chains are running in parallel.
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946 RUSHABH PATEL, ANDREA CARRON, AND FRANCESCO BULLO

Now, the N -agent mean first passage time from start nodes ih, h ∈ {1, . . . , N},
denoted hi1...iN , is given by

hi1...iN =
n∑

j=1

mi1...iN ,jπ̃ave,j .

Therefore, the average time to go from any set of N nodes to a single node in a graph
is given by

HN =

|V (1)|∑
i1=1

π
(1)
i1

· · ·
|V (N)|∑
iN=1

π
(N)
iN

n∑
j=1

mi1...iN ,jπ̃ave,j

= (π(1) ⊗ · · · ⊗π(N))M π̃ave

= (π̃ave⊗π(1) ⊗ · · · ⊗π(N)) vec(M),

(3.8)

where as before we denote HN as the N -agent group hitting time.
We are now ready to state our main result.

Theorem 3.4 (group hitting time for irreducible subgraphs). Consider the N
graphs G(h) = (V (h), E(h), P (h)) satisfying the property ∪N

h=1 V
(h) = {1, . . . , n}, and

let P (h) ∈ R
|V (h)|×|V (h)| be the irreducible transition matrices associated with G(h).

Also, let π̃ave = (
∑N

i=1 π̃
(i))/N , and let E ∈ R

αn×αn be the diagonal matrix which
satisfies the equality E vec(M) = vec(Md). Then the following hold:

(i) the group hitting time of the Markov chain is given by

HN = (π̃ave ⊗π(1) ⊗ · · ·⊗π(N))T vec(M), where

vec(M) =
(
Iαn − (In ⊗P (1) ⊗ · · · ⊗P (N))(Iαn − E)

)−1
�αn,

(3.9)

and α =
∏N

h=1 |V (h)|; and
(ii) the hitting time between nodes h1, . . . , hN and k, denoted mh1...hN ,k, of the

Markov chain is given by

mh1...hN ,k = vec([Ih1...hN ,k
i1...iN ,j ])T vec(M).

Proof. The proof of this theorem follows the exact same logic as the proof of
Theorem 3.2

This theorem immediately leads to the following corollary.

Corollary 3.5 (group hitting time for reducible Markov chains). Consider N
Markov chains with transition matrices P (h) ∈ R

n×n, h ∈ {1, . . . , N}, defined over
the same graph and satisfying the following property: if P (h) is reducible, then there
exists a permutation matrix S(i) such that (S(h))TP (h)S(h) is block upper triangu-
lar with exactly one nonzero irreducible block on the diagonal and all other diago-
nal entries equal to zero. (In other words, each Markov chain has a unique sink
in the condensation digraph, and all other strongly connected components contain
a single node.) Under this assumption, let π(h) be the unique stationary distribu-

tion for P (h). Let πave = (
∑N

h=1 π
(h))/N , with the property that πave,j �= 0 for

all j. Also, let E ∈ R
nN+1×nN+1

be the diagonal matrix which satisfies the equality
E vec(M) = vec(Md). Then the following properties hold:
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(i) the group hitting time of the Markov chain is given by

HN = (πave ⊗π(1) ⊗ · · · ⊗π(N))T vec(M), where

vec(M) = (InN+1 − (In ⊗P (1)⊗ · · · ⊗P (N))(InN+1 − E))−1
�nN+1 ; and

(ii) the hitting time between nodes h1, . . . , hN and k, denoted mh1...hN ,k, of the
Markov chain is given by

mh1...hN ,k = vec([Ih1...hN ,k
i1...iN ,j ])T vec(M).

Proof. First, note that the Kronecker product of two block diagonal matrices
generates a block diagonal matrix. Second, notice from Definition 1.1(i) that

(S(1))TP (i)S(1) ⊗ · · · ⊗(S(N))TP (i)S(N)

= ((S(1))T ⊗ · · · ⊗(S(N))T )(P (1) ⊗ · · · ⊗P (N))(S(1) ⊗ · · · ⊗S(N)),

so there exists a permutation matrix (S(1) ⊗ · · · ⊗S(N)) that makes (P (1) ⊗ · · · ⊗P (N))
block diagonal. Since exactly one block from each matrix is not exactly zero, the same
is true of (S(1))TP (i)S(1) ⊗ · · · ⊗(S(N))TP (i)S(N). This block corresponds to matrix
P in Theorem 3.4. The rest of the proof follows by noticing that each node in the

graph is reached if and only if πave, j �= 0 for all j. This is due to the fact that π
(h)
k �= 0

when k denotes a persistent reachable node in the graph, and π
(h)
k = 0 otherwise.

3.3. Computational complexity. Due to the extensive use of Kronecker prod-
ucts, it is important to verify the memory and computational costs of the group hitting
time. Looking at (3.4), we can assert that the group hitting time is affected by the
curse of dimensionality; with n nodes and N agents, the matrix In ⊗P (1) ⊗ · · · ⊗P (N)

contains n2N+2 elements. For example, given n = 100 nodes and N = 10, agents the
size of that matrix is 1044 × 1044. The most intense operation is the inversion of
In ⊗P (1) ⊗ · · · ⊗P (N), which requires a cost of O(k3), where k is the number of el-
ements in the matrix [6], and thus in our case this becomes O(n6N+6). Noticing
that the first Kronecker product in (3.5) is between the identity matrix and the
P = P (1)⊗ · · ·⊗P (N) matrix, this implies In ⊗P is block diagonal, and therefore we
can store and invert single blocks, reducing memory cost to O(n2N ) and inversion cost
to O(n6N ). For the more general hitting time formula described by (3.8), the complex-
ity can be further reduced. Given that (3.8) describes random walks on subgraphs,
then |V (h)| = nβh for some βh ∈ (0, 1], and therefore the number of elements in

the matrix Iαn ⊗P (1) ⊗ · · · ⊗P (N) is (
∏N

h=1 β
2
h)n

2N+2. This leads to a computational

complexity for the inversion equal to O
(
(
∏N

h=1 β
6
h)n

6N+6
)
. Similarly to before, we can

take advantage of the fact that the first Kronecker product in Iαn ⊗P (1) ⊗ · · · ⊗P (N)

is the identity matrix, reducing memory and inversion costs to (
∏N

h=1 β
2
h)n

2N and

O
(
(
∏N

h=1 β
6
h)n

6N
)
, respectively.

In special circumstances, the above computational complexity can be dramatically
reduced. This happens when the intersection between a subgraph of a single agent
does not intersect with any other agent’s subgraph. In this case, the disjoint agent’s
hitting time over its subgraph can be calculated independently of the group hitting
time of the otherN−1 agents. The single agent hitting time can then be averaged with
the N−1 agent group hitting time to generate the N agent group hitting time. In the
case where every agent owns its own disjoint region, the computational complexity
scales to O(

∑N
h=1 |V (h)|12), or to O(

∑N
h=1 |V (h)|6) when exploiting the Kronecker
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948 RUSHABH PATEL, ANDREA CARRON, AND FRANCESCO BULLO

product between the identity matrix and a transition matrix, as was done previously.
It is clear that uniformly partitioning the graph between agents, or partitioning as
close to uniform as is possible, we get the lowest computational complexity.

In the next section we compute an optimized group hitting time for various graph
topologies.

4. Numerical optimization of the group hitting time. In the following
sections we study the transition matrices that arise from the numerical optimiza-
tion of the group hitting time. In particular, we look for the transition matrices,
P (1), P (2), . . . , P (N), that minimize (3.9) as described by Problem 1 below. The prob-
lem is numerically solved using a sequential quadratic programming solver as imple-
mented by MATLAB’s fmincon optimization algorithm, details of which are discussed
in section 4.3.

Problem 1 (group hitting time minimization). Given h ∈ {1, . . . , N} directed
weighted graphs G(h) = (V (h), E(h), P (h)) with node sets V (h) ⊂ {1, . . . , n}, edge
sets E(h) ⊂ V (h) × V (h), and stationary distributions π(h), find the corresponding
transitions matrices P (h) solving

inf (π̃ave ⊗π)T (Iαn − (In ⊗(P (1) ⊗P (2) · · · ⊗P (n)))(Iαn − E))−1
�αn

subject to P (i)
�|V (i)| = �|V (i)| for each i ∈ {1, . . . , N},

(π(i))TP (i) = (π(i))T for each i ∈ {1, . . . , N},
0 ≤ p

(i)
h,k ≤ 1 for each (h, k) ∈ E(i) and i ∈ {1, . . . , N},

p
(i)
h,k = 0 for each (h, k) /∈ E(i) and i ∈ {1, . . . , N},

P (i) is irreducible for i ∈ {1, . . . , N},

where α =
∏N

h=1 |V (h)|.
To the best of our knowledge, a known solution to the above problem exists only

for the case where G is a complete graph and N = 1 [20].
It is worth noting that Problem 1 is looking for a infimum and not for minimum;

for more details we direct interested readers to [19]. The constraints in Problem 1,
including the final one on the irreducibility of P (i), guarantee that the conditions of
Theorem 3.4 are satisfied. In practice, it is hard to enforce the irreducibility constraint
during each step of an iterative optimization algorithm; our approach is to relax the
constraint and verify a posteriori that the iteratively computed solution satisfies the
irreducibility constraint. In all the computational settings we considered, we never
encountered a solution that violated the irreducibility constraint.

In order to build intuition on the Markov chain combinations that generate op-
timal group hitting time values, we present numerical results for the ring graphs,
complete graph, and lattice graph shown in Figure 4.1. We look at two cases in par-
ticular: one in which every random walker is required to visit all nodes in the graph,
and one in which random walkers are allowed to visit subgraphs. For simplicity, we
always restrict the stationary distribution π̃ave to be uniform.

4.1. Random walkers covering the full graph. In the following we study
which Markov chains generate optimal group hitting time values when every random
walker must visit every node in the graph. Surprisingly, in fact, we will observe
the random walks that generate optimal group hitting times can be different. In
each example we define an individual agent’s stationary distribution as the uniform
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Fig. 4.1. From left to right, example of a 5-node ring, 5-node complete, 9-node lattice, and
4-node ring graphs with self-loops.

distribution. It is easily verified that with this choice of stationary distribution, the
condition π̃ave,j = π̃ave,k for all j, k is always met no matter how many agents are
added to the system.

We begin with the ring graph. For a single random walker, the transition matrix
which generates the minimal hitting time is simply the one describing a cycle (i.e.,
moving to a neighboring node with probability 1), and for the 5-node ring graph shown
in Figure 4.1. This is as expected, as a cycle describes the fastest time to reach any
node from any other node. It turns out, for the multiagent case, the optimal group
hitting time occurs when every agent performs its own cycle; an example of this for
three random walkers is shown in Figure 4.2. Moreover, since the group hitting time
averages over all potential initial conditions, the direction of cycles does not matter.
In other words, one agent can go clockwise, while the other goes counterclockwise. A
summary of the optimal group and individual random walker hitting times on a ring
graph shown in Figure 4.1 is given in Table 4.1.

Given the results for a ring graph, one can imply what will happen for the complete
graph for a single agent. As it happens, since a cycle exists, this is also the optimal
strategy for the complete graph for both the single and multiple random walker cases.
Again, the direction of cycle does not matter, as is seen for the 3-agent case shown in
Figure 4.2. A summary of the optimal group and individual random walker hitting
times on a complete graph shown in Figure 4.1 is equivalent to the ring graph and
thus is given in Table 4.1.

Next, we look at the lattice graph. Figure 4.3 shows the optimal trajectories
found ranging from a single random walker up to 3 random walkers. It is interesting
to note that individual agent trajectories are quite different, unlike for the ring and
complete graphs. This can be more easily seen by observing each agent’s individual
hitting time as shown in Table 4.2. What is surprising is that the transition matrices
that generate the optimal group hitting time for the multiple random walker cases are
in fact suboptimal individually. Interestingly enough, if one substitutes the optimal
single agent transition matrix from the single random walker case in for any/all of
the multiwalker transition matrices, the group hitting time becomes worse for those
multiwalker cases.

Thus far we have seen that repeating multiple copies of the fastest random walk
is not always the most optimal. In fact, through simulation we’ve seen that repeating
random walks is only optimal when a cycle is the optimal single-agent strategy. In
the following section we explore in more detail how the optimal group hitting time is
affected when working with subgraphs.

4.2. Random walkers covering subgraphs. In the following section we build
intuition on how the group hitting time is affected over subgraphs. We will observe
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Fig. 4.2. Probability to move along each edge of a ring graph (left) and complete graph (right)
for 3 random walkers. In the case above, the probability to move along each edge is 1, which
indicates a cycle. The group hitting time for the shown trajectories for both ring and complete graph
is H3 = 1.8.

Table 4.1

Group hitting time values for random walks shown in Figure 4.3. The last column indicates the
group hitting time for each case, whereas the middle three columns indicate each random walker’s
individual hitting time. Surprisingly, the ring and complete graphs exhibit equivalent hitting time
results. The values reported are exact.

Random walker(s) Red Blue Green HN

One 3.0 – – 3.0
Two 3.0 3.0 – 2.2
Three 3.0 3.0 3.0 1.8

Fig. 4.3. Probability to move along each edge of a lattice graph for 1 random walker (left),
2 random walkers (middle), and 3 random walkers (right). In each graph, the opacity of a line
indicates the probability to move along an edge.

Table 4.2

Group hitting time values for random walks shown in Figure 4.3. The last column indicates the
group hitting time for each case, whereas the middle three columns indicate each random walker’s
individual hitting time. The values reported are rounded to the second/third significant figures.

Random walker(s) Red Blue Green HN

One 6.8 – – 6.8
Two 7.7 10.5 – 3.8
Three 15.2 7.0 17.2 2.9

that working with subgraphs sometimes improves the group hitting time, but can
also cause the group hitting time to worsen. We look at two cases in particular:
when the subgraphs overlap, and when they do not (i.e., the nodes are partitioned
among the random walkers). In order to describe the different subgraphs studied,
we utilize Figure 4.1 to specify which edges are kept and which are removed for the
subgraphs. For example, if we specify that in the 5-node ring an agent can move only
between nodes {2, 3, 4}, then this means that the agent can move only between these
nodes (including self-loops), and any edges connected to nodes 1 and 5 are removed.
The subgraphs are not necessarily allocated in any optimal way; they are simply
chosen so that the stationary distribution is uniform over all nodes. For the simple
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Fig. 4.4. Probability to move along each edge of a 5-node ring graph with two agents (left),
and 9-node lattice graph with two agents (right). In each graph, the opacity of a line indicates the
probability to move along an edge.

Fig. 4.5. Probability to move along each edge of a 4-node ring graph with two agents (left),
and 9-node lattice graph with three agents (right). In each graph, the opacity of a line indicates the
probability to move along an edge.

examples shown, the stationary distributions for each random walker are defined as

π
(i)
j = π̃ave,j/Nj , where Nj denotes the number of agents who share node j. For

example, π
(i)
j = π̃ave,j if node j is only owned by one agent. For comparison with

results presented in the previous section, we work with the ring and lattice graphs
shown in Figure 4.1.

The case when subgraphs overlap is studied for the 5-node ring and 9-node lattice
graph, the results of which can be seen in Figure 4.4. For the ring graph shown, one
agent is restricted to moving between nodes {1, 5, 4} and one is restricted to moving
between nodes {2, 3, 5}, and the optimal group hitting time is H2 = 2.5 (the exact
value is 2.4655), in contrast to H2 = 2.2 from full graph case (Table 4.1). For the
lattice graph, one agent is restricted to moving between nodes {1, 2, 3, 4, 5, 6} and one
is restricted to moving between nodes {4, 5, 6, 7, 8, 9}, and the group hitting time is
H2 = 3.6 (the exact value is 3.6291), in contrast to H2 = 3.8 (Table 4.2). Therefore,
from these two examples, we see that each agent covering fewer nodes is not always
indicative of a lower group hitting time.

The case when subgraphs are partitioned is analyzed for the 9-node lattice and
4-node ring graph shown in Figure 4.5. For the ring graph, with one agent restricted
to moving between nodes {1, 5} and one restricted to moving between nodes {2, 4},
we see that the group hitting time is H2 = 1.5, whereas for the case where each agent
covers the whole graph, H2 = 1.9; we do not show the figure for the latter case, but
recall that the optimal full graph trajectory is simply a cyclic tour for each agent. Now,
for the partitioned lattice graph, with one agent restricted to moving between nodes
{1, 2, 3}, one agent restricted to nodes {4, 5, 6}, and one agent restricted to nodes
{7, 8, 9}, the group hitting time is H3 = 3.7 (the exact value is 11/3), in contrast to
H3 = 2.9 (Table 4.2). As before, we see that each agent covering fewer nodes, which
are partitioned, is not indicative of a lower group hitting time.

Clearly, the small sample study presented here leaves open many future avenues
that can be explored when attempting to optimize the group hitting time. For ex-
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ample, notice that one cannot always partition a graph and achieve an arbitrary
π̃ave. Also, it is unclear what happens when you allow π̃ave and therefore individual
stationary distributions to vary. We leave these, among other questions, to future
work.

4.3. Implementation notes. In order to generate repeatable and accurate re-
sults, we utilize a sequential quadratic programming (SQP) solver as implemented in
MATLAB’s fmincon optimization algorithm. Several other solvers are available; how-
ever, the SQP solver has the most desirable mathematical properties. More specif-
ically, with the SQP solver, given that the maximum number of iterations is not
reached, the minimization algorithm stops when the first-order necessary Karush–
Kuhn–Tucker conditions are approximately satisfied; conditions are satisfied in the
norm sense with a tolerance of 10−6. For all results used, the first-order optimality
stopping criteria were satisfied.

The group hitting time results presented were taken as the minimum of 1000
optimization runs, each starting from a random initial conditions. Surprisingly, with
the exception of the lattice, every initial condition converged to the minimum group
hitting time value (within a 10−6 to 10−11 tolerance). For the 2- and 3-agent results
presented in Table 4.2, we found that solutions converged to the minimum group hit-
ting time value within a 10−2 tolerance for 96 and 93 percent of samples, respectively.
Therefore, we claim with reasonable confidence that a local minimum for each group
hitting time value was reached, if not a global minimum. On a desktop computer with
an Intel i7-4790 processor and 8 GB of RAM running MATLAB 2014b, the lattice
with 9 nodes and 3 agents shown in Figure 4.2 took the longest time to run, averaging
10 minutes per run, whereas all other simulations took less than a minute to fractions
of a second per case run.

5. Conclusions. We have studied the hitting time of multiple random walkers
on a graph and have presented the first formulation of this quantity, which we have
denoted the group hitting time. Moreover, we have presented an alternate closed form
solution for calculating the first hitting time between any specified set of nodes for a
single random walker, as well as the first closed form solution of this quantity for the
multiagent case. Finally, we posed the group hitting time as an optimization problem
and provided detailed simulation results which help to build insight into the transition
matrices that minimize this quantity.

This work leaves multiple directions open for further research. First, although our
method provides a closed-form solution, in general it can be difficult to compute when
the size of the graph and number of agents increase. It would be of practical interest
to find a formulation which is computationally less expensive or a method in which
the group hitting time can be calculated in a distributed way. Second, we provided
results for multiple Markov chains in which travel times are homogeneous. A clear
extension is to consider the case of heterogeneous travel times similar to what was
done in [32]. Finally, given the maximum pairwise hitting time of a Markov chain,
there exist bounds on the cover time for multiple copies of that Markov chain running
in parallel [11, 2]. It would be interesting to see if our results can be leveraged to
extend those bounds to multiple heterogeneous Markov chains running in parallel.
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