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Abstract— This article provides analysis results for the
weighted hitting time and the pairwise weighted hitting time
of a Markov chain. This concepts are useful in many applica-
tions from robotics to patrolling, environment monitoring and
resources optimization. The aforementioned quantities are a
performance indexes which measure the expected time taken
by a random walker to travel from an arbitrary node of a
graph to a second randomly selected node and the expected
time to travel between two chosen nodes. These metrics can be
used as objective function in optimization problems. In fact we
propose a numerical example applied to robotic surveillance
where the weighted hitting time is our cost to minimize with
respect to the transition matrix of the agent.

I. INTRODUCTION

In this work we introduce an alternative formulation of
the weighted hitting time and a closed form for the pairwise
weighted hitting time. This problem is of a general mathemat-
ical and engineering interest in the study of Markov Chains
and random walks. In particular the weighted hitting time is
a metric by which the performance of a random walker can
be measured. The problem is also of interest in a number of
robotic multi-agent applications; some examples include the
monitoring of oil spills [1], the detection of forest fires [2],
the tracking of border changes [3], the periodic patrolling of
an environment [4], [5], the minimization of the emergency
vehicle response times [6] and the servicing task in robotic
warehouse management [7].

The hitting time of a random walk governed by a Markov
chain, is the expected time taken by a random walker to
travel between any two nodes in a network. For a single finite
discrete-time Markov chain this quantity is known with many
names: hitting time, Kemeny constant, mean first passage
time, first hitting time and also eigentime. The weighted
hitting time is an extension of the aforementioned concept,
with the difference that a set of weight is associated to
edge set of the underlying network. This generalization is
particularly useful in many real application, like the ones
modeling distance/time traveled or service costs/times.

The hitting time of a Markov chain first appeared in
[8], however it has been studied by many researchers, e.g.
[9], [10], [11]. In [12], [13] the authors provide bounds
on the hitting time for various graph topology, and in [14]
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an alternative formulation is proposed. The authors of [15]
found a formulation for the weighted hitting time, but not
for the pairwise weighted hitting time.

The mean first passage time is closely related to other
well-known metrics for graphs and Markov chains. One
example is the effective graph resistance [16], [17], which
is a metric quantifying the distance between pairs of ver-
tices in an electric network. Then the relationship between
electric networks and random walks is extensively studied
in [18]. Another example is given by the mixing rate of an
irreducible Markov chain, which is the rate of convergence
to the stationary distribution [19]. Recently, [11] refers to the
hitting time as the “expected time to mixing” and relates it
to the mixing rate.

To achieve our results, we utilize the notion of Kronecker
graphs. The first results for undirected Kronecker graph had
been discovered in [20], where were found conditions to
guarantee connectivity to graph generated by the Kronecker
product of two graphs. In [21], [22] the authors introduce
the concept of “stochastic” Kronecker graphs however this
notion is not used in our work. In fact we are not attempting
to generate new networks models, instead we are exploiting
novel aspects of Kronecker products to discover areas not
been already explored. Our approach is similar to the one
exploited in [23] where the authors study the group hitting
time, however in their analysis they do not consider doubly
weighted graphs.

As main contributions of this work, we present an alter-
native formulation of the weighted hitting time and provide
a closed form equation to compute the pairwise weighted
hitting time. To the best of our knowledge a formulation for
the former quantity has never been discovered before. We
make no assumptions in our work, the random walker can
move according to an arbitrary random walk with any kind of
stationary distribution. From a practical point of view the first
metric can be used when we want to optimize or discover the
performances of the entire transition matrix, while the second
is very useful when we are interested in only checking few
connections of the graph. The last approach is also valuable
when the problem at the hand has too many nodes/edges,
in this scenario compute the weighted hitting time can be
hard. However it is still possible to optimize or discover the
performances of the crucial nodes of the graph using the
pairwise weighted hitting time.

The paper is organized as follows. In Section II we
introduce notation that will be used in the paper and we
review some concepts about Markov chains and Kronecker
products. In Section III we introduce the concept of doubly



weighted graphs and mean first passage time. In Section IV
we state our main results providing a new formulation for the
weighted hitting time and the pairwise weighted hitting time.
In Section V we provide insight into optimal weighted hitting
time thorough an exampled applied to robotic surveillance,
and finally in Section VI we present our conclusions and
future research directions.

II. MATHEMATICAL PRELIMINARIES

In this section we report some useful definitions and
notation. In the first subsection we recall some standard
results on Markov chains. In the second subsection we
introduce some concepts about tensors and conclude with
a brief summary of the Kronecker products and some of its
proprieties.

1) Markov Chains: A Markov chain is a sequence of
random variables taking value in the finite set {1, . . . , n} with
the Markov property, namely that, the future state depends
only on the present state. Let Xk ∈ {1, . . . , n} denote the
location of a random walker at time k ∈ {0, 1, 2, . . . }, then
a Markov chain is time-homogeneous if P[Xn+1 = j|Xn =
i] = P[Xn = j|Xn−1 = i] = pi,j , where P ∈ Rn×n is the
transition matrix of the Markov chain. The transition matrix
P is a row stochastic matrix which means that each of its
rows is exactly summing to one. The vector π ∈ Rn×1 is
a stationary distribution of P if

∑n
i=1 πi = 1, 0 ≤ πi ≤

1 for all i ∈ {1, . . . , n} and πTP = πT .
We will use of the following well-known results on

Markov chains. A Markov chain is irreducible if, for each
i, j ∈ {1, . . . , n} there is a t ∈ N such that (P t)i,j > 0.
If the Markov chain is irreducible, then there is a unique
stationary distribution π, and the corresponding eigenvalues
of the transition matrix, λi for i ∈ {1, . . . , n}, are such that
λ1 = 1, |λi| ≤ 1 and λi 6= 1 for i ∈ {2, . . . , n}.

We let ρ [P ] denote the spectral radius of the matrix P ,
which is the supremum among the absolute values of the
elements in its spectrum. Given a generic set A, with |A| we
denote its cardinality.

In this paper we consider finite irreducible time-
homogeneous Markov chains. For more details on Markov
chains or irreducible matrices see [8] or [24, Chapter 8],
respectively.

2) Tensor Notation: Unless otherwise mentioned, vectors
will be denoted by bold-faced letters (i.e., a). We use the
notation diag[a] to indicate the diagonal matrix generated
by vector a and vec[A] to indicate the vectorization of a
matrix A ∈ Rn×m where

vec[A] = [A(1, 1), . . . , A(n, 1), . . . , A(m, 1), . . . , A(n,m)]T .

We also define the special matrix [Ih,ki,j ] as the matrix whose
entries are all zero except for a single entry at (h, k) which
has a value of 1, where h, k can only take values within the
range of values that i, j take. With this matrix definition, it is
easy to verify for A = [ai,j ] that ah,k = vec[[Ih,ki,j ]]T vec[A].
This enables us to go back and forth between the vectorized
notation to the individual matrix elements. We denote In ∈
Rn×n as the identity matrix of size n, 1n as the vector of

ones of size n and 0n×n as the matrix zeros of size n× n.
We define the Kronecker delta function δi,j , by

δi,j =

{
1, if there exists i = j,

0, otherwise.

Then, with a slight abuse of notation, Ad = [δi,jai,j ]
represents the diagonal matrix generated by the elements
of A. We are now ready to review some useful facts about
Kronecker products. The Kronecker product, represented by
the symbol ⊗, of two matrices A ∈ Rn×m and B ∈ Rq×r

is a nq ×mr matrix given by

A⊗B =


a1,1B . . . a1,mB

...
. . .

...

an,1B
. . . an,mB

 .
To build some intuition, notice for A ∈ Rn×n, that In⊗A is
the block diagonal matrix with n copies of A on the diagonal:

In⊗A =


A 0n×n . . . 0n×n

0n×n
. . . . . .

...
...

. . . . . . 0n×n
0n×n . . . 0n×n A

 . (1)

This implies for A = In, that In⊗A = In⊗ In = In2 .
The Kronecker product is bilinear and has many useful
properties, two of which are summarized in the following
lemma; see [25] for more information.

Lemma 1 (Properties of Kronercker product): Given the
matrices A,B,C and D, the following relations hold for
the Kronecker product.

(i) (A⊗B)(C ⊗D) = (AC)⊗(BD),
(ii) (BT ⊗A) vec[C] = vec[ACB],

where it is assumed that the matrices are of appropriate
dimension when matrix multiplication or addition occurs.
In addition, for matrices A ∈ Rn×n and B ∈ Rm×m

with respective eigenvalues λAi , i ∈ {1, . . . , n} and λBj ,
j ∈ {1, . . . ,m},
(iii) the eigenvalues of A⊗B are λAi λ

B
j for i ∈ {1, . . . , n}

and j ∈ {1, . . . ,m}.

III. DOUBLY WEIGHTED GRAPHS AND MEAN FIRST
PASSAGE TIME

In most practical applications, distance/time traveled and
service cost/times are important factors in the model of the
system. To take into account also this factors we introduce an
additional set of weighted edges in our graph which describe
the distance/time (or service cost/time) to pass through the
edge. We begin by first reviewing properties of the hitting
time of random walker in a doubly weighted graph. Then, in
the next section, we illustrate an alternative formulation of
the hitting time and a way to compute the pairwise weighted
hitting time between two nodes.

Consider a connected doubly-weighted graph G =
(V, E , P,W ), with node set V := {1, . . . , n}, edge set
E ⊂ V × V , and weight matrix P = [pi,j ] with the property



that pi,j ≥ 0 if (i, j) ∈ E and pi,j = 0 otherwise. Let
P = [pi,j ] be the transition matrix associated with G with the
property that pi,j ≥ 0 if (i, j) ∈ E and pi,j = 0 otherwise.
Therefore, P is a transition matrix of a Markov chain, where
the element pi,j in the matrix represents the probability with
which the random walk visits node j from node i. The matrix
W = [ωi,j ] is the weight matrix with the properties that: if
(i, i) ∈ E , then ωi,i ≥ 0; if (i, j) ∈ E , i 6= j, then ωi,j > 0 ;
and if (i, j) /∈ E , then ωi,j = 0.

Let Xt ∈ {1, . . . , n} denote the location of a random
walker at time t ∈ {0, 1, 2, . . . }. For any two nodes i, j ∈
{1, . . . , n}, the first passage time from i to j, denoted by
Ti,j , is the first time that the random walker starting at node
i at time 0 reaches node j, that is,

Ti,j(W ) = min

{ k−1∑
n=0

wXn,Xn+1 , for k ≥ 1|

Xk = j given that X0 = i

}
,

It is convenient to define the shorthand mi,j = E[Ti,j ]
which represents the mean first passage time from i to j and
the mean first passage time matrix M as the matrix whose
(i, j)th entries are given by mi,j . The mean first passage
time from start node i, denoted by hi, is the expected first
passage time from node i to any other node in the graph. The
mean first passage time from node i, for a random walker
described by a Markov chain with transition matrix P and
stationary distribution π, is given by

hi =

n∑
j=1

mi,jπj .

By definition, the first passage time from i to j satisfies
the following recursive equation

Ti,j =

{
wij , with probability pi,j ,
Tk,j + wik, with probability pi,k, k 6= j.

Then, taking the expectation of the Ti,j we get

E [Ti,j ] = wijpij +
∑
k 6=j

pik (E [Tk,j ] + wik)

which also is equal to

mi,j = wijpij +
∑
k 6=j

pik (mk,j + wik)

or in matrix notation

(I − P )M = (P ◦W )1n1T
n − PMd, (2)

where (P ◦ W ) is the element-wise (Hadamard) product
between P and W and Md = [δijmij ] . From [15] the
weighted hitting time can be related to the hitting time in
the following way.

Theorem 2 (Weighted hitting time): Given the doubly-
weighted graph G = (V, E , P,W ) with transition matrix P
and weight matrix W , the weighted hitting time HW is given
by

HW (P,W ) = πT (P ◦W )H,

where H is the non-weighted hitting time.

IV. WEIGHTED HITTING TIME

In this section we provide an alternative way to compute
the weighted hitting time which does not rely on the hitting
time and that easily allows to compute the pairwise weighted
hitting time.

Given the definition of the hitting time, one quickly sees
that it can also be determined using the matrix M as follows,

HW (P,W ) = πTMπ = (π⊗π)T vec[M ] (3)

where πTMπ = (π⊗π)T vec[M ] is thanks to identity (ii)
of Lemma 1. Applying again identity (ii) of Lemma 1 to (2)
we get

(I − P )M = (P ◦W )1n1T
n − PMd. (4)

The following result will be useful in constructing the
alternate formulation for H(P ).

Lemma 3 (Eigenvalue shifting for stochastic matrices):
Let P ∈ Rn×n be an irreducible row-stochastic matrix,
and let E be a diagonal matrix with diagonal elements
Eii ∈ {0, 1}, with at least one diagonal element which is
zero. Then ρ(PR) < 1.

Proof: The stochastic matrix P is non-negative and,
therefore, so is PE. Since P is irreducible, then 0 < PE <
P and ρ[PE] < ρ[P ] = 1 [26, Chapter 1].

Before presenting the alternate representation of the
weighted hitting time we introduce a useful equality:

vec[Md] = E vec[M ],

when E is defined by E = diag[[δi,j ]]. We leave the proof
of this simple book-keeping fact to the reader and present
the main result of this section.

Theorem 4: (Hitting time and pairwise hitting times of a
doubly-weighted graph): Given the doubly-weighted graph
G = (V, E , P,W ) with transition matrix P and weight matrix
W , the following properties hold:

(i) the weighted hitting time HW (P,W ) of the Markov
chain is given by

HW (P,W ) = (π⊗π)T vec[M], (5)

where

vec[M] = (In2−(In⊗P )(In2−E))−1vec[(P◦W )1T
n1n],

(ii) the pairwise weighted hitting time between nodes h
and k, denoted by mh,k(W ), is given by

mh,k(W ) = vec[[Ih,ki,j ]]T vec[M].

Proof: First notice that by rearranging (4) and substi-
tuting E vec[M ] for vec[Md] gives that

(In2 − (In⊗P )(In2 − E)) vec[M ] = vec[(P ◦W )1T
n1n].

(6)

From (3) we know that H(P ) = (π⊗π) vec[M ], therefore
it only remains to show that (In2 − In⊗P (In2 − E)) is in
fact invertible. First, recall from (1) that In⊗P results in



the block diagonal matrix, whose diagonal blocks consist of
copies of P . Second, notice that (In2 − E) is simply the
identity matrix with some diagonal entries set to zero. It can
be easily verified that (In⊗P )(In2−E) results in the block
diagonal matrix where each block contains the matrix P with
one column set to zero. For example, for P ∈ R3×3 we have
that

(In⊗P )(In2 − E) =

0 p12 p13
0 p22 p23
0 p32 p33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

p11 0 p13
p21 0 p23
p31 0 p33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

p11 p12 0
p21 p22 0
p31 p32 0


.

Notice that each diagonal block will have at least one
column set to zero. Hence, using Lemma 3, we have that
maximum eigenvalue of each block is strictly less than one
in magnitude, and thus ρ[(In⊗P )(In2 − E)] < 1. Let λi
denote the eigenvalues of (In⊗P )(In2 −E), then since the
eigenvalues of (In2 − (In⊗P )(In2 −E)) are simply 1−λi
and |λi| < 1 for all i ∈ {1, . . . , n2}, this implies the matrix
(In2 − (In⊗P )(In2 − E)) is invertible and vec[M ] is the
unique solution to (6).

V. APPLICATION TO ROBOTIC SURVEILLANCE

The results on the weighted hitting time presented in this
work can potentially be applied to many fields, here we focus
on a surveillance problem. In particular, we define a doubly
weighted graph G = (V, E , P,W ), whose vertices repre-
sent the watchtower and the main crossroads of the Italian
medieval city of Marostica. We refer to this graph as the
Marostica roadmap. The whole graph G has 42 vertices and
56 edges. The graph is divided in four partially-overlapping
subgraphs, Gi = (Vi, Ei, Pi,Wi) , i ∈ {1, 2, 3, 4} with
Vi ⊂ V , where four agents can perform their surveillance
action, see Figure 1.

In the following we study the transition matrices that
arise from the numerical optimization of the weighted hitting
time for the Marostica roadmap and its covering with four
subgraphs. In particular, we look at the minimization of the
cost function (5) described in Problem 5 below.

Problem 5: Given the stationary distributions πi and the
graphs Gi with i ∈ {1, 2, 3, 4}, find the transition matrices
Pi solving:

inf HW (Pi,Wi)

Pi1|Vi| = 1|Vi|, for each i ∈ {1, 2, 3, 4}
(πi)

TPi = (πi)
T , for each i ∈ {1, 2, 3, 4}

0 ≤ pi (h, k) ≤ 1, for each (h, k) ∈ Ei and i ∈ {1, 2, 3, 4}
pi (h, k) = 0, for each (h, k) /∈ Ei and i ∈ {1, 2, 3, 4}
For simplicity, we assume that the stationary distributions

π1, . . . , π4 are uniform. The problem is numerically solved

Fig. 1. Marostica roadmap with the agents subgraphs. The numbers on
the edges represent the weights.

using the KNITRO solver as implemented by the TOMLAB
package for MATLAB; see [27]. On an 2.7Ghz Intel Core
i5 processor with 16 GB of memory, the computation time
is 129 seconds. In Table I are reported the values of the
optimized weighted hitting time and the result of the opti-
mization is illustrated in Figure 2.

Random Walkers HW (Pi,Wi)

Agent 1 115.5
Agent 2 16.5
Agent 3 1.6
Agent 4 5.6

TABLE I
WEIGHTED HITTING TIME FOR RANDOM WALKERS IN THE FOUR

SUBGRAPHS OF THE MAROSTICA ROADMAP.

VI. CONCLUSIONS

We have studied the problem of how to compute the
weighted hitting time and the pairwise weighted hitting time
of a Markov chain. We have presented two closed form
solution to the two problems and we show an application to
robotic surveillance. The work leaves open various directions
for future research. One of them is to extend the results when
multiple agents are involved, similarly to what has been done
in [23].



Fig. 2. Marostica roadmap with the optimized transition matrices. The
transparency of the edges reflect the probability of the transition matrix.
Less transparent is the edge higher is the probability and viceversa.
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