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Abstract This paper proposes and characterizes a sequential decision aggregation system consisting of
agents performing binary sequential hypothesis testing, and a fusion center which collects the individual
decisions and reaches the global decision according to some threshold rule. Individual decision makers’
behaviors in the system are influenced by other decision makers, through a model for social pressure;
our notion of social pressure is proportional to the ratio of individual decision makers who have already
made the decisions. For our proposed model, we obtain the following results: First, we derive a recursive
expression for the probabilities of making the correct and wrong global decisions as a function of time,
system size, and the global decision threshold. The expression is based on the individual decision makers’
decision probabilities and does not rely on the specific individual decision making policy. Second, we
discuss two specific threshold rules: the fastest rule and the majority rule. By means of a mean-field
analysis, we relate the asymptotic performance of the fusion center, as the system size tends to infinity,
to the individual decision makers’ decision probability sequence. In addition to theoretical analysis,
simulation work is conducted to discuss the speed/accuracy tradeoffs for different threshold rules.

Keywords sequential decision aggregation · decision accuracy · expected decision time · fusion center ·
fastest rule · majority rule

1 Introduction

1.1 Motivation and problem set-up

Decision making has been a classic research topic in the areas of industrial engineering as well as so-
cial science. In a centralized decision making model, all the signals are available to one decision maker,
based on which the decision maker makes a choice among some candidate hypotheses according to some
prescribed decision making policy. Numerous centralized decision making policies have been proposed.
However, an isolated decision maker is always limited in decision accuracy and reliability. Moreover, in
the context of sociological psychology, if we consider the decision maker as an individual in a social
network, the individual is not likely to have access to all the disseminated information and make deci-
sions independently. Instead, individuals have their private information sets and their decision making
behaviors are influenced by others in the network. Therefore, it is of great research interest to study
the group decision making problem. Recent years have seen much research on this topic with a focus on
two objectives. The first is to establish the optimal group decision making policy. The second aspect is
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to build models to describe and understand the observed sociological phenomena. This paper aims to
understand how grouping individual decision makers and their mutual interactions affect the accuracy
and speed with which these individuals reach a collective decision.

In this paper, we consider a system consisting of a group of sequential decision makers (SDMs) and
a fusion center. The SDMs are doing the sequential hypothesis test between two candidate hypotheses.
The fusion center collects individual decisions and makes the global final decision. In our model, the
individual SDMs make individual decisions based on both their private observations and the decisions of
other SDMs. The latter amounts to a form of social pressure. We aim to relate the fusion center’s global
accuracy and expected decision time to the individuals’ accuracy and expected decision time.

1.2 Literature Review

Group decision making has been extensively studied by numerous literature in both the engineering
community [1–10], and the area of sociological psychology [20–25]. In engineering areas, such as control
system and signal processing, two problems on group decision making are emphasized: 1) the commu-
nication between the individual decision makers and the fusion center; 2) the optimal decision making
policy either in the individual level, or in the global level, to maximize the system’s performance. In so-
ciological psychology, researchers aim to investigate individuals’ cognitive behavior in presence of social
pressure and interactions, and the factors which influence individual or group decision making perfor-
mance. Our model is closest to the work by Dandach et al. [8], of which the key feature is that, different
from models in [1–6], the fusion center in [8] does not need to wait for all the SDMs’ decisions. Our
model generalizes [8] by allowing mutual interactions among SDMs.

The process, with which a decision maker updates its posterior belief, or likelihood function, according
to the Bayesian formula and based on its private information set, is sometimes collectively referred to
as Bayesian learning, e.g. [26,27]. Bayesian learning has been used to model the individuals’ rational
behavior. As long as the signal-generation mechanism and the decision policy are given, the individual’s
decision making probabilities at any given time can be predicted. In this paper, we do not specify the
signal structure and decision policy for an individual SDM, but assume that, when isolated, the SDM
is adopting some Bayesian learning policy and its decision probabilities at each time step are given.
On the other hand, non-Bayesian learning is a wording usually adopted to denote irrational decisions
due to influence of other individuals in the system, or any other rule of thumb [29]. In our model, the
non-Bayesian learning is characterized by the influence of social pressure. Therefore, our model can
be considered as the combination of Bayesian learning [28,7,11] and non-Bayesian learning processes.
Examples of the combination of Bayesian and non-Bayesian learning, either discrete-time or continuous-
time, can be seen in [12,10,30], whereby individuals do not make any final decision but just update their
posterior belief based on accumulated private information set (Bayesian), and combine it with the belief
of their neighbors in the network (non-Bayesian).

In our model, the way that the decisions on either hypothesis propagates in the group through social
pressure is similar to the independent cascade model [13–18] used in the computer science community to
model the network contagion process. However, in the independent cascade model, the individuals are
infected passively via the activated edges while in our model the decision makers proactively pick the
other decision makers and follow the picked individuals’ decisions with some probability.

1.3 Contribution

As the first contribution of this paper, we propose an algorithm to compute the fusion center’s decision
probabilities at each time step, based on the individual SDMs’ decision probabilities. By introducing the
concept of system state, we simplify our model, which is an exponential-dimension Markov chain, to a
lumped polynomial-dimension Markov chain. The computation complexity of the iterative algorithm to
compute the fusion center’s decision probabilities is also polynomial. In addition, the algorithm does not
rely on the specific decision making policies of the individual SDMs.

As the second contribution, we analyze the asymptotic accuracy and expected decision time of the
fusion center as the system size n tends to infinity. We focus on two specific group decision making rules:
the fastest rule and the majority rule. We give the exact expressions for the asymptotic accuracy and
expected decision time in these two cases. Our model under the fastest rule has the same asymptotic
performance as the model under the fastest rule in [8]. The analysis of the majority rule is based on
the result on the mean-field convergence analysis proposed by Le Boudec et al. [19]. The asymptotic
performance of the majority rule in our model is distinct from the model in [8] in that our model achieves
faster decision speed, while at the cost of less accuracy, with the same individual SDMs. In addition, in our
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Table 1 Notations frequently used in this paper

Di(t) decision of SDM i after time step t. Di(t) ∈ {H1, H0.Hnd}
pr(t) isolated SDM’s probability of deciding Hr, for r ∈ {1, 0}, at time step t, on condition that it has

not decided H1 or H0 before time t
pnd(t) isolated SDM’s probability of not deciding H1 or H0 at time step t, on condition that it has not

decided H1 or H0 before time t
fr(t |N1, N0) SDM’s probability of deciding Hr, r ∈ {1, 0}, after time step t, on condition that it has not

decide H1 or H0, and N1 (N0 resp.) SDMs have already decided H1 (H0 resp.) before time t
fnd(t |N1, N0) SDM’s probability of not deciding H1 or H0 after time step t, on condition that it has not decide

H1 or H0, and N1 (N0 resp.) SDMs have already decided H1 (H0 resp.) before time t
N1(t) (N0(t) resp.) the number of SDMs who have decided H1 (H0 resp.) up to time step t

pr(t;n, q) the probability that the fusion center, running the q-out-of-n rule, decides Hr, r ∈ {1, 0}, right
at time step t

Tfc decision time of the fusion center, which is a random variable
pc(n, q) the probability that the fusion center, running the q-out-of-n rule, makes the correct global

decision, i.e., the accuracy of the fusion center
E[Tfc |n, q] the expected decision time for the fusion center running the q-out-of-n rule

model under the majority rule, the decision speed and the global accuracy can simultaneously be better
than the isolated SDM, which is not achieved by the model [8] without social pressure. Besides, leading
order of a model parameter, which characterizes the individual SDMs’ tendency of being influenced by
the social pressure, is analyzed for the mean-field approximation of our system.

In addition, we present simulation work to validate the theoretical results and show how the accuracy
and decision speed of our system vary with the system size, the group decision policies and the inclination
of the decision makers to be influenced by the social pressure. We discuss how to adjust the model
parameters to trade off between the system’s accuracy and expected decision time.

1.4 Organization

The rest of this paper is organized as follows. Section 2 is the model description and problem statement.
Section 3 provides the algorithm of computing the fusion center’s decision probabilities for finite system
sizes. Section 4 is the discussion of the asymptotic behavior as the system size tends to infinity. Some
further simulation is provided in Section 5. Section 6 is the conclusion and discussion.

2 Notations, Model Description, and Problem Statement

The group decision making system discussed in this paper consists of a fusion center and n identical
individual decision makers indexed by i ∈ V = {1, 2, . . . , n}. The individual decision makers are taking
sequential hypothesis test between two hypotheses, H1 and H0, and are thus referred to as the sequential
decision makers (SDMs). The SDMs make individual decisions based on both their private signals and
communication with other SDMs in the system. The fusion center collects individual decisions and reach
a global decision according to the q-out-of-n aggregation rule. Before the model description, we present
in Table 1 all the notations frequently used in this paper.

2.1 Behavior of an isolated SDM

Our model of the isolated SDM is the same as that studied by Dandach et al. [8]. Suppose H1 and H0 are
the candidate hypotheses and Hnd(t) corresponds to the state of “not deciding either H1 or H0”. Without
loss of generality, we always assume H1 to be the correct hypothesis. Denote by Di(t) the decision state
of SDM i at any time t, thereby Di(t) ∈ {H1, H0, Hnd}, and assume that the decision on H1 or H0 is
irreversible. We assume that, when isolated from other SDMs, an SDM adopts some prescribed Bayesian
learning and decision policy. We do not specify what the policy is, but just assume that the decision
probabilities at each time, which can be predicted by the signal structure and the learning and decision
policy, are given as the individual decision probability sequence (IDPS) {p1(t), p0(t), pnd(t)}t∈N, where

pr(t) = P
[
Di(t) = Hr |Di(t− 1) = Hnd

]
for any r ∈ {1, 0}, and

pnd(t) = P
[
Di(t) = Hnd|Di(t− 1) = Hnd

]
.

(1)

Example: The Sequential Probability Ratio Test (SPRT) is a type of discrete-time Bayesian learning
and decision policy, which achieves the minimum expected decision time for any prescribed error rate [26].
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(a) p1(t) and p0(t)
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(b) F1(t) and F0(t)

Fig. 1 IDPS for an SDM implementing an SPRT. In Figure 1(a), the blue solid curve represents p1(t) while the red dash
curve represent p0(t). In Figure 1(b), the blue solid curve represent F1(t) = P[Di(t) = H1, Di(t − 1) = Hnd], i.e., the
probability of deciding H1 right at time step t. The red dash curve represents F0(t) = P[Di(t) = H0, Di(t− 1) = Hnd].

For an SDM running the SPRT, a signal St is received at each time step t, and, based on the accumulated
information set It = {s1, s2, . . . , st}, the SDM calculate the log-likelihood function

Λ(t) = log

(
P[S1 = s1, S2 = s2, . . . , St = st | θ = H1]

P[S1 = s1, S2 = s2, . . . , St = st | θ = H0]

)
,

according to the Bayesian formula, where θ denotes the underlying hypothesis. Prescribed thresholds
η1 > 0 and η0 < 0 are used to manipulate the trade-off between decision accuracy and speed. Whenever
Λ(t) > η1 (Λ(t) < η0 resp.), the SDM decides H1 (H0 resp.) at time step t. Given the signal structure,
i.e., fS|θ=H1

(s) and fS|θ=H0
(s), and the thresholds η1 and η0, the IDPS, i.e., the probabilities of deciding

H1 or H0 at each time step, can be predicted before the SPRT process occurs. We refer the computation
algorithm to Appendix B in [8]. Figure 1 is an example of the IDPS for an SDM running the SPRT with
η1 = 2.94 and η0 = −2.94. In this case the false-alarm and mis-detection probabilities are both 0.05.

In our model the IDPS of an isolated SDM are assumed to have the following property.

Assumption 1 (Isolated SDMs’ almost-sure decision and finite expected decision time) The
isolated SDM, with the IDPS {p1(t), p0(t), pnd(t)}t∈N, makes the final individual decision almost surely,
that is,

∏∞
t=1 pnd(t) = 0. Moreover, the isolated SDM has finite expected decision time, i.e.,

p1(1) + p0(1) +

∞∑
t=2

t
((
p1(t) + p0(t)

) t−1∏
τ=1

pnd(τ)
)
<∞.

2.2 The n-SDM system

By n-SDM system we mean the system consisting of one fusion center and n identical and interacting
SDMs. The behavior of the individual SDMs is described by the following assumption.

Assumption 2 (Individual decision making behavior in a n-SDM system) In the n-SDM sys-
tem, at each time step t, the following process occurs independently for any SDM i ∈ V who has not
made the final decision between H1 and H0:

(i. SDM i first runs the sequential hypothesis test as an isolated SDM, i.e., SDM i decides H1 (resp. H0)
with the probability p1(t) (resp. p0(t));

(ii. If no final decision is made in Step (i, SDM i will randomly pick one SDM j (can be SDM i itself)
in the system and follow SDM j’s previous decision state, i.e., Dj(t− 1), with some probability β.

In our model the more SDMs who have already made the decisionH1 (resp.H0), the higher probability
that the remaining SDMs decide H1 (resp. H0) at the current time step, that is, those SDMs who have
made the final decision form the social pressure, which pushes other SDMs towards the final decisions.
The probability β characterizes the inclination of the SDMs to be influenced by the social pressure. The
model proposed by Dandach et. al. [8] is a special case when β = 0. Denote by fr(t |N1, N0), r ∈ {1, 0},
the probability that an SDM in the n-SDM system decides Hr at time step t, on condition that it has not
made the final decision up to time t−1 and N1 (resp. N0) numbers of SDMs have decided H1 (resp. H0)
before time t. Denote by fnd(t |N1, N0) the probability that an SDM does not make the final decision
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Fig. 2 The first diagram shows the structure of the n-SDM system. The connections between the SDMs are bilateral with
self loops. Therefore any SDM can be picked by any other SDM or itself. Once an individual final decision is made, the
decision is sent to the fusion center. The second diagram describes how an SDM in the n-SDM system makes the individual
decision at time step t+ 1.

at time step t, on condition that it has not made the final decision up to time t − 1 and N1 (resp. N0)
numbers of SDMs have decided H1 (resp. H0) before time t. According to Assumption 2,

fr(t|N1, N0) = pr(t) + βpnd(t)
Nr
n

for r ∈ {1, 0}, and

fnd(t|N1, N0) = pnd(t)

(
n−N1 −N0

n
+ (1− β)

N1 +N0

n

)
.

(2)

One can easily check that f1(t|N1, N0) + f0(t|N1, N0) + fnd(t|N1, N0) = 1 for any t, N1 and N0.
Denote by N1(t) (resp. N0(t)) the numbers of SDMs who have decided H1 (resp. H0) up to time step

t. The fusion center receives each final individual decision from the SDMs and records N1(t) and N0(t).
The global decision is made based on N1(t) and N0(t), according to the q-out-of-n rule defined below.

Definition 1 (The q-out-of-n rule) In an n-SDM sequential decision aggregation system, the fusion
center running a q-out-of-n rule decides H1 at time step t whenever N1(t) > N0(t) and N1(t) ≥ q, where
q is a prescribed threshold. The global decision H0 is made if N0(t) > N1(t) and N0(t) ≥ q.

Figure 2 gives a visual depiction of the n-SDM system structure and the individual SDMs’ behavior.

2.3 Problem Statement

With the n-SDM system described in Section 2.1 and 2.2, we aim to solve the following problems.

Problem 1 (Finite-system behavior) For the fusion center running the q-out-of-n rule in a system
with finite SDMs, given the IDPS {p1(t), p0(t), pnd(t)}t∈N, compute the probabilities p1(t;n, q), p0(t;n, q),
pc(n, q), and the expected decision time E[Tfc|n, q], as defined in Table 1.

Problem 2 (Asymptotic behavior) For the fusion center running the q-out-of-n rule in a n-SDM
system, given the IDPS, compute the limit of the fusion center’s accuracy and expected decision time as
n tends to infinity, especially in the cases when q = 1 or q = dn/2e.

3 The Behavior of the Fusion Center in a Finite n-SDM System

In this section we solve Problem 1, i.e., the fusion center’s behavior in a system with finite SDMs. Firstly,
we state a proposition on the almost-sure decision and finite expected decision time for the fusion center.

Proposition 1 (Almost-sure decision and finite expected decision time) Consider an n-SDM
system, assume that for the isolated SDM, there exists some t̃ ∈ N such that p1(t̃) 6= 0, p0(t̃) 6= 0 and∏t̃−1
τ=1 pnd(τ) 6= 0, then the fusion center has the almost-sure decision property if and only if

(i. the isolated SDMs have almost-sure decision property;
(ii. the system size n is an odd number;

(iii. the threshold q satisfies 1 ≤ q ≤ dn/2e.
Moreover, in addition to the conditions (ii and (iii, if the isolated SDMs have finite expected decision
time, then the fusion center also has finite expected decision time.



6 Wenjun Mei, Francesco Bullo

Proof: We first prove the contrapositive of the statement that the almost-sure decision of the fusion
center leads to the conditions (i, (ii, and (iii.

(1) If the individual SDMs do not have the almost-sure decision property, i.e., pnd =
∏
t=1 pnd(t) 6= 0,

then the probability that none of the SDMs makes any final decision in the n-SDM system is equal to
pnnd. Therefore, the probability that the fusion center does not make any global decision at all is no less
than pnnd > 0.

(2) If n is even, the event “no SDM has made any final decision after time t̃− 1, at time t̃, n/2 SDMs
decide H1 while n/2 SDMs decide H0” has probability t̃−1∏

τ=1

pnd(τ)

n(
n

n/2

)
p1(t̃)n/2p0(t̃)n/2 > 0.

If this event occurs, then the fusion center will never make a global decision.
(3) If q > dn/2e, then consider the following event: “No SDM has decided up to t̃ − 1. At t̃, dn/2e

SDMs decide H1 while bn/2c SDMs decide H0.” This event has the probability t̃−1∏
τ=1

pnd(τ)

n(
n

dn/2e

)
p1(t̃)dn/2ep0(t̃)bn/2c > 0.

In this case, neither N1 nor N0 has a chance to exceed the threshold, therefore the fusion center has
a non-zero probability of making no global decision. Combining (1), (2) and (3) we conclude that the
fusion center having the almost-sure decision property implies conditions (i, (ii, and (iii.

Next, we prove that conditions (i, (ii, and (iii lead to the almost-sure decision of the fusion center.
Before the argument, we introduce some notations used in this proof. Define the random variable Ti
as the decision time of SDM i when it is isolated, and define T

(n)
i as the decision time of SDM i in

an n-SDM system. Define T
(n)
max as maxi T

(n)
i , i.e., the time instant when the last SDM makes the final

individual decision. By definition, the fusion center’s decision time must be prior or equal to T
(n)
max. Let

T
(n)
−i = (T

(n)
1 , . . . , T

(n)
i−1, T

(n)
i+1, . . . , T

(n)
n ), i.e., the (n−1)-tuple of the decision time instants of all the SDMs

except SDM i. Denote by ω one possible “trajectory” of the n-SDM system, i.e., a sequence of 2-tuples{(
n1(t), n0(t)

)}
t∈N, where n1(t), n0(t) ∈ N and n1(t) + n0(t) ≤ n for any t ∈ N. For simplicity, let

fα(t |ω) = fα
(
t |n1(t − 1), n0(t − 1)

)
with the right-hand side of the equation defined by equations (2)

for α = 1, or 0, or “nd”. Denote by Ω the set of all the possible trajectories, i.e., ω ∈ Ω.
Due to equations (2), f1(t |ω) ≥ p1(t), f0(t |ω) ≥ p0(t) and fnd(t |ω) ≤ pnd(t) for any ω ∈ Ω. Since

P[T
(n)
i <∞|T (n)

−i <∞] =
∑
ω∈Ω

P[T
(n)
i <∞|ω,T (n)

−i <∞]P[ω |T (n)
−i <∞]

=
∑
ω∈Ω

(
1−

∞∏
t=1

fnd(t |ω)
)
P[ω |T (n)

−i <∞]

≥
∑
ω∈Ω

(
1−

∞∏
t=1

pnd(t)
)
P[ω |T (n)

−i <∞] = P[Ti <∞] = 1,

we have

P[T (n)
max <∞] = P[T

(n)
1 <∞, T (n)

2 <∞, . . . , T (n)
n <∞] ≥

n∏
i=1

P[Ti <∞] = 1.

Therefore, P[T
(n)
max <∞] = 1. Due to conditions (ii and (iii, the q-out-of-n rule must have been triggered

no later than T
(n)
max. Therefore, the fusion center makes the global decision almost surely.

We now prove the finite expected decision time for the fusion center. Conditions (ii and (iii lead to

the inequality Tfc ≤ T (n)
max ≤ T (n)

1 + T
(n)
2 + · · ·+ T

(n)
n for any ω ∈ Ω. Moreover,

E[T
(n)
i ] =

∞∑
t=1

P[T
(n)
i ≥ t] =

∞∑
t=1

∑
ω∈Ω

P[T
(n)
i ≥ t |ω]P[ω] = 1 +

∞∑
t=2

∑
ω∈Ω

t−1∏
τ=1

fnd(t |ω)P[ω]

≤ 1 +

∞∑
t=2

∑
ω∈Ω

t−1∏
τ=1

pnd(t)P[ω] = 1 +

∞∑
t=2

P[Ti ≥ t] = E[Ti].

Therefore, E[Tfc |n, q] ≤ nE[Ti] <∞ for any 1 ≤ q ≤ dn/2e. This concludes the proof. ut
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(a) t = 1 (b) t = 21 (c) t = 41 (d) t = 101

Fig. 3 The time-evolution of the state probability distribution of a 9-SDM system with social pressure. The IDPS for
individual SDMs are as shown in Figure 1.

In the rest of this section, we quantitatively analyze the behavior of the fusion center in an n-SDM
system, given the IDPS of the isolated SDM. We compute the probabilities of deciding either H1 or H0

at each time step, the accuracy, and the expected decision time of the fusion center.
1) The n-SDM system as a lumped Markov chain: The n-SDM sequential decision aggregation system

is a 3n-state Markov chain, since Di(t) ∈ {H1, H0, Hnd} for any i ∈ V and at any time step the decision
of any SDM only depends on the states of all the SDMs after the previous time step as well as the IDPS.
Instead of focusing on any individual SDM’s decision state, we discuss the time evolution of N1(t) and

N0(t). Then the system is reduced to to (n+1)(n+2)
2 -state Markov chain.

Definition 2 Consider the n-SDM sequential aggregation system. Define the system state after time
step t by N(t) = (N1(t), N0(t))T and define p(t,N1, N0) as the probability distribution of the system
state after time t. Define Γ (t,∆N1, ∆N0 |N1, N0) as the state transition function, which correspond to
the probability of the following event: “on condition that N1 SDMs have decided H1 and N0 SDMs have
decided H0 after time step t− 1, ∆N1 SDMs decide H1 and ∆N0 SDMs decide H0 at time t.”

The computation algorithm of the system’s state probability distribution at any time t is given by the
following proposition. The proof is a straightforward application of probability theory and thus omitted.

Proposition 2 (System state probability distribution) The probability distribution of the n-SDM
system state is given by the formulas below:

(i. For t = 1, p(1, N1, N0) = Γ (1, N1, N0 | 0, 0);
(ii. For t ≥ 2, the probability distribution of the system state is computed from the distribution at last

time step as

p(t,N1, N0) =

N1∑
l=0

N0∑
k=0

p(t− 1, l, k)Γ (t,N1 − l, N0 − k | l, k).

Here, the state transition function Γ (t,∆N1, ∆N0 |N1, N0) is computed by

Γ (t,∆N1, ∆N0 |N1, N0) =

(
n−N1 −N0

∆N1

)(
n−N1 −N0 −∆N1

∆N0

)
× f∆N1

1 (t|N1, N0)f∆N0
0 (t|N1, N0)fn−N1−N0−∆N1−∆N0

nd (t|N1, N0),

where t ∈ N and 0 ≤ ∆N1 +∆N0 +N1 +N0 ≤ n.

Figure 3 illustrates the evolution of the probability distribution of the system state for a group of 9
SDMs in which all the SDMs are running the SPRT as shown in Figure 1. Initially, (N1, N0) = (0, 0) is
the only state with non-zero probability and then the states with non-zero probability spread out and
finally aggregate on the diagonal line N1 +N0 = 9.

2) Computation of p1(t;n, q) and p0(t; , n, q): With the n-SDM system’s state probability distribution
at any time t, i..e, p(t,N1, N0), we can compute P1(t;n, q) and p0(t;n, q) defined in Problem 1, that is,
the probabilities that the fusion center running the q-out-of-n rule makes the global decision H1 and
H0 respectively right at time step t. Notice that, in the sequential decision aggregation process for
1 ≤ q ≤ bn/2c, the cancel-out case may occur. The cancel-out case in which the fusion center finally
decides H1 corresponds to the intersection of the following three events:

(i. N1(τ∗ − 1) < q and N1(τ∗) ≥ q for some τ∗ < t;
(ii. For τ ∈ {τ∗, τ∗ + 1, . . . , t− 1}, N1(τ) = N0(τ) ≥ q;
(iii. After time step t, N1(t) > N0(t) ≥ q.
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N0
N1

q

(a) τ = τ∗ − 1

N0N1

q

(b) τ = τ∗

N0N1

q

(c) τ = t− 1

N0
N1

q

(d) τ = t

Fig. 4 The cancel-out case in which the number of votes for H1 and H0 both exceed the threshold q at time τ∗ and remain
equal till t− 1. At time t, the vote for H1 outnumbers H0 and the fusion center decides H1 at time t.

If the notations N1(t) and N0(t) are exchanged, the intersection of events (i), (ii) and (iii) corresponds to
the cancel-out case in which the fusion center decides H0. An example of the cancel-out case is illustrated
by Figure 4. Based on whether the cancel-out case may occur, we discuss the computation of p1(t;n, q)
and p0(t;n, q) in two cases, Case 1: 1 ≤ q ≤ bn/2c and Case 2: dn/2e ≤ q ≤ n.

Proposition 3 (Computation of p1(t;n, q) in Case 1) Consider the n-SDM sequential decision ag-
gregation system with the fusion center running the q-out-of-n rule and the individual SDMs with the
IDPS {p1(t), p0(t), pnd(t)}t∈N. For 1 ≤ q ≤ bn/2c, the probability p1(t;n, q) defined in Problem 1 is
computed by the following formulas:

(i. For t = 1,

p1(1;n, q) =

n∑
N1=q

m̃∑
N0=0

p(1, N1, N0); (3)

(ii. For t ≥ 2,

p1(t;n, q) =

q−1∑
l=0

q−1∑
k=0

p(t− 1, l, k)

n−l−k∑
∆N1=q−l

m̄∑
∆N0=0

Γ (t,∆N1, ∆N0 | l, k)

+

bn/2c∑
s=q

peven(t− 1, s)

n−2s∑
∆N1=1

m∗∑
∆N0=0

Γ (t,∆N1, ∆N0 | s, s),

(4)

where m̃ = min{N1−1, n−N1}, m̄ = min{∆N1 + l−k−1, n− l−k−∆N1} and m∗ = min{∆N1−1, n−
2s −∆N1}. The probability p(t − 1, l, k) for any t ∈ N and 0 ≤ l + k ≤ n is computed by Proposition 2
and the function peven(t, s) for any t ∈ N and q ≤ s ≤ bn/2c is given by the following iteration formulas:

(i. For t = 1, peven(t, s) = p(1, s, s);
(ii. For t ≥ 2,

peven(t, s) =

q−1∑
l=0

q−1∑
k=0

p(t− 1, l, k)Γ (t, s− l, s− k | l, k) +

s∑
h=q

peven(t− 1, h)Γ (t, s− h, s− h |h, h). (5)

Proof: First we define peven(t, s) as the probability of the intersection of the following tree events:

(i. N1(τ̃) < q and N0(τ̃) < q for some τ̃ < t;
(ii. For τ ∈ {τ̃ , τ̃ + 1, . . . , t}, N1(τ) = N0(τ);
(iii. After time step t, N1(t) = N0(t) = s ≥ q.

Then equation (5) is a straightforward application of the total probability formula. For t = 1, peven(1, s)
is equal to p(1, s, s) by definition. For the case t ≥ 2, the first term of the right-hand side of equation (5)
corresponds to the probability that both N1(t− 1) and N0(t− 1) are under the threshold q and N1(t) =
N0(t) = s ≥ q. The second term is the probability that, for any τ ≤ t−1, N1(τ) and N0(τ) remain equal
if either of them exceeds the threshold q, and N1(t) = N0(t) = s ≥ q.

With the computation algorithm of peven(t, s), now we derive the formula for p1(t; , n, q). If the fusion
center decides H1 at t = 1, then N1(1) ≥ q and N1(1) > N0(1). Since all the system states (N1(1), N0(1))
are mutually exclusive, the probability that the fusion center decides H1 at t = 1 is the sum of all the
p(1, N1, N0) satisfying N1 > N0 and N1 ≥ q. This concludes the proof of equation (3).

For t ≥ 2, first we consider the case when the cancel-out case does not occur. The probability of the
intersection of the following two events:
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(i. At time t− 1, both N1(t− 1) and N0(t− 1) are below the threshold. The probability of this event is∑q−1
l=0

∑q−1
k=0 p(t− 1, l, k);

(ii. On condition that after time t − 1, the system is in some state (l, k) below the threshold, i.e., l < q
and k < q, the votes for H1 outnumbers the votes for H0 and exceeds the threshold at time step t,

is equal to
n−l−k∑

∆N1=q−l

m̄∑
∆N0=0

Γ (t,∆N1, ∆N0 | l, k).

Applying the total probability formula we obtain the probability that the fusion center decides H1 at t
when the cancel-out case does not occur, which is the first term of the right-hand side of equation (4).

In the cancel-out case, the q-out-of-n condition is not triggered before t. After time step t− 1, both
N1(t − 1) and N0(t − 1) must have exceeded the threshold q and they are equal to s with probability
peven(t − 1, s) for any s ∈ {q, q + 1, . . . , bn/2c}. On condition that N1(t − 1) = N0(t − 1) = s ≥ q,

the probability that N1(t) > N0(t) ≥ q is equal to
∑n−2s
∆N1=1

∑m∗

∆N0=0 Γ (t,∆N1, ∆N0 | s, s). According to

the total probability formula, we obtain the second term of the right hand side of equation (4). This
concludes the proof. ut

The computation of p1(t;n, q) in the case dn/2e, in which there is no cancel-out case, is given by the
proposition below. The proof is a straightforward application of the total probability formula.

Proposition 4 (Computation of p1(t;n, q) in Case 2) Consider the n-SDM sequential decision ag-
gregation process with the fusion center running the q-out-of-n rule. For dn/2e ≤ q ≤ n, the probability
p1(t;n, q) is computed by the following formulas:

(i. For t = 1,

p1(t;n, q) =

n∑
N1=q

n−N1∑
N0=0

p(1, N1, N0); (6)

(ii. For t ≥ 2,

p1(t;n, q) =

q−1∑
l=0

n−q∑
k=0

p(t− 1, l, k)

n−l−k∑
∆N0=q−l

m̄∑
∆N0=0

Γ (t,∆N1, ∆N0 | l, k), (7)

where m̄ = n− l − k −∆N1.

To compute p0(t;n, q) we just need to switch all the indexes corresponding to H1 and H0 in equa-
tions (3), (4), (6), and (7).

3) Accuracy and expected decision time of the fusion center and the overall computation complexity:
With the algorithm of computing p1(t;n, q) and p0(t;n, q), the fusion center’s accuracy and expected
decision time is given by the following equations:

pc(n, q) =

∞∑
t=1

p1(t;n, q), (8)

and

E[Tfc |n, q] =

∞∑
t=1

t
(
p1(t;n, q) + p0(t;n, q)

)
. (9)

The state transition function Γ (t,∆N1, ∆N0 |N1, N0) is given by a closed form with the computation
complexity O(1). According to Proposition 2, the computation complxity for p(t,N)1, N0) is O(1) for
t = 1 and O(n2) for t ≥ 2. Knowing p(t−, N1, N0) for any 0 ≤ N1 ≤ n, 0 ≤ N0 ≤ n and 0 ≤ N1 +N0 ≤ n,
the algorithm of computing peven(t, s) has the complexity O(n2). Therefore, according to Proposition 3
and Proposition 4 we know that the computation complexity for p1(t;n, q) is O(n5) when 1 ≤ q ≤ bn/2c
and is O(n4) when dn/2e ≤ q ≤ n.

4 Asymptotic Behaviors of the q-out-of-n Decision Aggregation System

By asymptotic behavior we mean the behavior of the fusion center in the n-SDM system as n tends
to infinity. In this section, firstly we relate the accuracy and the expected decision time of the fusion
center to the IDPS of the isolated SDMs, particularly for two special q-out-of-n rules: the fastest rule
with q = 1 and the majority rule with q = dn/2e. Then we discuss the influence of the parameter β on
the sequential decision aggregation system as n→∞.
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4.1 The fastest rule

According to Proposition IV.1 in the paper by Dandach et. al. [8], which is a n-SDM system with β = 0,
the asymptotic accuracy and expected decision time of the fusion center running the fastest rule only
depends on the first time instance when either p1(t) 6= 0 or p0(t) 6= 0. The following theorem states that
the n-SDM system under the fastest rule leads to the same result for any 0 ≤ β ≤ 1.

Theorem 1 (Asymptotic behavior for the fastest rule) Consider the sequential decision aggrega-
tion system in which the fusion center is running the fastest rule. Define the earliest possible decision
time t̄ as

t̄ = min{t ∈ N | p1(t) 6= 0 or p0(t) 6= 0}.
Then the asymptotic accuracy of the fusion center satisfies

lim
n→∞

pc(n, 1) =


1, if p1(t̄) > p0(t̄),

0, if p1(t̄) < p0(t̄),

1/2, if p1(t̄) = p0(t̄),

(10)

and the asymptotic expected decision time satisfies

lim
n→∞

E[Tfc|n, 1] = t̄. (11)

Proof: In this proof it is convenient to modify our notation as follows: several systems with differ-

ent IDPS are indexed by subscripts. Denote by S
(n)
r the n-SDM system with index r and the IDPS

{pr1(t), pr0(t), prnd(t)}t∈N. Notice that here r is the system index rather than the power. The accuracy and

expected decision time for the fusion center are denoted by pc(S
(n)
r , q) and E[Tfc|S(n)

r , q] respectively.
We introduce three different n-SDM systems. Define

(i. S
(n)
1 as the n-SDM system with IDPS {p1

1(t), p1
0(t), p1

nd(t)}t∈N, for which the earliest possible decision
time t̄ is defined by t̄ = min{t ∈ N | p1

1(t) 6= 0 or p1
0(t) 6= 0};

(ii. S
(n)
2 as the n-SDM system with β = 0, i.e., no social pressure, and the corresponding IDPS satisfying

p2
1(t) = p1

1(t) and p2
0(t) = p1

0(t), for ∀t ≤ t̄,
p2

1(t̄+ 1) = 1 and p2
0(t̄+ 1) = 0,

p2
1(t) = p2

0(t) = 0 for ∀t > t̄+ 1;

(iii. S
(n)
3 as the n-SDM system with β = 0 and the IDPS satisfying

p3
1(t) = p1

1(t) and p3
0(t) = p1

0(t), for ∀t ≤ t̄,
p3

1(t̄+ 1) = 0 and p3
0(t̄+ 1) = 1,

p3
1(t) = p3

0(t) = 0 for ∀t > t̄+ 1.

First we compare the accuracy of S
(n)
1 and the accuracy of S

(n)
2 when both are running the fastest

rule. The systems S
(n)
1 and S

(n)
2 are identical for t ≤ t̄ since the social pressure terms βpnd(t)N1(t)/n and

βpnd(t)N0(t)/n remain zero. For system S
(n)
2 , at time step t̄+ 1, all the SDMs who have not made final

individual decisions will decide H1. Therefore, pc(S
(n)
1 , 1) ≤ pc(S(n)

2 , 1). Applying the same argument we

have pc(S
(n)
3 , 1) ≤ pc(S(n)

1 , 1). Moreover, according to Proposition IV.1 in [8], as n tends to infinity,

lim
n→∞

pc(S
(n)
2 , 1) = lim

n→∞
pc(S

(n)
3 , 1)

=


1, if p1

1(t̄) > p1
0(t̄),

0, if p1
1(t̄) < p1

0(t̄),
1

2
, if p1

1(t̄) = p1
0(t̄).

(12)

This leads to equation (10).
Now we discuss the asymptotic expected decision time. If p1

1(t̄) + p1
0(t̄) = 1, obviously the fusion

center’s expected decision time would be t̄ for any n. Suppose 0 < p1
1(t̄) + p1

0(t̄) < 1. Define another

system S
(n)
4 with the IDPS {p4

1(t), p4
0(t), p4

nd(t)}t∈N satisfies

p4
1(t̄) = p4

0(t̄) = 0, p4
nd(t̄) = 1, and

p4
1(t) = p1

1(t), p4
0(t) = p1

0(t), p4
nd(t) = p1

nd(t) for any t 6= t̄,
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and the fusion center in system S
(n)
4 makes the global decision after the SDMs have decided H1 or H0. As

long as p1
1(t̄) +p1

0(t̄) < 1, the isolated SDMs with the IDPS {p4
1(t), p4

0(t), p4
nd(t)}t∈N still have almost-sure

decision and finite expected decision time.

For system S
(n)
1 ,

E[Tfc |S(n)
1 , q = 1] = t̄P[Tfc = t̄ |S(n)

1 , q = 1] + E[Tfc |S(n)
1 , q = 1, Tfc > t̄]P[Tfc > t̄ |S(n)

1 , q = 1].

By definition and according to the proof of Proposition 1,

E[Tfc |S(n)
1 , q = 1, Tfc > t̄] ≤ E[T (n)

max |S
(n)
4 ] ≤ nE[Ti|S(n)

4 ].

Moreover, according to the proof of Proposition IV.1 in [8], the term P[Tfc |S(n)
1 , q = 1] is in order O(ε)

for some 0 < ε < 1 and limn→∞ P[Tfc = t̄ |S(n)
1 , q = 1] = 1. Therefore,

lim
n→∞

E[Tfc |S(n)
1 , q = 1, Tfc > t̄]P[Tfc > t̄ |S(n)

1 , q = 1] = 0, and lim
n→∞

E[Tfc |S(n)
1 , q = 1] = t̄.

ut

4.2 The majority rule

Before analyzing the accuracy and expected decision time of the fusion center under the majority rule,
we introduce a main result in the paper [19] on the mean-field convergence for systems with interacting
objects, which can be applied to our model.

Consider a discrete-time Markov chain with n individuals. Denote by Xi(t) the state of individual
i after time step t. The individual states set is identical for all the individuals and is denoted by Θ =
{1, 2, . . . , S}, i.e., Xi(t) ∈ Θ for any i ∈ {1, 2, . . . , n} and t ∈ N.

Define the occupancy measure M (n)(t) ∈ R1×S by M
(n)
r (t) = 1

n

∑n
i=1 1{Xi(t)=r} for any r ∈ Θ. Define

the memory R(n)(t) as some d-dimension row vector, which is updated according to some continuous
function g : R1×d×R1×S → R1×d, that is, R(n)(t+1) = g(R(n)(t),M (n)(t)). Denote the individual state

transition matrix by K(n)(t) =
(
K

(n)
rm (t)

)
S×S , that is,

K(n)
rm (t) = P[X

(n)
i (t+ 1) = m |X(n)

i (t) = r],

and K
(n)
rm is an explicit function of R(n)(t), i.e., K(n)(t) =

(
K

(n)
rm (R(n)(t))

)
S×S . We rewrite [19, Theo-

rem 4.1] as follows.

Lemma 1 (Mean-field convergence) Consider the discrete-time Markov chain described above. As-
sume that,

(i. For any r,m ∈ Θ, as n→∞, K
(n)
rm (r) converges uniformly in r ∈ R1×d to some Krm(r), which is a

continuous function of r;
(ii. The vectors M (n)(0) and R(n)(0) converge almost surely to some deterministic limits µ(t) and ρ(0).

Then for any fixed t, almost surely,

lim
n→∞

M (n)(t) = µ(t), and lim
n→∞

R(n)(t) = ρ(t),

where µ(t) and ρ(t) are defined by the following iteration formulas:

µ(t+ 1) = µ(t)K
(
ρ(t)

)
, and ρ(t+ 1) = g

(
ρ(t),µ(t+ 1)

)
.

In the lemma above, the deterministic vector µ(t) is referred to as the mean-field limit of M (n)(t) as
n→∞. Now we apply this lemma to our model. Define the occupancy measure M (n)(t) by

M (n)(t) =

(
N1(t)

n
,
N0(t)

n
,
n−N1(t)−N0(t)

n

)
, (13)

and define the vector sequence {µ(t)}t∈N by

µ(0) = (0, 0, 1),

µ1(t+ 1) = µ1(t) + µ3(t)
(
p1(t+ 1) + βpnd(t+ 1)µ1(t)

)
,

µ2(t+ 1) = µ2(t) + µ3(t)
(
p0(t+ 1) + βpnd(t+ 1)µ2(t)

)
,

µ3(t+ 1) = 1− µ1(t+ 1)− µ2(t+ 1).

(14)

The following proposition states that, as n tends to infinity, the occupancy measure M (n)(t) in our
model converges almost surely to the mean-field limit µ(t).
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Proposition 5 (Mean-field convergence in the n-SDM system) Consider the n-SDM sequential
decision aggregation system. For any t ∈ N, as the system size n tends to infinity, the occupancy measure
M (n)(t), defined by equation (13), satisfies

lim
n→∞

M (n)(t) = µ(t) almost surely, (15)

where µ(t) is defined by equation (14).

Proof: Define the memory vector by

R(n)(t) =
(
t,M

(n)
1 (t),M

(n)
2 (t)

)
=

(
t,
N1(t)

n
,
N0(t)

n

)
.

Therefore the function g = (g1, g2, g3) becomes:

g1

(
R(n)(t),M (n)(t+ 1)

)
= R

(n)
1 (t) + 1 = t+ 1,

g2

(
R(n)(t),M (n)(t+ 1)

)
= M

(n)
1 (t+ 1) =

N1(t+ 1)

n
,

g3

(
R(n)(t),M (n)(t+ 1)

)
= M

(n)
2 (t+ 1) =

N0(t+ 1)

n
.

Let the individual states set be Θ = {1, 2, 3}, where the indexes 1, 2 and 3 correspond to H1, H0 and
Hnd respectively. Define the matrix K(r) by

K11(r) = 1, K12(r) = 0, K13(r) = 0; K21(r) = 0, K22(r) = 1, K23(r) = 0;

K31(r) = p1(r1 + 1) + βpnd(r1 + 1)r2, K32(r) = p0(r1 + 1) + βpnd(r1 + 1)r3,

K33(r) = 1−K31(r)−K32(r).

Based on Assumption 2 and equations (1) and (2), in our model, the individual state transition matrix
with any memory r satisfies K(n)(r) = K(r), for any n ∈ Z+. Moreover, initially M (n)(0) = µ(0) and
R(n)(0) = ρ(0). According to Lemma 1, we obtain equation (15). ut

Having completed all preparations, we now present the theorem on the asymptotic accuracy and
expected decision time of the fusion center running the majority rule.

Theorem 2 (Asymptotic behavior for the majority rule) Consider the n-SDM sequential decision
aggregation system with the IDPS {p1(t), p0(t), pnd(t)}t∈N known. Define the vector sequence {µ(t)}t∈N
by equation (14). As the system size n tends to infinity, the accuracy of the fusion center satisfies:

lim
n→∞

pc(n, dn/2e) =


1, if limt→∞ µ1(t) > 1/2,

0, if limt→∞ µ2(t) > 1/2,

1/2, if ∃T ∈ N, s.t. µ1(T ) = µ2(T ) = 1/2.

(16)

As for the asymptotic expected decision time,

(i. if limt→∞ µ1(t) > 1/2 or limt→∞ µ2(t) > 1/2, then

t< 1
2

+ 1 ≤ lim
n→∞

E[Tfc |n, dn/2e] ≤ t> 1
2
,

where t> 1
2

= min{t ∈ N | max
(
µ1(t), µ2(t)

)
> 1/2} and t< 1

2
= max{t ∈ N | max

(
µ1(t), µ2(t)

)
<

1/2}. Particularly, if there does not exists any T ∈ N such that µ1(T ) = 1/2 or µ2(T ) = 1/2, then
limn→∞ E[Tfc |n, dn/2e] = t> 1

2
;

(ii. if there exists T ∈ N such that µ1(T ) = µ2(T ) = 1/2, then

lim
n→∞

E[Tfc |n, dn/2e] = t 1
2
,

where t 1
2

= min{t ∈ N |µ1(t) = µ2(t) = 1/2};
(iii. if for any t ∈ N, µ1(t) < 1/2 and µ2(t) < 1/2, while limt→∞ µ1(t) = limt→∞ µ2(t) = 1/2, then the

fusion center’s expected decision time tends to infinity as n→∞ almost surely.
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Proof: First we discuss the asymptotic accuracy. If limt→∞ µ1(t) > 1/2, there exists t̃ ∈ N such that

µ1(t̃) > 1/2. Since M (n)(t) converges to µ(t) almost surely, M
(n)
1 (t̃) = N1(t̃)

n > 1/2 almost surely as
n→∞. According to the majority rule,

lim
n→∞

P[The fusion center decides H1 no later than t̃ |n, dn/2e] = 1,

that is, pc(n, dn/2e) → 1 as n → ∞. Following the same argument we have pc(n, dn/2e) → 0 when
limt→∞ µ2(t) > 1/2.

Now consider the case when there exists T ∈ N such that µ1(T ) = µ2(T ) = 1/2. Define t̄ =
min{t |µ1(t) = µ2(t) = 1/2}. According to equation (14), for any t < t̄, µ1(t) < 1/2 and µ2(t) < 1/2,
which implies N1(t)/n < 1/2 and N0(t)/n < 1/2 almost surely as n→∞. Therefore, no global decision
is made before t̄ and after time step t̄ the fusion center decides H1 with probability 1/2 due to the
symmetry.

Now we prove the results on the asymptotic expected decision time. First, we discuss the case when
limt→∞ µ1(t) > 1

2 . The case limt→∞ µ2(t) > 1
2 follows the same line of argument. For any t ≤ t< 1

2
,

µ1(t) < 1
2 , µ2(t) < 1

2 , and therefore

P
[

lim
n→∞

N1(t)

n
= µ1(t) <

1

2

]
= 1.

The fusion center makes no decision before t< 1
2

+ 1, almost surely. For t = t> 1
2
, µ1(t) > 1

2 , µ2(t) < 1
2 .

We have

P
[

lim
n→∞

N1(t> 1
2
)

n
= µ1(t> 1

2
) >

1

2

]
= 1.

Therefore, almost surely, t< 1
2

+ 1 ≤ Tfc ≤ t> 1
2
. Particularly, if there does not exist any T such that

µ1(T ) = 1/2, then t< 1
2

+ 1 = t> 1
2
. This concludes the proof for Case (i.

In Case (ii, when µ1(t 1
2
) = µ2(t 1

2
) = 1

2 for any t < t 1
2
, we have µ1(t) < 1

2 and µ2(t) < 1
2 . Therefore,

as n tends to infinity, the fusion center makes the global decision at t 1
2

almost surely. The asymptotic

expected decision time is t 1
2
.

In Case (iii, since P[limn→∞N1(t)/n = µ1(t) < 1/2] = P[limn→∞N0(t)/n = µ2(t) < 1/2] =
1 for any t ∈ N, the fusion center almost surely makes no global decision at any time. Therefore,
limn→∞ E[Tfc |n, q] =∞. ut

4.3 Analysis of the influence of parameter β

According to Proposition 5, µ1(t) (µ2(t), µ3(t) resp.) is a mean-field approximation of N1(t)/n (N0(t)/n,(
n − N1(t) − N0(t)

)
/n resp.) for large n. The parameter β plays an important role in the iteration of

µ(t). In this subsection we discuss the dynamical behavior of µ(t) as a function of the parameter β.
1) β=0: The case β = 0 corresponds to the system without social pressure. In this scenario the

n-SDM system is degenerated to the model discussed in [8]. Denote by ν(t) =
(
ν1(t), ν2(t), ν3(t)

)
the

solution to equation (14) with β = 0. Then we have

ν(t+ 1) = ν(t)A(t+ 1), with A(t+ 1) =

 1 0 0
0 1 0

p1(t+ 1) p0(t+ 1) pnd(t+ 1)

 , (17)

and ν(0) = (0, 0, 1). It is straightforward to check that the closed form of ν(t) is given by

ν1(t) =


p1(1), for t = 1,

p1(1) +

t−1∑
s=1

p1(s+ 1)

s∏
τ=1

pnd(τ), for t ≥ 2,

ν2(t) =


p0(1), for t = 1,

p0(1) +

t−1∑
s=1

p0(s+ 1)

s∏
τ=1

pnd(τ), for t ≥ 2,

ν3(t) =

t∏
τ=1

pnd(τ).

(18)
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According to Assumption 1, limt→∞ ν3(t) = 0. According to the iteration equations (17), ν1(t) and ν2(t)
is non-decreasing with t and are both upper bounded by 1. Therefore, limt→∞ ν1(t) and lim→∞ ν2(t)
both exist. Moreover, with the closed-form of ν(t), one can check that Theorem 2 for the case β = 0
coincide with Proposition IV.3 and IV.4 in [8].

2) β=1: Denote by ν̂(t) the solution to equation (14) in the other extreme case when β = 1. The
iteration equation for ν̂(t) is nonlinear and written as

ν̂1(t+ 1) = ν̂1(t) + ν̂3(t)
(
p1(t+ 1) + βpnd(t+ 1)ν̂1(t)

)
,

ν̂2(t+ 1) = ν̂2(t) + ν̂3(t)
(
p0(t+ 1) + βpnd(t+ 1)ν̂2(t)

)
,

ν̂3(t+ 1) = pnd(t+ 1)ν̂3(t)2.

(19)

One can deduce, from the third equation above, the closed form of ν̂3(t):

ν̂3(t) =

t∏
τ=1

pnd(τ)2t−τ .

Similar to the case when β = 0, we conclude that the limit of ν̂(t) exists, as t tends to infinity. Moreover,
with the same IDPS, ν̂3(t) decays to zero faster than ν3(t), that is, in the system with large n and β = 1,
the expected decision time for the individual SDMs is no larger than in the case when β = 0.

3) Small β: We conduct the leading order analysis in β, for the expression of µ(t), when β is very
small. The following proposition is stated without proof.

Proposition 6 (Leading order analysis for small β) Consider the iteration equation (14) for µ(t)
with β positive but close to 0. Let µr(t) = νr(t) + gr(t)β +O(β2) for any r ∈ {1, 2, 3}, where gr(t) is the
coefficient of the leading order in β and ν(t) =

(
ν1(t), ν2(t), ν3(t)

)
is given by equation (18). Then,

(i. for any r ∈ {1, 2, 3}, gr(t) satisfies the following iteration formula:

g1(t+ 1) = g1(t) + p1(t+ 1)g3(t) + ν1(t)ν3(t)pnd(t+ 1),

g2(t+ 1) = g2(t) + p0(t+ 1)g3(t) + ν2(t)ν3(t)pnd(t+ 1),

g3(t+ 1) = pnd(t+ 1)g3(t)− pnd(t+ 1)ν3(t)
(
1− ν3(t)

)
,

and g1(t) + g2(t) + g3(t) = 0 for any t ∈ N;
(ii. the closed form of gr(t) is given by g1(1) = g2(1) = g3(1) = 0, g1(2) = p1(1)pnd(1)pnd(2), g2(2) =

p0(1)pnd(1)pnd(2), g3(2) = −pnd(1)pnd(2)
(
p1(1) + p0(1)

)
, and, for any t ≥ 3,

g1(t) = g1(2) +

t∑
l=3

pnd(l)ν1(l − 1)ν3(l − 1)−
t∑
l=3

p1(l)

l−1∑
s=2

l−1∑
τ=s

pnd(τ)ν3(s− 1)
(
1− ν3(s− 1)

)
,

g2(t) = g2(2) +

t∑
l=3

pnd(l)ν2(l − 1)ν3(l − 1)−
t∑
l=3

p0(l)

l−1∑
s=2

l−1∑
τ=s

pnd(τ)ν3(s− 1)
(
1− ν3(s− 1)

)
,

g3(t) = −
t∑

s=2

t∏
τ=s

pnd(τ)ν3(s− 1)
(
1− ν3(s− 1)

)
;

(iii. for any t ∈ N, g3(t) ≤ 0, and therefore µ3(t) is non-increasing with β;
(iv. for any t ∈ N, g1(t) (g2(t) resp.) is non-decreasing with pnd(t) and non-increasing with p1(t) (p0(t)

resp.), and |g3(t)| is non-decreasing with pnd(t).

4) β close to 1: We present the following proposition on the leading order in δ = 1− β for small δ.

Proposition 7 (Leading order analysis for β close to 1) Consider equation (14) for µ(t) with β
close to but less than 1. Let δ = 1− β and µr(t) = ν̂r(t) + δhr(t) + O(δ2) for r ∈ {1, 2, 3}, where Hr(t)
is the coefficient of the leading order in δ and ν̂(t) is given by equation (19). Then we have:

(i. for r ∈ {1, 2, 3}, hr(t) satisfies the following iteration formula:

h1(t+ 1) =
(
1 + ν̂3(t)pnd(t+ 1)

)
h1(t) + p1(t+ 1)h3(t) + pnd(t+ 1)ν̂1(t)

(
h3(t)− ν̂3(t)

)
,

h2(t+ 1) =
(
1 + ν̂3(t)pnd(t+ 1)

)
h2(t) + p0(t+ 1)h3(t) + pnd(t+ 1)ν̂2(t)

(
h3(t)− ν̂3(t)

)
,

h3(t+ 1) = pnd(t+ 1)ν̂3(t)
(
2h3(t) + ν̂1(t) + ν̂2(t)

)
,

and h1(t) + h2(t) + h3(t) = 0 for any t ∈ N;
(ii. for any t ∈ N, h3(t) ≥ 0, and therefore µ3(t) is non-decreasing with β;

(iii. for any t ∈ N, h1(t) (h2(t) resp.) are non-decreasing with p1(t) (p0(t) resp.), and h3(t) is non-
decreasing with pnd(t).
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Fig. 5 The probability of making wrong global decision, and the expected decision time, for the fusion center in n-SDM
systems with the fastest rule and the majority rule. The blue curves correspond to the n-SDM systems with β = 1. The
red dash-dot curves represent the n-SDM systems with β = 0 and the black dotted lines correspond to the isolated SDM.
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Fig. 6 The probability of making wrong global decision and the expected decision time, as functions of the system size
n respectively, for different values of the parameter β and different q-out-of-n rules. In Figure (a) and (b), the solid lines
correspond to the fastest rules while the dash lines correspond to the majority rules. In Figure (c) and (d), the solid lines
correspond to the systems with β = 0.3 while the dash lines correspond to the system with β = 0.

5 Further Simulation

1) Validation of the asymptotic performance: Simulation work has been conducted to validate the results
of Theorems 1 and 2. In Figure 5(a) and 5(b), the IDPS has t̄ = 2 and p1(t̄) > p0(t̄). The simulation
result indicates that, as n increases, the fusion center’s accuracy, i.e., 1− pw(n, 1) gets close to 1 and the
expected decision time converges to t̄. In Figure 5(c) and 5(d), the IDPS satisfies µ1(∞) > 1/2 > µ2(∞)
and t> 1

2
= 2 for β = 1; µ1(∞) > 1/2 > µ2(∞) and t> 1

2
= 5 for β = 0. The simulation result indicates

that, as n tends to infinity, the probability of making wrong global decision under the majority rule,
i.e., the probability pw(n, dn/2e), converges to 0 and the expected decision time converges to t> 1

2
, as

indicated by Theorem 2. Moreover, Figure 5(d) shows that, with the presence of social pressure, the
expected decision time of the fusion center running the majority rule can be even less than the expected
decision time of a single isolated SDM, while the expected decision time of the model without social
pressure, as the red dash line in Figure 5(d) indicates, is much larger than the single isolated SDM’s.

2) Comparison among different values of β: Simulation work has been conducted to compare the
performances of systems with different values of the model parameter β. The IDPS shown in Figure 1
are used in the simulation work illustrated by Figure 6. Figure 6(a) and 6(b) are comparisons between
the fastest rule and the majority rule with varying values of β. We can see that, for any fixed n and β, the
fastest rule has less accuracy while faster decision speed than the majority. Moreover, the performance of
the fastest rule is not sensitive to the value of β while, for the majority rule with fixed system size n, the
probability of wrong global decision gets larger as β increases but the expected decision time decreases
as β increases.

3) Comparison among different q-out-of-n rules: Refer to the η-total rule as the dηne-out-of-n rule.
The case η = 0 corresponds to the fastest rule while η = 0.5 is the majority rule. Figure 6(c) and 6(d)
reveal that the system performance gets more sensitive to β as η increases. Moreover, for fixed n and β,
the system’s accuracy increases with the increase of η, at the cost of the higher expected decision time.

6 Conclusion and Discussion

This paper proposes a sequential decision aggregation model that does not rely on the specific individual
decision making policy and incorporates social pressure. Individuals in our model are sequential decision
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makers (SDMs) influenced by the decisions of other individuals. We present an algorithm to compute
the system’s decision probabilities, accuracy and expected decision time. Two specific group decision
rules, the fastest rule and the majority rule, are analyzed in detail. We then focus on the case when the
system size tends to infinity and, via a mean-field analysis, provide the exact expression of the asymptotic
accuracy and expected decision time for both the fastest rule and the majority rule. These results relate
the group’s decision making behavior to the isolated SDM’s. In addition to the theoretical analysis,
we provide some simulation work to present the performance of our group decision making model and
compare it to the sequential decision aggregation model without social pressure, first proposed in [8].
Within our model, we also compared the performance of different q-out-of-n aggregation rules.

This model could be extended to a generalized problem, in which the SDMs’ IDPS are heterogeneous.
Moreover, the connections between the SDMs might not necessarily be all-to-all. If both the heterogeneous
SDMs and the network structure are taken into consideration, the group decision making policy becomes
more complicated. The generalized model would help to explain how a group of decision makers with
different information sources and confidence levels collaborate together and the optimization of the group
decision making performance will be related to the network topology.
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