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Abstract. We introduce a novel dynamic vehicle routing problem termed the Radially Escaping
Targets (RET) problem in which mobile targets appear uniformly randomly on a disk according to
a stochastic process and move radially outward to escape the disk in a minimum amount of time. A
single vehicle is assigned the task of intercepting the targets before they escape. We first obtain two
fundamental upper bounds on the fraction of targets intercepted by the vehicle in the steady state
- termed the capture fraction - for the RET problem. We then propose three policies to maximize
the capture fraction for the RET problem and identify parameter regimes in which they are suitable.
All three policies are within a constant factor of the optimal in specific parameter regimes. For the
asymptotic regime of low arrival rate this factor is equal to one. For the asymptotic regime of high
arrival rate, the factor is equal to 2.52 when the disk radius is greater than or equal to one. For the
moderate speed regimes, this factor is dependent on the target speed. We verify performance of the
policies with numerical simulations.

Key words. vehicle routing problems, dynamic vehicle routing, moving target routing problems

1. Introduction. The subject of this paper is a dynamic vehicle routing (DVR)
problem involving moving targets: targets appear throughout an environment and
move with a constant speed in order to escape its boundary in the least amount
of time. A single vehicle is assigned the task of intercepting as many targets as it
can before they escape the environment. One application of this problem setup is in
robotic patrolling where it is necessary to stop malicious agents from leaving a region
so as to protect the surroundings.

1.1. Related work. The classical Traveling Salesman Problem (TSP) and its
extensions to other DVR problems have been explored extensively [,]. Due to a
recent surge of activity in the area of motion planning for autonomous robots, a lot of
variants of DVR have been addressed over the last decade. An extensive list of such
problems can be found in []. A variant, like the problem studied in this paper, is
the classic static vehicle routing problem with time windows [], which is known to
be NP-hard. Modified versions of the problem have been studied in [,]. Another
variant is the vehicle routing problem with moving targets.

Several researchers have worked on dynamic vehicle routing problems (VRPs)
involving moving targets in the past. The approximation complexity of Moving-
Target TSP was studied in [], where it was shown that Moving-Target TSP with
n targets cannot be approximated better than by a factor of 2O(

√
n) times optimal

within polynomial time unless P = NP . The authors in the same work also showed
that if targets have the same velocities, then there is a polynomial time approximation
for the Moving-Target TSP. Authors in [] give a 2 + ε approximation algorithm for
instances of the Moving-Target TSP in which O( logn

log logn ) of the n points are moving

with arbitrary velocity. Authors in [] study a variant of the Moving-Target VRP in
which targets appear on a segment and move with the same velocity. They prove that
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Fig. 1. (a) Schematic of the Radially escaping targets (RET) problem. (b) The parameter
regimes where the Stay-at-Center (SAC), Sector-Wise(SW) and Stay-Near-Boundary(SNB) policies
are designed are shown for D=1. The gray shaded regions indicate the parameter regimes in which
the policies are constant factor optimal.

a first come first serve policy minimizes the expected time to service a target when
the target arrival rate is very high as well as when the target speed is close to the
vehicle speed. Authors in [] study a kinetic variant of the k-delivery TSP where all
targets move with the same velocity and a robotic arm moving with a finite capacity
must intercept them. They provide constant-factor approximation for the problem.
Authors in [] study a grasp and delivery problem motivated by robot navigation and
propose a 2-factor approximation algorithm. In [], the moving targets have to be
serviced within a time-window and a policy based on repeated computation of longest
paths through the available set of targets is proposed to this end. In [], authors
also consider stochastic time windows within which static targets are required to be
serviced.

More recent results on the subject of routing problems involving the task of target
interception consider more general models for target behavior [,,]. In [], the
authors propose a partitioning strategy for a multiple vehicle multiple target problem
in which the targets can apply an evading strategy in response to the actions of the
service vehicle. In this work, a single target maintains the same velocity throughout
with the intention of escaping the environment as quickly as possible. The problem
setup in this paper is significantly different from earlier setups in the following ways:
The moving targets have different velocities depending on their angular location, as
opposed to having same velocities as assumed in many problem setups looked at in
literature [,,]. They also have different deadlines depending on their radial
location as opposed to having the same deadline or time window before which they
should be serviced [,].

1.2. Contribution. The contributions of this paper can be summarized as fol-
lows. We introduce a novel dynamic vehicle routing problem termed the Radially
Escaping Targets (RET) problem. The RET problem has three parameters: the tar-
get arrival rate λ, the target speed v < 1 and the environment radius D. We first
determine two policy independent upper bounds on the fraction of targets that can
be captured for the RET problem. In the process, we derive a novel method to es-
tablish upper and lower bounds on the path through radially escaping targets. Next,
we formulate three policies: Stay-at-Center (SAC), Sector-wise (SW) and Stay-Near-
Boundary (SNB) policy. The SAC policy is designed for low arrival rates while the
SW policy is formulated for moderate arrival rates. The SNB policy is designed for
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Table 1
Performance of policies for the RET problem

Design Regime Algorithm Regime of Factor

constant factor optimality of optimality

Light load Stay-At-Center λ→ 0+ 1

Moderate load Sector-wise λ >
7πv

(1− v2)3/2D
, v >

1

4
√

2

1

α(v)

Fixed speed, heavy load Stay-Near-Boundary λ→ +∞, D > 1
7β

2

high arrival rates. Lower bounds on the fraction of targets captured using the SAC,
SW and SNB policies are obtained. In Table, we summarize these lower bounds
and also present the factor of optimality (defined as the ratio of the fundamental
upper bound for the RET problem to the capture fraction of a policy). The symbol
β ≈ 0.7120± 0.0002 and

α(v) =

√
v

π2

((
v

(1− v2)3/2

)1/2

+
10

3

(1− v2)1/2

v

)−1/2
.

In Fig.(b), the design regimes for the SAC, SW and SNB policies are shown. The
gray shaded regions indicate the regimes where the policies are constant factor opti-
mal. The SAC and SNB policy are constant factor optimal in the asymptotic regimes
of λ → 0+ and λ → +∞ respectively. The gray shaded regions separated by dashed
lines are representative of these asymptotic regimes. For fixed target speed, the SW
policy is within a constant factor of the optimal in the gray shaded region in the
middle. We present numerical simulations which empirically verify our results.

The set-up of the RET problem can be viewed as a dynamical system where
targets are generated via a stochastic process. The dynamical system needs to be
controlled using a control law or policy in order to stop the targets from escaping the
environment. The performance metric to evaluate the policy is the capture fraction of
the targets which needs to be maximized. Fundamental upper bounds and achievable
lower bounds on the capture fraction is the topic of the paper. We study the gap
between them as well.

1.3. Organization. The paper is organized as follows. In Section, we formally
introduce the RET problem and its parameters and state the problem statement.
In Section we establish some preliminary results which will be used to evaluate
performance of algorithms as well as obtain two fundamental upper bounds on the
performance of any algorithm for the RET problem. In Section, we propose three
policies for the RET problem and provide provable guarantees on their performance.
Simulation results are presented in Section and conclusions and future directions
are discussed in Section. Finally, in order to facilitate the reading, the proofs of all
the theoretical results on the policies are in the appendices of the paper.

2. Problem Formulation. We start with introducing a DVR problem in which
the environment E = {(r, θ) : 0 ≤ r ≤ D for all θ ∈ [0, 2π)} is a disk of radius D. Tar-
gets appear independently and uniformly distributed in E with uniform spatial density.
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Their arrival times are modeled using a Poisson process with rate λ []. Uniform
spatial distribution of the targets is realized through probability density functions
f(r) = 2r/D2 and e(θ) = 1/2π where r and θ are random variables describing the lo-
cation of appearing targets in radial coordinates. Once the targets appear, they move
radially outwards with a constant speed v < 1 and eventually reach the boundary of
the environment. A vehicle with speed of 1 and confined to move in E intercepts the
targets and captures them before they escape the environment. We refer to this prob-
lem as the Radially Escaping Targets (RET) problem for convenience and a schematic
of the problem is shown in Fig.(a). The parameters of the RET problem are the
target speed v, arrival rate λ and disk radius D.

Let Q(t) ⊂ E denote the set of positions of all targets that have appeared but
have not been serviced or have escaped before time t. Let p(t) ∈ E be the position of
the vehicle at time t. A policy for the vehicle is a map P : E ×F(E)→ R2, where F(E)
is the set of finite subsets of E , assigning a velocity to the service vehicle as a function
of the current state of the system: ṗ(t) = P (p(t),Q(t)). Let mcap(t) be the number
of targets that have appeared and have been captured before time t and mmiss(t) be
the number of targets that have escaped and mtot(t) = mmiss(t) + mcap(t), then the
goal of this problem can be stated as follows:

Problem Statement. Find policies P that maximize the fraction of targets that
are serviced Fcap(P ), termed as the capture fraction. Formally, for a policy P , we
define the steady state average capture fraction as

Fcap(P ) := lim sup
t→+∞

E
[

mcap(t)
mcap(t)+mmiss(t)

]
where the expectation is with respect to the stochastic process that generates the
targets.

Each target has a deadline depending on when and where it appears in the envi-
ronment. We propose policies for the service vehicle suitable for specific target speeds
and arrival rates with provable guarantees on their performance. We first present
some preliminary results which will be used to analyze policies for the RET problem.

3. Preliminary results. We start with reviewing some established results to
intercept moving targets in shortest time as well as propose methods to obtain bounds
on paths through a set of moving targets.

3.1. Time to capture a single target. The optimal strategy (i.e., taking
minimum time) for a vehicle to capture a target moving at a speed less than that of
the vehicle is to move in a straight line with maximum speed to intercept the target
based on the constant bearing principle []. In the following definition, this result is
stated in terms of radial coordinates.

Definition 3.1. (Constant bearing principle) The time taken by the vehicle
starting from p = (x, 0) and moving with unit speed to capture a target located at
q = (r, θ) and moving radially outward with constant speed v < 1 is

T (p, q) =
−v(x cos θ − r) + (v2(x cos θ − r)2 − (1− v2)(2rx cos θ − x2 − r2))1/2

1− v2
.

The next result gives a relation of the distance between the vehicle and target location
to the time required to capture the moving target.

Lemma 3.2. (Time to capture) The time T (p, q) required by the vehicle starting
from p = (x, 0) and moving with unit speed to capture a target at q = (r, θ) moving
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radially outward with speed v satisfies the following inequality

T (p, q) ≤
(

2v

1− v2
+

1√
1− v2

)
d(p, q),

where d(p, q) =
√
x2 + r2 − 2xr cos θ is the Euclidean distance between p and q. If

r ≤ x cos θ, then

T (p, q) ≤
(

1√
1− v2

)
d(p, q)

Proof. We start with providing an upper bound on the positive root y+ of a
quadratic equation. For the quadratic equation ay2 + by + c = 0, if a > 0 and c < 0,
then there are two possibilities: b ≥ 0 or b < 0.

y+ =
−b+

√
b2 − 4ac

2a
=


−b+

√
b2 + 4a |c|
2a

≤
−b+ b+ 2

√
a |c|

2a
=

√
|c|
a
, b ≥ 0,

−b+

√
|b|2 + 4a |c|
2a

≤ |b|
a

+

√
|c|
a
, b < 0.

Since the time taken T := T (p, q) to capture a target at q starting from p satisfies the
following quadratic equation,

T 2(1− v2) + 2vT (x cos θ − r)− (x2 + r2 − 2xr cos θ) = 0,

the result follows.

3.2. Optimal placement of vehicle. By optimal placement, we mean the lo-
cation at which the vehicle should be placed in order for it to have the highest prob-
ability of capturing a target. To determine optimal placement, we start by defining
the capturable set of a vehicle location.

Definition 3.3. (Capturable set) A vehicle located at (x, 0) and moving with
unit speed can only reach targets located in the capturable set

C(x, v,D) := {(r, θ) ∈ E : r < rc for all θ ∈ [0, 2π)}

using the constant bearing principle, where

rc(x, v,D, θ) = max
(

0, D − v
√
D2 + x2 − 2xD cos θ

)
.

These are the locations for which r + vT ≤ D. The expression for rc is obtained by

setting rc + vT = D. The radial location rc corresponds to the locations of targets
that the vehicle can capture just before they escape the disk. The probability that a
target is in the capturable set of a particular vehicle location (x, 0) is given by

ρ(x, v,D) :=

∫ 2π

0

∫D
0

P [(r, θ) ∈ C(x, v,D)] f(r)e(θ)drdθ∫ 2π

0

∫D
0

P [(r, θ) ∈ E ] f(r)e(θ)drdθ
=

∫ 2π

0

∫ rc
0
f(r)e(θ)drdθ

πD2
.

When the vehicle is at location p∗ = (x∗(v,D), 0) where

(3.1) x∗(v,D) := arg max
0≤x≤D

ρ(x, v,D),
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Fig. 2. Optimal vehicle location x∗ and the maximum probability ρ∗ of capturing an escaping
target starting from (x∗, 0) as a function of target speed v for the RET problem with D = 1.

the probability of it capturing a target is maximum. The vehicle location x∗(v,D) is
referred to as the optimal location. Let ρ∗(v,D) := ρ(x∗, v,D). Closed form expres-
sions for x∗ and ρ∗ do not appear to be possible for all v ∈ (0, 1). However, from
numerical calculations it is known that x∗ = 0 for v ∈ (0, 0.5] irrespective of the value
of the parameter D. The numerically computed variation of x∗(v,D) and ρ∗(v,D) for
D = 1 is shown in Fig.. For target speed v ≤ 0.5, x∗ = 0 and the vehicle location
p∗ = (0, 0) maximizes the probability of the vehicle being able to capture a target
before it escapes. For higher speeds, this location is closer to the boundary. There is
a qualitative difference between these two cases. For the former case, p∗ = (0, 0) is
the unique vehicle location which maximizes ρ whereas for the later case, the set of
corresponding optimal locations is all points with radial coordinate equal to x∗.

Theorem 3.4. (Capture fraction upper bound) For every policy P for the
RET(v, λ) problem, Fcap(P ) ≤ ρ∗(v,D).

Proof. Let the vehicle start from x1 and service target at p1. The probability of
the vehicle capturing this target is maximum when x1 = x∗. The best case scenario
is that no new target appears while the vehicle services it and repositions itself at x2
so as to increase the probability of capturing a new target at p2. This can be realized
for a suitably low value of arrival rate λ. In order to maximize the probability of
capturing the new target, x2 = x∗ as well. Thus, to maximize the probability of
capturing every new target, the vehicle returns to x∗ and waits for a target to appear.
With this strategy, the vehicle can still only capture targets which appear within
C(x∗, v,D). The fraction of targets which satisfy this criterion is ρ∗(v,D). Thus, the
vehicle can capture no more than ρ∗(v,D) fraction of targets.

3.3. Quantification of targets inside the environment. In this subsection
we quantify the number of targets in an unserviced region in the environment. We
distinguish between targets originating and accumulating in a certain region. Targets
are said to have accumulated in a region when after appearing, they spend time in
the region, in the course of their trajectories.

Definition 3.5. (Annular section) The annular section A(a, b, θ1, θ2) ⊂ R2 is
the set A(a, b, θ1, θ2) := {(r, θ)|a ≤ r ≤ b, θ ∈ [θ1, θ2]}.

Lemma 3.6. (Accumulated targets in an annular section) For 0 < a < b < D,
let nA be the number of targets accumulated at steady state in an unserviced annular
section A(a, b, 0, 2π) and fa(x) be the distribution of the accumulating targets w.r.t
the radial location x ∈ [0, D]. Then,

(i) E[nA] = (b3 − a3)λ/3vD2,
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(ii) Var[nA] = (b3 − a3)λ/3vD2 and
(iii) fa(x) = λx2/vD2.
Proof. Firstly, steady state is assumed, meaning that the initial transient has

already passed, hence the time at which the snapshot is taken is t ≥ D/v. Also,
by unserviced, we mean that the vehicle has not serviced targets in the region under
consideration for at least time D/v before the time instant under consideration. Let us
examine the number of targets accumulating in the annulus Ar := A(r, r + ∆r, 0, 2π)
due to targets appearing in the annulus R1 := A(p1, p1 + ∆p1, 0, 2π). Let us also
assume that ∆r and ∆p are infinitesimal. The intensity of the Poisson process on R1

is directly proportional to its area and is equal to 2πp1∆p1λ/πD
2 = 2p1∆p1λ/D

2.

P[Ar contains n targets originating from R1]

= P
[
n targets originated from R1 in time interval

[
t, t+

∆r

v

]]
= P

[
n targets originated from R1 in time interval of length

∆r

v

]

= exp

(
−2p1∆p1λ∆r

D2v

)(2p1∆p1λ∆r

D2v

)n
n!

,

where t = (r − p1)/v. Thus, the process of targets accumulating in Ar due to
targets originating in R1 is spatially Poisson with intensity area(R1)/(πD2)λ/v =
2p1∆p1λ/D

2v.
Next, let us examine the process of accumulation of targets in Ar due to two

annuli R1 := A(p1, p1 + ∆p1, 0, 2π) and R2 := A(p2, p2 + ∆p2, 0, 2π).

P[Ar contains n targets from R1 ∪R2] =

n∑
i=0

[
exp

(
−2p1∆p1λ∆r

D2v

)(2p1∆p1λ∆r

D2v

)i

i!

× exp

(
−2p2∆p2λ∆r

D2v

)(2p2∆p2λ∆r

D2v

)(n−i)

(n− i)!

]

= exp

(
−2(p1∆p1 + p2∆p2)λ∆r

D2v

)

×

(
2(p1∆p1 + p2∆p2)λ∆r

D2v

)n

n!
(3.2)

Thus the process of targets accumulating in Ar due to targets originating in
R1∪R2 is also spatially Poisson and the intensity of this process, given by (2p1∆p1 +
2p2∆p2)λ/D2v = (area(R1) + area(R2))/(πD2)λ/v, is the sum of the intensities due
to R1 and R2. This can be extended to all the rings of radii p ∈ [0, r]. So arrival
process of all targets accumulating in Ar is also spatially Poisson and has intensity
area(A(0, r, 0, 2π))/(πD2)λ/v = (r2λ/vD2). Thus the expected number as well as the
variance of targets accumulating in the unserviced annulus Ar is r2λ∆r/vD2.

Next, consider an annular section A(a, b, 0, 2π). Since Poisson processes are ad-
ditive, the arrival process of targets accumulating in A(a, b, 0, 2π) is Poisson and is
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Fig. 3. (a) The set ST for the RET problem is shown by the gray shaded region. The dashed
circle is the boundary of S̄T which is a circle of radius T centered at (X − vT, 0). (b) The area
element ζ of length and width m in S̄T .

the sum of processes of targets accumulating in disjoint annuli like Ar with r ∈ [a, b].
Hence the expected number and variance of targets accumulating in A(a, b, 0, 2π) is∫ b
a

(r2λ/vD2)dr = (b3 − a3)λ/3vD2. Let fa(x) be the distribution of the number of

accumulating targets w.r.t the radial location x. Since
∫ s
0
fa(x)dx = s3λ/3vD2, we

get fa(x) = λx2/vD2.

Lemma 3.7. (Travel time bound for RET problem) Let targets arrive uniformly
in E according to a Poisson process of rate λ and move radially outward with speed v.
Let Q be the set of targets accumulated in E at time t and Td be the random variable
giving the minimum amount of time required to travel to a target in Q starting from
vehicle position (X, 0). Then,

E[Td] ≥
√
πvD

2λ
.

Proof. To get a bound on the travel time, we start with defining a set ST shown
in Fig.(a), such that any target in it can be reached from the vehicle position ( X, 0)
in T time units or less. Mathematically,

ST :=
{

(r, θ) ∈ E|X2 + (r + vT )2 − 2X(r + vT ) cos(θ) ≤ T 2
}
.

Also, let S̄T :=
{

(r, θ) ∈ E|(X − vT − r cos θ)2 + (r sin θ)2 ≤ T 2
}

. Since the relative
velocity of any target with respect to the vehicle is more than or equal to (1− v), the
distance s1 of any point on the boundary of ST from (X, 0) is greater than or equal to
T (1− v). Using the triangle inequality, the distance s2 of that point from (X− vT, 0)
is less than or equal to T . Then, ST ⊆ S̄T .

If Td is the random variable giving the minimum amount of time to go from vehicle
location (X, 0) to a target, then Td > T if ST is empty and P[Td > T ] = P[|ST | = 0].
Here, the notation |ST | is used to denote the number of outstanding targets in the
set ST . Further,

(3.3) P[|S̄T | = 0] = P[|ST | = 0]P[|S̄T \ST | = 0] ≤ P[|ST | = 0].
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We now calculate the probability that an infinitesimal area element ζ of length m and
width m centered at (s, 0) shown in Fig.(b) is empty:

P[|ζ| = 0] = exp

(
−λm

v

1

πD2

∫ s

0

rθdr

)
= exp

(
−λm

v

1

πD2

∫ s

0

r
m

s
dr

)
= exp

(
−m2

v

λs

2πD2

)
≥ exp

(
−m2λ

2πvD

)
= exp

(
−λ

2πvD
area(ζ)

)
,(3.4)

where the inequality follows from the fact that s ∈ [0, D], and the exponential function
has a minimum at s = D. The last equality is true since area(ζ) = m2. Further, every
compact set can be written as a countable union of non-overlapping rectangles. Thus,
Eq. () holds for the compact measurable set S̄T as well. Then, using the results
from Eq. () and Eq. (),

P[|ST | = 0] ≥ P[|S̄T | = 0] ≥ exp

(
−λ

2πvD
area(S̄T )

)
= exp

(
−λ

2πvD
πT 2

)
,

and the expectation of Td can be bounded as follows:

E[Td] =

∫ +∞

0

P[Td > T ]dT =

∫ +∞

0

P[|ST | = 0] ≥
∫ +∞

0

P[|S̄T | = 0]dT

≥
∫ +∞

0

exp

(
−T 2λ

2vD

)
dT ≥

√
π

2

√
2vD

λ
=

√
πvD

2λ
,

so the result is obtained.
Theorem 3.8. (Policy Independent Upper Bound on Service Fraction) An upper

bound on the service fraction of any policy P for the RET problem satisfies

Fcap(P ) ≤
√

2

πvλD
.

Proof. This follows from the fact that in order to service a fraction c ∈ (0, 1] of
targets, we require that the rate at which targets are serviced is more than the rate
at which they arrive [], i.e., cλE[T ] ≤ 1. Since T > Td, the result now follows by
using Lemma.

3.4. Bounds on paths and tours through static and escaping targets.
To distinguish static targets from moving targets, we introduce some terminology. A
target moving radially outward is referred to as an escaping target. A target is said to
have been ‘captured’ by the vehicle if the vehicle reaches the target before it escapes
the environment. The following results are used to estimate and bound the length of
the path through targets in the environment.

Theorem 3.9. (Upper bound on path through escaping targets) Let targets
starting from (ri, θi), i ∈ {1, . . . , N} move radially outward with speed v. Let T
be the length of the path through these escaping targets in some arbitrary order δ :
{1, . . . , N} → {1, . . . , N}. Let Ts be the length of the path through static targets
located at (ri + vT̄ , θi), i ∈ {1, . . . , N} processed in order δ and T̄ ≥ T . Then,

T ≤ Ts
1− v

.
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Proof. Without loss of generality, let the targets be labeled in the order in which
they are processed. Let the vehicle take time Tj to service the j−th escaping target
having serviced the (j − 1)−th escaping target. Consider the i−th escaping target

starting from (ri, θi). The vehicle services this target at time
∑i
j=1 Tj . It then

starts for the escaping target i + 1 and reaches it in time Ti+1. Let T
′

i+1 be the

distance between (ri + v
∑i+1
j=1 Tj , θi) and (ri+1 + v

∑i+1
j=1 Tj , θi+1). Also, let T

′′

i+1 be
the distance between (ri + vT, θi) and (ri+1 + vT, θi+1) while Ts,i+1 is the distance
between (ri + vT̄ , θi) and (ri+1 + vT̄ , θi+1). Since the distance between two targets
moving radially outward with the same speed is a non-decreasing function of time,
T
′

i+1 ≤ T
′′

i+1 ≤ Ts,i+1. Referring to Fig., from the triangle inequality, T
′

i+1+vTi+1 ≥
Ti+1, i.e., Ti+1 ≤ (T

′

i+1)/(1 − v) ≤ (Ts,i+1)(1 − v). Extending this to all the targets
in the path,

T =

n∑
i=1

Ti+1 ≤
n∑
i=1

Ts,i+1

1− v
=

Ts
1− v

.

The upper bound on the length of the path through escaping targets can thus
be expressed in terms of the length of the path through their static locations in the
future.

Theorem 3.10. (Lower bound on path through escaping targets) Let targets
starting from (ri, θi), i ∈ {1, . . . , N} move radially outward with speed v. Let T
be the length of the path through these escaping targets in some arbitrary order δ :
{1, . . . , N} → {1, . . . , N}. Let T0 be the length of the path through static targets
located at (ri, θi), i ∈ {1, . . . , N} processed in order δ. Then,

T ≥ T0
1 + v

.

Proof. The proof is similar to that of Theorem. and is omitted for brevity.
Given a set K of n points, the Euclidean traveling salesperson problem (ETSP)

is to determine the shortest tour, i.e., a closed path that visits each point exactly
once. We now state the classic result providing a limit for the length of the ETSP
through large number of points. We will leverage this result in the next section to
derive tighter analytic bounds on the performance of our policies in regimes of high
target arrival rates.

Theorem 3.11. (Asymptotic ETSP length,[]) If a set K of n points is dis-
tributed independently and identically in a compact set Q, then there exists a constant
β such that

lim
n→+∞

ETSP (K)√
n

= β

∫
Q

ϕ(q)1/2dq,

where ϕ is the density of the absolutely continuous part of the point distribution. The
constant β has been estimated numerically as β ≈ 0.7120± 0.0002 [].

4. Policies. In this section, we propose three policies for the RET problem. The
SAC policy is designed for low target arrival rates while the SW policy is designed
for moderate target arrival rates. Finally, the SNB policy is proposed for high arrival
rates.
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r1

r2

T 0, i+1

T i+1
T' i+1 T" i+1

T s, i+1

 

i

i+1

 v∑
j=1
i

T j

 v∑
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i+1 T j

 vT i+1

Fig. 4. The thick line labeled Ti+1 indicates the trajectory of the vehicle starting from the target
i to service the target i + 1. The gray circles indicate the locations at which the vehicle intercepts
the targets.

4.1. Stay at Center (SAC) Policy. According to this policy, the vehicle stays
at the optimal location in the disk and waits for new targets to appear in its capturable
set. For v ∈ [0, 0.5], this location is the center. The SAC policy is suitable for low
target arrival rates at which the optimal vehicle location takes prominence.

Given a vehicle location (x, 0) ∈ E , recall that C(x, v,D) denotes the capturable
set for the vehicle. Let x∗ and ρ∗ be defined as per Eq. (). The formal description
of the SAC policy is given in Algorithm.

Algorithm 1: Stay At Center (SAC) policy

Assumes: v, D known and the vehicle placed at (x∗, 0).
1 Intercept a target that appears inside C(x∗, v,D);
2 Return back to (x∗, 0);
3 Repeat from step 1.

Algorithm has the following guarantee on capture fraction.
Theorem 4.1. (SAC Policy Capture Fraction) The capture fraction of the SAC

policy satisfies

Fcap(SAC) ≥ ρ∗(v,D)

2ρ∗(v,D)λD + 1
.

If v ∈ [0, 0.5] so that the optimal vehicle location x∗ = 0, then the above fraction
becomes equal to

Fcap(SAC) ≥ (1− v)2

2λ(1− v)2D + 1
.
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Proof. See Appendix.
Remark 4.2. (Optimality in light load, i.e., λ→ 0+) In the light load regime of

λ → 0+, the capture fraction achieved equals ρ∗(v,D), which is exactly equal to the
probability that a target falls within the capturable set C when the vehicle is located at
the optimal location (x∗, 0). Comparing with Theorem, we see that the SAC policy
is optimal in this limiting regime.

4.2. Sector-wise (SW) Policy. In the Sector-wise policy, the vehicle stays
closer to the boundary and utilizes the high relative velocity of the outgoing targets.
It starts every iteration at a radial location X and services the first target with the
smallest counterclockwise angular separation in a specific subset associated with the
iteration. One such subset J1 which the vehicle encounters in the first iteration is
shown by the shaded region in Fig.(a). It then proceeds to the nearest location
with radial coordinate X in the disk and waits for a specified time to begin its next
iteration. The formal description of the policy is given in Algorithm. While the
SW policy is applicable in all parameter regimes of the RET problem, for a fixed
speed v, it is constant factor optimal in moderate arrival regimes as established in
Theorem.
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D

Fig. 5. (a) In the first iteration, the vehicle located at p = (X, 0) services outstanding targets
in the set J1 shown in the shaded region. (b) Factor of optimality of the SW policy in different
parameter regimes v, λ when D = 1.

Algorithm has the following guarantee on capture fraction.
Lemma 4.3. (SW Policy Capture Fraction) The capture fraction of the SW policy

satisfies

Fcap(SW) ≥ 1

λ

(
W +

πD

4
(3η1(k) + η2(k)) +

8

λ(1− v2)
η3(k)

)−1

,

where

η1(k) = (L−1(8k)− I1(8k)− L−1(20k) + I1(20k)) ,(4.1)

η2(k) = (I0(8k)− L0(8k)− I0(20k) + L0(20k)) ,

η3(k) = 1− π/2 (I0(12k)− L0(12k)− I0(20k) + L0(20k)) ,

W = max (0, D
√

1− v2(1/4v −
√

2)), k = λD(1 − v2)3/2/72πv, and I0 and I1 are
modified Bessel functions of the first kind and L0 and L−1 are modified Struve func-
tions [].
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Algorithm 2: Sector-wise (SW) policy

Assumes: v,D known and the vehicle placed at (X, 0).
1 Set X = D

√
1− v2, W = max (0, X(1/4v −

√
2));

2 repeat
3 if there are targets in E with counterclockwise angular separation θ < π/2

such that their radial coordinate r satisfies r ≤ X cos θ then
4 Service the target with smallest angular separation and move to

nearest location in E with radial coordinate X;
5 Wait for time W and return to step 3.

6 else
7 Stay at current location.
8 end

9 until all targets are serviced or have escaped ;

Proof. See Appendix

Theorem 4.4. (Performance in moderate arrival rates) For λ > 7πv
(1−v2)3/2D and

v ∈ (1/4
√

2, 1), the capture fraction of the SW policy satisfies

Fcap(SW) ≥ α(v)

√
2

πvλD
,

where

(4.2) α(v) =

√
v

π2

((
v

(1− v2)3/2

)1/2

+
10

3

(1− v2)1/2

v

)−1/2
.

Proof. See Appendix

Thus, for moderate arrival rates and v ∈ (1/4
√

2, 1), using the result from Theo-
rem and the fundamental bound obtained in Theorem, the SW policy is also
a constant factor policy with the factor equal to 1/α(v).

4.3. Stay-Near-Boundary (SNB) Policy. We now introduce the SNB policy
for the high arrival regime. In this regime, the density of targets accumulating close
to the boundary of the disk is high. Hence, the distance traversed by the vehicle
(and the time taken) between capturing consecutive targets is small. Consequently,
the distance by which the targets move between consecutive captures is also small.
Hence, the vehicle can plan ahead and capture multiple targets in a single iteration.
To determine the order of captures, it uses the solution to the Euclidean Minimum
Hamiltonian Path (EMHP) problem which can be stated as follows:

Given a set of n (stationary) points, determine the length of the
shortest path which visits each point exactly once.

The SNB policy makes use of three parameters g, h and ncap. At the beginning of
every iteration, the vehicle computes an EMHP through the locations that the targets
accumulated in A(g, h, 0, 2π) will have after time (D − h). This is done to levarage
the result from Theorem. It uses the order obtained from the EMPH to service
the first ncap targets using constant bearing principle. A formal statement of the SNB
policy is given in Algorithm.
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The parameters g, h and ncap are chosen in a way which ensures that the vehicle
will service all the ncap targets accumulated in A(g, h, 0, 2π) at the beginning of the
iteration before the last target escapes the environment. This can be achieved in the
following way:

1. parameters g and h are solutions to variables a and b respectively in the
following Optimization Problem:

max
a,b

(
b3 − a3

b2 − a2

)
subject to

µA =
λ(b3 − a3)

3vD2
,

β

1− v

√
6π

b3 − a3

(
b2 − a2

2

)√
µA(1 + v) ≤ D − b

v
,

β

1 + v

√
6π

b3 − a3

(
b2 − a2

2

)√
µA(1− v) ≥ b− a

v
,

0 ≤ a < b < D.

2. parameter ncap is set as follows:

ncap :=
λ(1− v)

3vD2
(h3 − g3).

Algorithm 3: Stay-Near-Boundary (SNB) policy

Assumes: g, h and ncap are known and the vehicle is at (h, 0).
1 if A(g, h, 0, 2π) contains outstanding targets then
2 s1 := set of locations of outstanding targets in A(g, h, 0, 2π);
3 s2 := set of their locations if they move radially outward by distance

(D − h);
4 Ψ := order of the EMHP starting from (D, 0), visiting targets in s2 and

ending at (D, 0);
5 service the first ncap targets in s1 in order from Ψ using constant bearing

principle and return to (h, 0).
6 end

Algorithm has the following guarantee on the capture fraction of the RET
problem.

Theorem 4.5. (SNB Policy Capture Fraction) For any fixed v ∈ (0, 1), in the
limit as λ→ +∞, the capture fraction of the SNB policy satisfies

Fcap(SNB) ≥ 2p

7β

√
2

πλvD

with probability one, where

p := p(D) =

1, D > 1,

5
√
D

6
, otherwise.
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Proof. See Appendix

Corollary 4.6. (Performance of the SNB policy) In the limit as λ→ +∞ such
that λ > (1+v)2/2πβ2v(1−v), the SNB policy is within a factor 7β/2p of the optimal.
For D ≥ 1, this factor is ≈ 2.52.

5. Simulations. The numerical performance of the SAC and SW policies for
arrival rates of λ = 2 and λ = 10 respectively and all target speeds is shown in Fig..
The parameter D = 1 for these simulations. The mean of the capture fraction based
on 1000 simulations is shown along with its standard deviation. It agrees well with
the theoretical lower bounds. The theoretical bounds are still conservative. For the
SAC policy, the conservativeness comes from the application of Jensen’s inequality
in Eq. (). For the SW policy, the conservativeness of the bound is because of
inequalities introduced in Eq. (),() to bound integrals.
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Fig. 6. Performance of the (a) SAC and (b) SW policies for arrival rates λ = 2 and λ = 10
respectively for the RET problem with D = 1. The theoretical bounds are from Theorem and
Theorem respectively.

6. Conclusion and Future Directions. We have introduced a novel vehicle
routing problem termed the RET problem in which targets move radially outward
in a disk with the intention of escaping it quickly. We have established two policy
independent upper bounds on the performance of any algorithm for the RET problem.
We have also proposed three policies for different parameter regimes of the RET
problem. In Table, we have summarized the lower bounds on the capture fraction
achieved by these policies as well as their factor of optimality. The SAC policy is
optimal for λ→ 0+ while for moderate arrival rates, for a fixed target speed, the SW
policy is within a constant factor of the optimal. The SNB policy is within a constant
factor of the optimal for λ→ +∞. When the disk radius is greater than or equal to
one, this factor is equal to 2.52.

The current problem setup can be extended in various ways. We assume that
the vehicle needs to intercept the target exactly in order to capture it. An interesting
and realistically motivated modification of the problem is when the vehicle has a small
capture radius. The SAC policy may be extended and applied relatively easily to that
setup. On the other hand, the other policies would require extensive computation due
to the history dependence which would be introduced because of the capture radius
model. In the current setup, the targets move radially outward with the intention
of escaping the environment in minimum time. Another modification of the setup is
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the case in which the targets modify their trajectories in order to evade the pursuing
vehicle.

A variation of the RET problem is also the scenario in which the targets are mov-
ing radially inward towards an inner boundary instead of moving radially outward
and the vehicle has to stop the targets from reaching the inner boundary. General-
izations of the RET problem, like for instance, when the distribution of targets in the
environment is not uniform, or when the environment is an arbitrary closed curve and
the targets have arbitrary velocities are also open to exploration.

Appendix. Proofs of theorems. In this section we present the proofs of the
performance guarantees of the three policies for the RET problem.

Appendix A. Proof of Theorem. Notice that if mcap(t) > 0 for some
t > 0, then

(A.1)

lim sup
t→+∞

E
[

mcap(t)
mcap(t)+mmiss(t)

]
= lim sup

t→+∞
E
[

1

1+
mmiss(t)

mcap(t)

]
≥
(

1 + lim sup
t→+∞

E
[
mmiss(t)
mcap(t)

])−1
,

where the last step comes from an application of Jensen’s inequality []. Thus, we
can determine a lower bound on the capture fraction by studying the number of
targets that escape per captured target. Consider a tagged target i which falls within
C(x∗, v,D). The time ti taken by vehicle to intercept target i and return to the
optimal location satisfies ti ≤ 2D. Therefore, the number of targets that escape
because the vehicle intercepts the i-th target is equal to the sum of 1) the number of
targets that arrive anywhere in the environment during the time interval of ti and 2)
the number of targets that are generated outside of C(x∗, v,D) while the vehicle is
waiting for the next capturable target. Since the target arrival process is a Poisson
process, the expected number of targets in case 1 are given by λti ≤ 2λD. The
spatial distribution of the targets is uniform random. Further, area(C(x∗, v,D)) =
ρ∗(v,D)πD2. Therefore, the targets missed in case 2, denoted by Nmiss is a random
variable distributed as follows.

Nmiss =



0, with probability ρ∗(v,D),

1, with probability ρ∗(v,D)
(

1− ρ∗(v,D)
)
,

2, with probability ρ∗(v,D)
(

1− ρ∗(v,D)
)2
,

...

k, with probability ρ∗(v,D)
(

1− ρ∗(v,D)
)k
,

...

Therefore,

E [Nmiss] =

∞∑
k=1

kρ∗(v,D)
(

1− ρ∗(v,D)
)k

= ρ∗(v,D)

∞∑
k=1

(
1− ρ∗(v,D)

)k
= ρ∗(v,D)

1− ρ∗(v,D)

(ρ∗(v,D))2
=

1

ρ∗(v,D)
− 1.
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Substituting the upper bound for case 1 and the expression for case 2 in (), we
obtain

Fcap(SAC) ≥ 1

2λD + 1
ρ∗(v,D)

=
ρ∗(v,D)

2ρ∗(v,D)λD + 1
.

Appendix B. Proof of Theorem. In the sector-wise policy, the vehicle
starts every iteration at a distance X = D

√
1− v2 from the center. If θv is the angular

position of the vehicle in its i-th iteration and

Ji := {(r, θ) | 0 ≤ r ≤ X cos(θ − θv), θ − θv ∈ [0, π/2]} ,

then if there is an outstanding target in Ji, the vehicle services the target in Ji with
the smallest angular separation from θv in the counterclockwise direction. The choice
of X ensures that the vehicle always services any target in Ji before it escapes the
disk.

We now calculate the expectation of the time required for a single iteration of
the SW policy. Without loss of generality we assume that i = 1, θv = 0 initially
and the vehicle is at (X, 0). We also assume that the environment is unserviced. Let
K(γ1, γ2) := {(r, φ)|0 ≤ r ≤ X cosφ, φ ∈ [γ1, γ2]} for γ1 < γ2. Also, for infinitesimal
δθ, let θ+ = θ + δθ. Then the probability of the first outstanding target in J1 being
at an angular location θ, i.e.

P[first target is in K(θ, θ+)| J1 is not empty ] =P [|K(0, θ)| = 0]P
[
|K(0, θ+)| 6= 0

]
= exp (−k (9 sin θ + sin 3θ))

×
(
1− exp

(
−k
(
9 sin θ+ + sin 3θ+

)))
≥ exp(−8k sin θ) (1− exp(−12k sin θ)) ,(B.1)

where k = λX3

72πvD2 . A number of results are used to obtain Eq. (). The first result,
which is derived in the same spirit as Eq. (), is that for α ∈ [0, 2π],

(B.2) P [|K(0, α)| = 0] = exp (−k (9 sinα+ sin 3α)) .

The second supporting result is the following empirically obtained inequality for α ∈
[0, π/2]: 12 sinα ≥ 9 sinα+ sin 3α ≥ 8 sinα.

Now that we have an expectation of the first target being at an angular location θ
relative to the vehicle, we calculate the time taken to capture this target. Let Tθ be the
random variable denoting the time taken to start from (X, 0), service a target at (r, θ)
and go to (X, θ) to start the next iteration. We determine a bound on the expectation
of Tθ. Once again, we assume that the environment is unserviced and note that the
probability distribution of the outstanding targets is given by fa(r) = λr2/vD2 as
obtained in Lemma. Since r ≤ X cos θ, we use Lemma to obtain a lower
bound on the expectation of Tθ:
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E[Tθ] ≤
2

∫
X cos θ

r=0

(
λr2

vD2

)(√
X2 + r2 − 2Xr cos θ√

1− v2

)
dr∫

X cos θ

r=0

(
λr2

vD2

)
dr

=

2

∫
cos θ

s=0
X

(
λs2

vD2

)(√
1 + s2 − 2s cos θ√

1− v2

)
ds∫

cos θ

s=0

(
λs2

vD2

)
ds

(B.3)

≤ 6X√
1− v2

(
sin θ

4
+

1

12

)
=: Γ(θ).(B.4)

The factor of two is required since the vehicle has to go to (X, θ) to start the next
iteration and the time required for this is always less than or equal to the time required
to service the target at (r, θ) starting from (X, 0). If T is the random variable denoting
the time required to start from (X, 0), service the first target in J1 and return to the
radial location X, then using the result from Eq. (),

E[T |J1 is not empty] =

∫ π/2

θ=0

E[Tθ] P[ first target in K(θ, θ+)]dθ

≤
∫ π/2

θ=0

Γ(θ) (exp(−8k sin θ) (1− exp(−12k sin θ))) dθ

=

(
6X√
1− v2

)(π
8
η1(k) +

π

24
η2(k)

)
.(B.5)

(B.6)

where the functions η1 and η2 are as defined in Eq. (). Further, using the result
from Eq. (),

P[ J1 is empty ] ≤1−
∫ π/2

0

exp(−12k sin θ) (1− exp(−8k sin θ)) dθ

=1− π

2
(I0(12k)− L0(12k)− I0(20k) + L0(20k))

=η3(k),(B.7)

and the expected time that the vehicle has to wait for a new target to appear in J1 is
less than 8/λ(1−v2) since the area of J1 is (1−v2)/8 times the area of the disk. This
is in addition to the time W that the vehicle waits at the beginning of the iteration.
So, using Eq. () and Eq. (), the time T taken to finish a single iteration of the
SW policy has the following expectation:
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E[T ] =W + E[T | J1 is not empty ] + E[T | J1 is empty ]

=W + E[T | J1 is not empty ] +
8

λ(1− v2)
P[ J1 is empty ]

≤W +

(
6X√
1− v2

)(π
8
η1(k) +

π

24
η2(k)

)
+

(
8

λ(1− v2)

)
η3(k)

=W +
3πD

4
η1(k) +

πD

4
η2(k) +

8

λ(1− v2)
η3(k).

Then, Fcap(SW ) ≥ 1/λE[T ]. Finally, in the most favorable scenario for the vehicle, it
intercepts each new target at the end of each quadrant at a radial location X, waits
for time W and begins a new iteration. The time in which it returns to a quadrant
in this manner is equal to 4

√
2X + 4W . Since X/v < 4

√
2X + 4W for all v < 1, the

assumption that the vehicle always begins an iteration in an unserviced region holds
true.

Appendix C. Proof of Theorem. From Lemma, we know that the
capture fraction of the SW policy satisfies

(C.1) Fcap(SW) ≥ 1

λ

(
W +

πD

4
(3η1(k) + η2(k)) +

8

λ(1− v2)
η3(k)

)−1
.

When v > 1/4
√

2, W = 0. Further, when λ > 7πv
(1−v2)3/2D , k = λ(1−v2)3/2

72πv > 0.1. Using

upper and lower bounds on Bessel and Struve functions, the following hold true for
k > 0.1,

3

4
η1(k) +

1

4
η2(k) =

3

4
(L−1(8k)−I1(8k)− L−1(20k) + I1(20k))

+
1

4
(I0(8k)− L0(8k)− I0(20k) + L0(20k)) ≤ 1

12
√
k
,(C.2)

η3(k) = 1− π

2
(I0(12k)− L0(12k)− I0(20k) + L0(20k)) ≤ 5

√
k

2
.(C.3)

Using Eq. and, and the result in Eq., Fcap(SW) can be bounded from
below and the result is obtained.

Appendix D. Proof of Theorem. We start with calculating an upper
bound on the length of the tour through all the targets in A(g, h, 0, 2π). Let Q :=
{(r, θ) ∈ A(g, h, 0, 2π)} be the set of locations of targets accumulated in A(g, h, 0, 2π)
and n = |Q|. From Lemma, the normalized distribution of these targets w.r.t the
radial location x is given by fn(x) = 3x2/(h3 − g3) for x ∈ [g, h]. Let Q̄ be the set
of locations (s, φ) of these targets if they move outwards by distance d and occupy
A(g + d, h+ d, 0, 2π). The normalized distribution functions of the random variables
s and φ which denote locations of these targets are

fs(x) =
3(x− d)

2

h3 − g3
and eφ(y) =

1

2π
.
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Using Theorem and assuming that n→∞ (which we will revisit later),

lim
n→+∞

ETSP (Q̄)√
n

= β

√
6π

h3 − g3

(
h2 − g2

2

)
with

ϕ(s, φ) = fs(x)eφ(y) =
3(x− d)

2

(h3 − g3)

1

2π
.

Using Chebyshev’s inequality, if µA and σA are the mean and standard deviation of
the random variable n, then for any fixed v ∈ (0, 1),

P[n < µA(1 + v)] ≥ 1− σ2
A/v

2µ2
A.

Then, the condition

(D.1) tu :=
β

1− v

√
6π

h3 − g3

(
h2 − g2

2

)√
µA(1 + v) ≤ D − g

v

from the Optimization Problem ensures that the n targets will be serviced before
they escape the disk with at least a probability of 1 − σ2

A/v
2µ2
A. Similarly since

ncap = µA(1− v) and v > 0,

(D.2) P[n > µA(1− v)] ≥ 1− σ2
A/v

2µ2
A

so that n > ncap and the vehicle services ncap targets in an iteration with probability
of at least 1− σ2

A/v
2µ2
A. Further, the condition

(D.3)
β

1 + v

√
6π

h3 − g3

(
h2 − g2

2

)√
µA(1− v) ≥ h− g

v

from the Optimization Problem ensures that with probability of at least 1 −σ2
A/v

2µ2
A,

when the vehicle starts an iteration, A(g, h, 0, 2π) is unserviced. In the above inequal-
ity, the left-hand side is the lower bound on the length of the tour through µA(1− v)
targets in A(g, h, 0, 2π) obtained by using Theorem. We also know that

µA =
λ(h3 − g3)

3vD2

and σ2
A = µA from Lemma. When λ → +∞ and v ∈ (0, 1), then µA → +∞ and

ncap → +∞ so that Eq. (),() and () hold true with probability one. Then,
since ncap → +∞ and n > ncap with probability one, our earlier assumption that
n→ +∞ is true as well.

If ktot(i) and kcap(i) are the number of targets that have appeared and have been
serviced in the i−th iteration of the SNB policy, and Fi(SNB) = E [kcap(i)/ktot(i)],
then since at every iteration, kcap(i) ≥ ncap,

(D.4) Fi(SNB) ≥ E
[
ncap
ktot(i)

]
= ncapE

[
1

ktot(i)

]
≥ ncap

E[ktot(i)]
,

where the last inequality holds true using Jensen’s inequality for convex function
1/ktot(i).
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Next, when λ > (1+v)2/2πβ2v(1−v), the solution to the Optimization Problem
exists and the parameters g and h obtained by solving it satisfy

h3 − g3

h2 − g2
≥ 4Dp

7

1− v√
1 + v

.

Now, when λ→ +∞, for a fixed speed, the above condition on λ is met. Then, from
Eq. and using the fact that E[ktot(i)] ≤ λtu,

Fi(SNB) ≥ 2p(1− v)2

7(1 + v)

1− v
β

√
2

πλv
.

Let the countably infinite set Y := {Fi(SNB) for all i ∈ N}. Also, let the uncountable
set Z := {E [mcap(t)/mtot(t)] for all t ∈ R≥0} . Since Y ⊆ Z,

Fcap(SNB) = lim sup
t→∞

E
[
mcap(t)

mtot(t)

]
≥ lim sup

i→∞
Fi(SNB) ≥ 2p(1− v)2

7(1 + v)

1− v
β

√
2

πλv
,

the result is obtained.
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