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Abstract— A central question in the analysis and operation
of power networks is the feasibility of a unique high-voltage
solution to the power flow equations satisfying operational
constraints. For planning, monitoring, and contingency analysis
in transmission networks, the high-voltage solution of these
nonlinear equations can be constructed only numerically or
roughly approximated using a linear DC power flow. In this
work we analytically study the solvability of the nonlinear
decoupled reactive power flow equations, and present a solv-
ability condition relating the existence of a unique high-voltage
solution to the spatial distribution of loading and the effective
impedances between load buses. We validate the accuracy and
applicability of our results through standard power network
test cases.

I . I N T R O D U C T I O N

The interactions between the nodal phasor voltages and
complex power injections of a synchronous AC power net-
work are described by a set of nonlinear algebraic equations
called the power flow equations. These coupled equations are
the foundation of nearly all power systems analysis, planning
and control. Most notable are their extensive use in optimal
power flow, contingency analysis, model reduction, VAR
allocation, transient stability studies, wide-area frequency
stability and control, and voltage security assessment [1].

When the equations are taken in their most general form,
the corresponding power flow solution space admits a rich
and complex phenomenology [2]. The number of solutions is
known to scale exponentially with the system size [3], there
can be several realistic solutions [4], and the system is known
to exhibit multidimensional bifurcation phenomena [5]. In
heavily loaded networks, distinct stable solutions can exist so
close to one another in voltage-space that distinguishing them
in real time may prove difficult [6], while a further increase in
load can cause these neighboring solutions to undergo saddle-
node bifurcation and vanish entirely [5]. Analytic results are
typically unavailable, and despite early ideas to the contrary
[7], for a given network the feasible set in the space of power
injections (parameter-space) is generally non-convex [2].

A. Solutions, Loading Margins & Stability Indices

The most fundamental question regarding the power flow
equations is as follows: under what conditions on the givens
do they admit a high-voltage solution satisfying operational
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constraints? This difficult problem in essence attempts to
quantify the physical limits of the network [8]–[15]. While
good numerical methods are available to calculate these
transfer capability limits, theoretical understanding of net-
work limits remains somewhat lacking. Known solvability
conditions are either theoretically conservative [12], or restrict
the loading profile and offer no uniqueness guarantees [8],
[9]. Moreover, as noted in [11], in transmission networks
the reactive power security problem is considerably more
challenging than the corresponding problem for active power
flow, due to the presence of non-negligible reactive power
losses; see [15] for an analysis of solutions to the active
power flow equations in transmission networks. See also
the approximations techniques in [16], [17], and results for
distribution networks in [18].

A related but distinct set of literature instead seeks to
determine loading margins and voltage proximity indices,
which are, respectively, parameter-space and voltage-space
distance-to-bifurcation indicators. These quantities serve as
safety margins for online assessment of network stability.
Analytic results are available only in the simplest cases, while
proximity indices for practical networks require numerical
computation. In [19] Venikov et al. proposed using the deter-
minant of the power flow Jacobian as a measure of proximity
to voltage collapse. This observation generated a massive
effort in the power systems literature, evolving into spectral
and singular value methods [3], [5], [20]–[25], continuation
methods [2], [26], [27], optimization techniques [14], [28],
and later energy approaches [29]. These indices typically only
provide a state-space metric of voltage stability, and struggle
to be explicitly related to parametric loading margins without
additional support from numerical approaches. Theoretical
guarantees regarding proximity indices are typically unavail-
able.

B. Contributions

In the present work we provide a novel condition guar-
anteeing the existence of a high-voltage solution to the
decoupled reactive power flow equations. The algebraic
inequality condition we present generalizes the classic single-
line existence condition by relating the network topology,
impedances and load demands, and can be roughly stated
as “network coupling should be larger than loading.” The
degree to which our condition is satisfied corresponds in
a natural way to the deviations of load bus voltages from
generator voltage setpoints. Moreover, we show that under
our condition the decoupled reactive power flow Jacobian is
nonsingular at the corresponding solution, indicating that the
solution is robust under perturbations. This non-singularity



property is crucial for reliability of numerical proximity index
techniques, stability of associated load dynamics [25], [30]–
[34], robustness of solutions under perturbations [5], [14], and
droop control in microgrids [35]. We interpret the main result
before presenting several interesting corollaries, highlighting
how our condition provides a convex approximation of the
feasible injection region in parameter-space, and how it
naturally implies an upper bound on the reactive power
dissipated in the network.

Overall, the distinguishing feature of this work is the
analytic approach, which takes a preliminary attempt at
bridging the gap between the theory of power flow and
established numerical approaches. To focus on the reactive
power problem, throughout we work under several simplifying
assumptions such as power flow decoupling, the absence of
shunt elements and phase shifting transformers, and uniform
generator voltages. Relaxations of some of these assumptions,
technical proofs, and extensive numerical testing are deferred
to a journal article to follow.

The remainder of this section recalls some mostly-standard
notation that is used in the sequel. In Section II we formulate
our model of the reactive power flow equations. In Section
III we review some basic results on reactive power flow.
In Section IV we present our main results, and show how
our novel parametric condition leads to the results described
above. In Section V we present numerical evidence showing
our results are accurate in practical power networks, before
offering concluding remarks in Section VI.

C. Preliminaries and Notation

Sets, vectors and functions: Given a finite set V , let |V|
denote its cardinality. The set S1 is the unit circle, Tn =
S1 × · · · × S1 is the n-torus, and R (resp. R≥0, R>0) is
the set of real (resp. nonnegative real, strictly positive real)
numbers. For x ∈ Rn, [x] ∈ Rn×n is the associated diagonal
matrix. Given x, y ∈ Rn≥0, we write x ≥ y if xi ≥ yi for
each i ∈ {1, . . . , n}. We let 1n and 0n n-dimensional vectors
of unit and zero entries. The ∞-norm of x ∈ Rn is given by
‖x‖∞ = maxi∈{1,...,n} |xi|.

I I . N E T W O R K M O D E L I N G A N D D E C O U P L E D
R E A C T I V E P O W E R F L O W

Throughout this work we consider a connected, phase-
balanced power network operating in sinusoidal steady-state.
The network is modeled as a weighted graph G(V, E) with
two distinct types of nodes (or buses) : loads VL and
generators VG, such that V = VL ∪ VG. For notational
simplicity, we set n = |VL|, m = |VG| and assume n,m ≥ 1.
Each branch {i, j} ∈ E is weighted by a transfer admittance
yij = gij + jbij , where gij ≥ 0 and bij ≤ 0. We encode
the weights and topology in the bus admittance matrix Y ,
with elements Yij = −yij and Yii = −

∑n+m
j=1 yij . The

conductance matrix G and susceptance matrix B are defined
by G = Re(Y ) and B = Im(Y ). To each bus we associate a
phasor voltage Ui = Vie

jθi ∈ C where Vi ≥ 0 is the voltage
magnitude and θi ∈ S is the voltage angle. The complex
power injection at bus i ∈ V is given by Si = Pi + jQi.

First, for the high-voltage transmission networks we con-
sider, the branches are dominantly inductive; the conductance
matrix G is therefore negligible and we assume that Y '
jBFor simplicity of presentation, we also assume that the net-
work lacks any phase-shifting transformers, shunt elements,
and line charging capacitors. Under these conditions, we have
the following standard characterization of B [9].

Fact 1: (Properties of Susceptance Matrix). The (neg-
ative) susceptance matrix −B is the Laplacian matrix of a
weighted, undirected and connected graph. In particular,

(i) Sign Structure: Bii < 0, Bij ≥ 0 for all i, j ∈ V ;
(ii) Symmetry: Bij = Bji ≥ 0 for all i, j ∈ V , with strict

inequality if {i, j} ∈ E ;
(iii) Zero Row-Sums:

∑n+m
j=1 Bij = 0 for all i ∈ V .

The power flow functions gi, hi : Rn+m × Tn+m → R
relate the voltages and power injections at each bus i ∈ V
via

gi(V, θ) ,
n+m∑
j=1

ViVjBij sin(θi − θj) , (1a)

hi(V, θ) , −
n+m∑
j=1

ViVjBij cos(θi − θj) . (1b)

Physically, gi and hi are the active power and reactive power
injected at node i ∈ V .

As is standard in power flow analysis, the load buses VL
are modeled as PQ buses, at which the active and reactive
power injections Pi, Qi ∈ R are specified. Generator buses
VG are modeled as PV buses, at which active power injections
Pi ∈ R and voltage magnitudes Vi ≥ 0 are regulated to
constant values. Although the reactive power injections Qi
are unknown at the generator buses VG, they are determined
uniquely by (1b) after solving the remainder of the problem
for the remaining unknowns θi (i ∈ V) and Vi (i ∈ VL).
Extensions to include generator reactive power limits are
deferred to a future journal publication.

It follows that we may discard the m additional reactive
power flow equations for the generators VG. Given this PQ
and PV modeling of loads and generators, the injections
given by (1a)–(1b) are constrained at each node to meet the
demands, yielding the algebraic power flow equations

Pi = gi(V, θ) , i ∈ V , (2a)
Qi = hi(V, θ) , i ∈ VL , (2b)

where V = (V1, . . . , Vn) ∈ Rn>0 is the vector of load voltage
magnitudes. Typically Qi < 0, corresponding to an inductive
load. This work will focus on the n reactive power flow
equations (2b); see [15], [34] and the references therein for
a detailed analysis of the active power flow (2a).

Remark 1: (Load Modeling). There are myriad of static
or dynamic load models which could be used in place of
the PQ modeling we adopt herein to formulate the power
flow equations (2a)–(2b). It has been shown that for security
analysis problems, models can without loss of generality be
assumed static [36]. Throughout this work we model all loads



as PQ loads, i.e., stiff constant power demands. The literature
has firmly established that this is the most challenging case
for steady-state analysis, and the one most relevant from the
perspective of both classic [1] and modern [37], [38] power
system operation. For constant-impedance loads, constant-
current loads, or their combination, (1b) becomes linear [11],
[13]. See [13], [25], [35], [39] for additional information and
analysis. �

In practice, realistic power flow solutions have the prop-
erty that |θi − θj | ' 0. Indeed, under normal operating
conditions, a typical angular difference is roughly 5◦, for
which cos(5◦) ' 0.99. It is therefore common to study (2b)
under a decoupling assumption, in which the power angles
are assumed to be known and constant [11], [12], or even
negligible [8], [9]. We therefore make the following technical
assumption (see [9] and Ref. 14 of [11] for analysis on the
error introduced by decoupling).

Assumption 1: (Decoupling). The power angles θ satisfy
|θi − θj | = 0 for all branches {i, j} ∈ E of the network. �

Assumption 1 can easily be relaxed to constant (but fixed)
angular differences, but the special case of zero differences
introduces some additional structure and allows for some
elegant graph-theoretic interpretations; we comment more on
this assumption in Section VI. To even further simplify the
presentation, we assume that the voltages Vi all generators
i ∈ VG are regulated to the same value, which in a preferred
system of units can be taken to be equal to one. Extensions
to non-uniform generator voltages are straightforward.

With these assumptions, the decoupled power balance
equations we will study are

Qi = −
∑
j∈VL

ViVjBij −
∑
j∈VG

ViBij , i ∈ VL . (3)

Our goal is to find a sufficient condition guaranteeing that
(3) is solvable for the voltages V = (V1, . . . , Vn).

I I I . S I N G L E L O A D P R O B L E M & N E C E S S A RY
S O LVA B I L I T Y C O N D I T I O N

In this section we build intuition regarding the general
properties of the decoupled reactive power flow (3) by first
recalling the results for a single load. We then generalize the
insights from the single load case into a necessary solvability
condition which can be applied to any network.

For n = 1, the reactive power flow (3) is a single quadratic
equation, and the necessary and sufficient condition for the
existence of a solution follows immediately by studying its
discriminant [25, Section 2.2.3].

Proposition 3.1: (Necessary and Sufficient Condition
for One Load). For a single load |VL| = 1, consider the
decoupled reactive power flow (3) which reduces to

0 = q + bv2 − bv , (4)

where b < 0. The following statements are equivalent:
(i) Unique High-Voltage Solution: There exists a unique

high-voltage solution v+ > 1/2 to (4);

(ii) Load Limit: 4q/b < 1 .
Moreover, if either of the above statements are true, then

v+ =
1

2

(
1 +

√
1− q

b/4

)
.

The exact solution in Proposition 3.1 shows that the
solution exists only for loads which are less inductive than
the critical load b/4. When q = 0, v = 1, that is, the load
voltage aligns with the generator voltage. Moreover, one
easily verifies that when q = b/4, the Jacobian of (4) is
singular at the corresponding solution v = 1/2, which is
the maximum power transfer point at which the high and
low-voltage solutions coalesce [5]. This bifurcation point
at (v, q) = (1/2, b/4) motivates the following necessary
condition for solvability, which applies to (3) defined over
any transmission network. The proof is not reported here, but
follows easily from change of coordinates and definiteness
arguments. See also [37, Lemma 1] for a related result.

Proposition 3.2: (Necessary Condition for Solvability).
Consider the decoupled reactive power flow equation (3). If
a solution to (3) exists, then

4
∑n
i=1Qi∑n

i,j=1Bij
< 1 . (5)

Physically, Proposition 3.2 restricts the sum of load in
the network from being overly inductive. From the defini-
tion of the susceptance matrix, the sum

∑n
i,j=1Bij in the

denominator of (5) is equal to −
∑
i∈VL

∑
j∈VG Bij , which

is the parallel combination of all susceptances connecting
generators to loads. Similarly,

∑n
i=1Qi is the total reactive

power loading in the network. Comparing this to the single
load condition in Proposition 3.1, the necessary condition (5)
can be interpreted as aggregating all loads down to a single
load, and connecting all generators to that load through a
single effective susceptance.

The gap between this necessary condition and the sufficient
condition developed in the next section is filled by the
grid topology. That is, while the aggregated condition in
Proposition 3.2 must always be fulfilled, the relative locations
of load and generation and the effective impedances between
them must be included. We summarize the following key
observations from Propositions 3.1 and 3.2:
• The high-voltage solutions should deviate minimally

from the generator voltage which is fixed at unity;
• The reactive load should not be overly inductive, and

should be compared to a measure of total susceptance
or total reactance;

• The voltage level 1/2 is a “trouble spot” for (3);
• The relative locations of loading should be included in

the feasibility condition;

I V. M A I N R E S U LT S

We preface our main results with a useful notion of effec-
tive impedance, which will help us state a circuit-theoretic
version of our result. Given a power network satisfying our
previous assumptions, let vi be the voltage measured at load
i when a unit reactive current is extracted at load j with all



other current injections zero. We then call Xeff
ij = vi − 1

the differential effective reactance between loads i, j ∈ VL.
In other words, Xeff

ij is the proportionality coefficient from
current injections at load j to voltage deviations at load i.
The differential effective reactance provides a useful measure
of how electrically distant loads i and j are from one another
in the network. It is easily seen that Xeff

ij = Xeff
ji , and can

be shown that Xeff
ii ≥ Xeff

ij for all i, j.
The following is our main result, a sufficient condition

under which we are assured the existence of a solution to
(3) along with some invertibility properties of the Jacobian
matrix at the solution. The proof is not reported here.

Theorem 4.1: (Solution Existence). Consider the decou-
pled reactive power flow equation (3), and assume that

M , max
i∈VL

∑
j∈VL

4Xeff
ij Qj < 1 . (6)

The following statements hold:
1) Existence: There exists a unique high-voltage solution

V + ∈ Rn>0 of (3) satisfying V + > 1
21n ;

2) Bounding: The solution V + satisfies the bound ‖V +−
1n‖∞ ≤ ε, where ε = M/2;

3) Jacobian Invertibility: The Jacobian matrix of (3)
evaluated at V + is Hurwitz .

Moreover, the condition (6) is tight; the marginal case M = 1
is achieved by the extremal load profile (Q1, . . . , Qn) defined
component-wise by Qi =

∑n
j=1Bij . In this case the exact

solution to (3) is V + = 1
21n.

Remark 2: (Interpretation of Theorem 4.1). Theorem
4.1 captures the intuition regarding the compromise between
voltage profile cohesiveness (i.e., homogeneity) and severity
of loading. The parametric condition (6) compactly expresses
the interplay between the load demands Qi, which tend
to distort the voltage profile, and the electrical distances
in the network as expressed in terms of the differential
effective reactances Xeff

ij . As the margin M approaches zero,
ε approaches zero and the voltage profile becomes flat. As
the margin M approaches unity, ε approaches 1/2 and the
bifurcation point may be reached. �

Let us first compare the result of Theorem 4.1 to the
two-node case of Proposition 3.1. In this case, |VL| = 1,
Xeff

11 = 1/b, and the condition (6) therefore reduces to the
necessary and sufficient condition 4q/b < 1. While the
necessary condition of (3.2) restricts an aggregated load
Qagg =

∑n
i=1Qi compared to an aggregated reactance

Xagg = 1/
∑n
i,j=1Bij , the sufficient condition takes into

account the topology of the graph connecting the loads
through the effective reactances Xeff

ij . Surprisingly, the final
statement in Theorem 4.1 states that the necessary condition
and the sufficient condition coincide for a specific load
distribution. In Section V we show that in practical networks,
the condition (6) provides good estimates on the locations of
solutions.

We state two interesting corollaries of Theorem 4.1. First,
the condition (6) furnishes an inner-convex estimate of the

TABLE I
A C C U R A C Y O F ‖V + − 1n‖∞ ≤ ε B O U N D I N T E S T C A S E S

Network Error η (%)

IEEE 14 Bus 0.22
IEEE 30 Bus 0.59
IEEE 57 0.31
IEEE 118 Bus 0.19
Polish (W’99-’00) 1.16

so-called “injection region” — the set of power injections
QL ∈ Rn such that a unique high-voltage solution exists.

Corollary 4.2: (Convex Estimate of Injection Region).
The set {(Q1, . . . , Qn) ∈ Rn : M < 1} is a convex subset
of the injection region.

This convex region can be regarded as a “safe” region
of parameter space — load demands that are guaranteed to
lead to high-voltage solutions. From (6), one sees that the
estimate is simply the intersection of various half-spaces.
Second, in [12] it was noted that “. . . the reactive power
problem is characterized by large reactive losses relative
to the transmitted reactive power. . . ”. A simple corollary of
Theorem 4.1 makes this intuition precise by upper bounding
the reactive power absorbed by the network.

Corollary 4.3: (Reactive Power Losses). Assume the con-
dition of Theorem 4.1 holds, and let

L(V +) , −Ṽ TBṼ ∈ R≥0

denote the reactive power absorbed/dissipated by network at
the solution V +, where Ṽ = (V +,1m) is the vector of load
voltages and generator voltages. Then L(V +) satisfies the
bound

L(V +)∑n
i,j=1Bij

≤ ε .

Note that as the reactive loading in the network goes to zero,
ε goes to zero and so does the reactive power absorbed, since
the network voltage profile becomes flat.

V. S I M U L AT I O N S T U D Y

In this section we demonstrate that the bounds developed
in Theorem 4.1 provide accurate results in several standard
test cases. We computed [40] the exact operating point V exact,
and then computed the deviation via εexact = ‖V exact−1n‖∞.
This was then compared to the bound ε developed in Theorem
4.1 via the relative error η , (ε−εexact

− )/εexact. The results of
these computations are reported in Table I. All tests generated
errors of less than 1%, aside from the large (2383 bus) Polish
test system. Hence, the bound is fairly accurate in these test
networks, suggesting its accuracy in even larger practical
networks may be acceptable.

V I . C O N C L U S I O N S

This paper presented an analytical technique to assess to
solvability of the decoupled reactive power flow equations.
We have presented circuit-theoretic conditions on the effective



impedances and load demands to ensure the existence of a
high-voltage solution. While in this article we have included
many assumptions in our analysis, our approach appears
to give good results in standard test cases. A forthcoming
journal publication will relax many of the assumptions listed
throughout this work including decoupling and additional
load models, will provide proofs of the main results, and will
provide more extensive numerical testing of our approach.
We foresee that the results herein and the subsequent exten-
sions will be useful for control applications, where simple,
tractable models are needed for linear feedback design, and
as constraints or objective functions for optimization.
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