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Abstract—This article provides analysis and optimization re-
sults for the mean first passage time, also known as the Kemeny
constant, of a Markov chain. First, we generalize the notion of
the Kemeny constant to environments with heterogeneous travel
and service times, denote this generalization as the weighted
Kemeny constant, and we characterize its properties. Second, for
reversible Markov chains, we show that the minimization of the
Kemeny constant and its weighted counterpart can be formulated
as convex optimization problems and, moreover, as semidefinite
programs. Third, we apply these results to the design of stochastic
surveillance strategies for quickest detection of anomalies in
network environments. We numerically illustrate the proposed
design: compared with other well-known Markov chains, the
performance of our Kemeny-based strategies are always better
and in many cases substantially so.

I. INTRODUCTION

A. Problem description and motivation

The subject of this paper is the analysis, generalization and
minimization of the mean first passage time for a random
walk. This problem is of general mathematical and engineering
interest in the study of Markov chains and random walks;
similar to the fastest mixing Markov chain, the mean first
passage time is a metric by which to gauge the performance of
arandom walk. In a robotic context, our motivating application
is the design of surveillance algorithms for quickest detection
of intruders and anomalies. Specific examples include the
monitoring of oil spills [12], the detection of forest fires
[27], the tracking of border changes [39], and the periodic
patrolling of an environment [17], [35]. Other applications in
single and multi-agent systems include minimizing emergency
vehicle response times [5] as well as servicing tasks in
robotic warehouse management [41]. In this paper we propose
stochastic surveillance strategies based on Markov chains.
This study is motivated by the desire to design surveillance
strategies with pre-specified stationary distributions, that are
easily implementable and inherently unpredictable. In areas
of research outside of robotics, the study of the mean first
passage time is potentially useful in determining how quickly
information propagates in an online network [4] or how
quickly an epidemic spreads through a contact network [40].
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B. Literature review

For a random walk associated with a Markov chain, the
mean first passage time, also known as the Kemeny constant,
of the chain is the expected time taken by a random walker
to travel from an arbitrary start node to a second randomly-
selected node in a network. The Kemeny constant of a Markov
chain first appeared in [26] and has since been studied by
several scientists, e.g., see [25], [28] and references therein.
Bounds on the mean first passage time for an arbitrary Markov
chain over various network topologies appear in [25], [30]. To
the best of our knowledge, no results are available so far on
the optimization of the mean first passage time of a Markov
chain, nor on a framework for this quantity which accounts
for general weighted graphs.

The mean first passage time is closely related to other well-
known metrics for graphs and Markov chains. We discuss two
such quantities in what follows. First, the Kirchhoff index [29],
also known as the effective graph resistance [15], is a related
metric quantifying the distance between pairs of vertices
in an electric network. The relationship between electrical
networks and random walks on graphs is explained elaborately
in [14]. For an arbitrary graph, the Kirchoff index and the
Kemeny constant can be calculated from the eigenvalues of the
conductance matrix and the transition matrix, respectively. The
relationship between these two quantities for regular graphs is
established in [34]. Second, the mixing rate of an irreducible
Markov chain is the rate at which an arbitrary distribution
converges to the chain’s stationary distribution [13]. It is well-
know that the mixing rate is related to the second largest
eigenvalue of the transition matrix of the Markov chain. The
influential text [31] provides a detailed review of the mixing
rate and of other notions of mixing. Recently, [28] refers to
the Kemeny constant as the “expected time to mixing” and
relates it to the mixing rate.

In this paper we study strategies to surveil an environment,
to provide a desired coverage frequency, and to detect an
intruder in minimum time. The surveillance problem has
appeared in the literature in various manifestations. The au-
thors of [38] look at minimizing time of detection of noisy
anomalies via persistent surveillance strategies, and in [32]
wireless sensor networks are utilized for intruder detection in
previously unknown environments. In [3], the authors explore
strategies for surveillance using a multi-agent ground vehicle
system which must maintain connectivity between agents. A
non-cooperative game framework is utilized in [11] to deter-
mine an optimal strategy for intruder detection, and in [36]
a similar framework is used to analyze intruder detection



for ad-hoc mobile networks. In our setup we model the
environment as a graph and design random walks on this
graph imposing restrictions on the stationary distribution of
the walk. In other works with a similar setup, Markov chain
Monte Carlo methods [19], [37] are used to design surveillance
strategies. In [19] convexity results for symmetric matrices
are utilized to further optimize those strategies. Deterministic
policies have been used to minimize the visit frequencies in
a graph [16], [38], however, a main result of [37] shows that
deterministic policies are ill-suited when designing strategies
with arbitrary constraints on those visit frequencies. We take
an alternate approach and design policies using Markov chains
with minimal Kemeny constant.

C. Contribution

Before stating our contributions, it is worth mentioning
that all work to date on the mean first passage time and
mixing rate of a Markov chain on a graph has been complete
under the assumption of homogeneous travel time along the
edges of the graph. The contributions of this paper are then
six fold. First, we provide a convex optimization framework
to minimize the Kemeny constant of a reversible Markov
chain given the underlying graph topology of the random
walk and the desired stationary distribution. Second, using
doubly-weighted graphs we extend the formulation of the
mean first passage time to the network environments with non-
homogeneous travel times, a generalization not yet looked at in
the literature. We denote this extension the weighted Kemeny
constant. Third, we derive a closed form solution for the
weighted Kemeny constant and show its relation to the Kemeny
constant. Fourth, we provide a convex optimization framework
to minimize the weighted Kemeny constant of a Markov
chain with desired stationary distribution. Fifth, we provide a
semidefinite program (SDP) formulation for the optimization
of the Kemeny constant and the weighted Kemeny constant.
Finally, we look at two stochastic surveillance scenarios; in
the first scenario we provide a setup in which minimizing
the weighted Kemeny constant leads to the optimal Markov-
chain strategy. In the second surveillance scenario we establish
through numerical simulation that the Markov chain with the
minimum weighted Kemeny constant performs substantially
better compared with other well-known Markov chains (i.e.,
the fastest mixing chain and the Metropolis-Hastings Markov
chain).

A preliminary short version of this article is to appear at
the 2014 CDC conference as [1] and is currently available
at http://motion.me.ucsb.edu. This article contains
several addenda and updates not found in [1] including, but
not limited to, detailed proofs of theorems that were presented
in [1], the introduction of a new algorithm, and extensive
simulation results.

D. Organization

The paper is organized as follows. In Section I-E we
summarize the notation which we use throughout the paper and
briefly review properties of Markov chains. In Section II we
give relevant background for the Kemeny constant and present

our results for its minimization. In Section III we introduce
and provide detailed characterization of the weighted Kemeny
constant as well as its minimization. In Section IV we provide
practical surveillance applications of the weighted Kemeny
constant. In the final Section we present our conclusions and
future research directions.

E. Notation

We use the notation A = [a;;] to denote a matrix A
with the element a;; in its i-th row and j-th column and,
unless otherwise indicated, use bold-faced letters to denote
vectors. Letting J;; denote the Kronecker delta, Aq = [0;;a;]
represents the diagonal matrix whose diagonal elements are
the diagonal elements of the matrix A. The column vector
of all ones and length n is denoted by 1, € R™*! and I
represents the identity matrix of appropriate dimension. We
use diag[b] to denote the diagonal matrix generated by vector
b and Tr[A] to denote the trace of matrix A.

A Markov chain is a sequence of random variables taking
value in the finite set {1,...,n} with the Markov property,
namely that, the future state depends only on the present state;
see [23], [26] for more details. Let X} € {1,...,n} denote
the location of a random walker at time k € {0,1,2,...}. We
are now ready to summarize some terminology and results
for Markov chains. (1) A Markov chain is time-homogeneous
if P[Xn-i-l = j|Xn = Z] = P[Xn = j‘Xn—l = Z] = Dij»
where P € R™*" is the transition matrix of the Markov chain.
(2) The vector w € R™ ! is a stationary distribution of P
if % jm =1,0 < m < 1foralli € {1,...,n} and
TP = w7, (3) A time-homogeneous Markov chain is said
to be reversible if w;p;; = m;pj;, for all 4,5 € {1,...,n}.
For reversible Markov chains, 7 is always a steady state
distribution. (4) A Markov chain is irreducible if there exists
a t such that for all 4,5 € {1,...,n},(P");; > 0. (5)
If the Markov chain is irreducible, then there is a unique
stationary distribution 7r, and the corresponding eigenvalues
of the transition matrix, \; for ¢ € {1,...,n}, are such that
A =1\ <1land A\; # 1 for i € {2,...,n}. For further
details on irreducible matrices and about results (4) and (5)
see [33, Chapter 8]. In this paper we consider finite irreducible
time-homogeneous Markov chains.

II. THE KEMENY CONSTANT OF A MARKOV CHAIN AND
ITS MINIMIZATION

Consider a undirected weighted graph G = (V, E, P) with
node set V := {1,...,n}, edge set E C V x V), and weight
matrix P = [p;;] with the property that p;; > 0 if (i,5) € F
and p;; = 0 otherwise. We interpret the weight of edge (4, j) as
the probability of moving along that edge. Therefore, element
p;; in the matrix represents the probability with which the
random walk visits node j from node ¢. Throughout this
document we assume that the underlying undirected graph
(V, E) associated to the transition probabilities P is connected.

In this section we look into a discrete-time random walk
defined by a Markov chain on a graph G. At each time step
(hop) of the random walk we move to a new node or stay at the
current node according to the transition probabilities described



by a transition matrix P as discussed above. We do this with
three objectives in mind. The first objective is to analyze the
random walk and characterize the average visit time between
nodes in the graph. The second objective is to minimize the
average visit time between any two nodes and the final is to
achieve a long term (infinite horizon) visit frequency 7r; at
node 7. Here, the frequency 7r; is the ratio of visits to node
1 divided by the total number of visits to all nodes in the
graph. Throughout the paper, we describe the random walk
using realizations of a Markov chain with transition matrix

P = [p;].

A. The mean first passage time for a weighted graph

Let X, € {1,...,n} denote the location of the random
walker at time k € {0,1,2,...}. For any two nodes ¢,j €
{1,...,n}, the first passage time from i to j, denoted by T;;,
is the first time that the random walker starting at node ¢ at
time O reaches node j, that is,

T;; = min{k > 1| X}, = j given that X, = ¢}.

It is convenient to introduce the shorthand m;; = E[Tj;],
and to define the mean first passage time matrix M to have
entries m;;, for 4, j € {1,...,n}. The mean first passage time
from start node i, denoted by k;, is the expected first passage
time from node ¢ to a random node selected according to the
stationary distribution 7, i.e.,

n
kiz E mijﬂ'j.
j=1

It is well known [25] that the mean first passage time from a
start node is independent of the start node, that is, k; = k;
for all 4,5 € {1,...,n}. Accordingly, we let K = k;, for
all i € {1,...,n}, denote the mean first passage time, also
known as the Kemeny constant, of the Markov chain.

Next, we provide formulas for these quantities. By defini-
tion, the first passage time from ¢ to j satisfies the recursive
formula:

T — 1, with probability p;;,
YT+ 1,

Taking the expectation, we compute

with probability p;x, k # j.

n n
mij = pij + Z pir(mi; +1) =1+ Z Dik Mk,

k=1,k#j k=1,k#j
or in matrix notation,
(I-P)M =1,17 — PM,, (1)

where P is the transition matrix of the Markov chain. If the
Markov chain is irreducible with stationary distribution 7r, then
one can show My = diag[{1/71,...,1/7,}], and

n n n
' Mm = E T E ™My = E w;k;, = K.
i=1  j=1 i=1

Clearly, the Kemeny constant can be written as the function
P +— K(P), however, to ease notation we simply write K

and use K (P) only when we wish to emphasize the constant’s
dependence on P.

The Kemeny constant K = w/ M= can be computed
from equation (1) or can be expressed as a function of the
eigenvalues of the transition matrix P as is stated in the
following theorem [25].

Theorem 1: (Kemeny constant of an irreducible Markov
chain): Consider a Markov chain with an irreducible transition
matrix P with eigenvalues A\; = 1 and \;, i € {2,...,n}. The
Kemeny constant of the Markov chain is given by

"1
K=1+;17/\i.

Using Theorem 1, we derive the following equivalent ex-
pression for reversible Markov chains in terms of the trace of
a symmetric positive definite matrix. Before stating our result,
we first introduce some notation. Given a stationary distri-
bution vector 77 € R™*! for a Markov chain with transition
matrix P € R™"*", we define the matrix IT € R"*" as II =
diag[m] and the vector g € R"*! as g7 = (\/71,...,/Tn).
We are now ready to state our first result.

Theorem 2: (Kemeny constant of a reversible irreducible
Markov chain): The Kemeny constant of a reversible irre-
ducible Markov chain with transition matrix P and stationary
distribution 7r is given by

K ="Tr |(I-1I'2PI Y2 4 q¢7)71] . (2)

Proof: We start by noting that P is an irreducible
row-stochastic matrix therefore the eigenvalues of P are
{M=1Aa,..., .}, where |N\;] < 1 and \; # 1 for
i €{2,...,n}. It follows that the eigenvalues of (I — P) are
{0,1 = Ag,...,1— A, }. Since P is irreducible and reversible,
there exists a stationary distribution w € RY, implying II is
invertible and that TI'/2( — P)IT"Y/2 = [ — TI'Y/2PI1—1/2
is symmetric. It can easily be verified that / — P and
I — II'/2PII-'/2 have the same eigenvalues and that q is
the eigenvector associated with the eigenvalue at 0. Next,
notice the matrix (I — IT'/2PIT~Y/2 + qq") is symmet-
ric and that (I — IT'/2PII~'/2 + qq")q = q. Therefore,
(I — OY2PI~Y2 + qq") has an eigenvalue at 1 associ-
ated with the vector q. Since (I — IIY/2PII-Y/2 4+ qq7) is
symmetric, the eigenvectors corresponding to different eigen-
values are orthogonal; implying for eigenvector v # g that
(I —I'2PI~12 4+ q¢")v = (I — TI'V/2PIT~/2?)wv since
the eigenvalue at 1 is simple. Therefore, the eigenvalues of
(I —TI2PI~1/2 4 qq7) are {1,1 — \y,...,1 — A\, }. Thus,
K=Tr[I-I/2PII"Y2 4 qq")7 ] =1+ 1/(1-Xo) +
L+ 1/(1=N,) =K. ]

Given the above result, we are now ready to state our first
problem of interest.

Problem 1: (Optimizing the Kemeny constant of a re-
versible Markov chain): Given the stationary distribution 7
and graph G with vertex set V and edge set E, determine the



transition probabilities P = [p;;] solving:

minimize Tr {(I —OY2pI—t2 4 gg") !

subject to Zpij =1, foreachie {1,...,n}
7=1 3)
TiPij = T;Dji, for each (Z,]) ek
0 <p;; <1, for each (i,j) € £
pi; =0, for each (i,7) ¢ E.

Remark 3: All feasible solutions P to Problem 1 are in-
herently irreducible transition matrices: when P is not irre-
ducible, the matrix (I —IT'/2PII~/2 4+ qq™) is not invertible.
Moreover, a feasible point always exists since the Metropolis-
Hastings algorithm applied to any irreducible transition matrix
associated with G, generates a reversible transition matrix
which is irreducible and satisfies the stationary distribution
constraint [21].

The following theorem establishes the convexity of the Ke-
meny constant for transition matrices with fixed stationary
distribution.

Theorem 4 (Convexity of Problem 1): Let Pr denote the
set of matrices associated to irreducible reversible Markov
chains with stationary distribution 7. Then, P, is a convex
set and P — K (P) is a convex function over P.

Proof: Let S denote the set of symmetric positive definite
matrices, for any stationary distribution 7 € RZ ), denote the
set Sp x := {I —TI'/2PII~'/2 4 qq" | P € Pr}. We begin
by showing that P, is a convex set. Let P;, P» € P, then
Pr is convex if for an arbitrary 6 € [0, 1] that

0P, + (1 —0)Py = P; € Py. 4)

Pre and post multiplying (4) by II'/2 and II-'/2, respec-
tively, we have that OTI'/2 P, TT1/2 4 (1 — O)TTV/2 PIT-1/2 =
OY/2P,I1-1/2. Then IIYV2P3I1-/2 is symmetric since
/2P I1-1/2 and IY/2 P,IT~1/2 are symmetric. Pre multiply-
ing (4) by w7 we easily verify that the stationary distribution
Pz is w7 and similarly, post multiplying by 1,, verifies that P3
is row stochastic. Finally taking the left hand side of (4) to the
n-th power gives (0P +(1—0)Py)" = 0" P"+(1-6)" P} +(,
where ¢ denotes the sum of all other terms in the expansion
and has the property (;; > 0 for all 7,5 since P; and
P, are non-negative element-wise matrices. Moreover from
irreducibility, there exists a sufficiently large N such that for
n > N, (P');; > 0and (P3);; > 0 for all ¢, j, which implies
(Pg)i; > 0, therefore P € Py and Py is convex.

Next we show that Sp » C S. From the proof of Theorem
2 we have for P € P, that I —II'/2PII~'/2 4 qq” has eigen-
values {1,1— Ay,...,1—A,}, where \; for i € {1,...,n}
are the eigenvalues of P, where X\; < |[1]| for all i and
Ai # 1 for i € {2,...,n}. Therefore, all eigenvalues of
I —TIY2PII=1/2 4 qq" are strictly greater than zero. Finally,
since P is reversible IT'/2PII~/2 is symmetric implying
(I —OY2PI-Y2 4+ qq")" = I — I'/2PT1-1/2 4 qq" and
so Spr CS.

Finally, define the mapping g : Pr — Spr by g(X) =
I —TIY2XTI-'/2 4+ qq". This is an affine mapping from the
convex set P, to a subset of S. From [18] we know that

Tr[X '] is convex for X € &, therefore the composition
with the affine mapping g : Pr — Spr C S, Tr[g(X)™ ] is
also convex [8, Chapter 3.2.2]. ]

Problem 1 includes constraints on the stationary distribution
of the transition matrix, a notion which has not been looked
at in the literature before. The author of [28] provides bounds
to determine the set of transition matrices such that K is
minimized and [25] gives special matrices for which the
optimal Kemeny constant can be found, but these are all
approached for the general setting with no constraint on the
actual stationary distribution. In real-world settings, constraints
on the stationary distribution are important and have many
practical interpretations. For example, it is often desirable to
visit certain regions more frequently than other based on each
region’s relative importance.

B. SDP framework for optimizing the Kemeny constant

Here we show how Problem 1 can be equivalently rewritten
as an SDP by introducing a symmetric slack matrix.

Problem 2: (Optimizing the Kemeny constant of a re-
versible Markov chain (SDP)): Given the stationary distribu-
tion 7r and graph G with vertex set V) and edge set F, determine
X = [z;;] and the transition probabilities P = [p;;] solving:

Tr[X]

minimize
subject to
{ [—I'PPIY2 + g™ 1],
1 X |~
Zp” =1, foreach i € {1,...,n}
j=1
T;Dij = T;iDji, for each (Z,j) ek
0 <p;; <1, foreach (i,j) € E
pij =0, for each (¢,7) ¢ E.

The first inequality constraint in Problem 2 represents a linear
matrix inequality (LMI) and denotes that the matrix is positive
semidefinite. Since the matrix in the LMI has off-diagonal
entries equal to the identity matrix, it holds true if and only if
X is positive definite and (I — IT'/2PII-/2 + gq7) — X!
is positive semidefinite [2, Theorem 1]. This implies (I —
IMY/2PII-1/2 + qq7) is positive definite and that X = (I —
IY/2PI1~1/24-qq™)~". Therefore, the SDP given by Problem
2 minimizes the Kemeny constant.

ITII. THE WEIGHTED KEMENY CONSTANT OF MARKOV
CHAIN AND ITS MINIMIZATION

In most practical applications, distance/time traveled and
service costs/times are important factors in the model of the
system. We incorporate these concepts by allowing for an
additional set of weighted edges in our graph in addition to
the edge weights which describe the transition probabilities.
Such a system can be represented by the doubly-weighted
graph G = (V,E,P,W), where W = [w;;] is a weight
matrix with the properties that: if (¢,¢) € FE, then w; > 0;
if (i,j) € E, i # j, then w;; > 0 ; and if (¢,j) ¢ E, then
w;; = 0. The weighted adjacency matrix P = [p;;] has the
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Fig. 1. Example of a doubly-weighted graph G = (V, E, P, W) with three
nodes: (a) shows the edge set, E, allowed for the graph with three nodes, (b)
shows the probabilities, p;; to move along each edge, and (c) shows the time
(i.e., distance traveled), w;; to move along each edge.

same interpretation as before as an irreducible row-stochastic
transition matrix P which governs the random walk on the
graph. An example of a doubly-weighted graph is shown in
Figure 1. In the following, we will interpret w;;, i # j as the
time to travel between two nodes, ¢ and j, in the graph and w;;
as the service time at node 7. We discuss another motivating
example and interpretation for w;; in a later section.

Recall that X; = ¢ denotes that the random walker is at
node 7 at time k. If a sample trajectory of the random walk
is Xg =14, X = j, X9 =k, then the time instant at which a
random walker arrives in state X3 is w;; +w,x. Thus the time
interval between two consecutive steps of this random walk
depends on the weighted adjacency matrix, W, of the graph
and is not constant.

In the following analysis, we look at several characterization
and optimization objectives: The first involves extending the
notion of the Kemeny constant to doubly-weighted graphs and
providing a detailed characterization of this extension. The
second involves the minimization of the mean first passage
time of a doubly-weighted graph and the third involves char-
acterization and minimization of the mean time to execute
a single hop. The first and second objectives are motivated
by the need to minimize visit times to nodes in the graph,
and the third is motivated by the desire to minimize resource
consumption when moving between nodes. We seek to design
transition matrices P with stationary distribution 7 which
optimize each problem. We start with the first objective.

A. The mean first passage time for a doubly-weighted graph

The mean first passage time for the Markov chain on a
weighted graph G = (V, E, P) by definition, is simply its
Kemeny constant. Recall that the mean first passage time for
node i, defined by k;, is determined by taking the expectation
over the first passage times m;;, from node ¢ to all other nodes
7. We present an analogous notion of the first passage time
between two nodes on a doubly-weighted graph. We start with
defining the first passage time random variable for a random
walk on a doubly-weighted graph and provide a recursive
formulation for its expectation.

As in Section II-A, for any two nodes ¢,j € {1,...,n}, the
first passage time from 1 to j is the first time that the random

walker starting at node ¢ at time O reaches node j, that is,
k—1
T, = min{ > wx, xps for k> 1] Xy = j

n=0

given that X, = 1}

Lemma 5: (First passage time for a doubly-weighted
graph): Let n,;; = E[T;;] denote the mean first passage time to
go from 7 to j for a graph with weight matrix W and transition
matrix P. Then

ni; = pij(wij) + Y pir(ne; + win), (5)
oy

or, in matrix notation,
(I = P)N = (PoW)1,1T — PNy, (6)

where (P o W) is the element-wise product between P and
W and where Ny = [0;1;).

Proof: By its definition, the first passage time satisfies
the recursive formula:

T Wij, with probability p;;, 7
T Y win + Thjs with probability p;, k # j.
Therefore, the results follows from taking the expectation:
E[T};] = wijpi; + ZPik(E[Tkj] + wik)-
k#j
|

The matrix N, which we call the mean first passage time
matrix for a doubly-weighted graph thus satisfies an equation
similar to (1) for the passage time matrix M of a graph with
a single weight matrix, the transition matrix P. In fact, we
see that equation (6) is equivalent to (1) when w;; = 1 for all
(i,j) € E (i.e., for an unweighted graph).

The random variable tracking the time interval between
consecutive visits to a node has been referred to as the
refresh time of that node [35] and n,; is the expected value
of the refresh time for the random walk. We now obtain a
relation between 7 and the refresh times n;;.

Theorem 6 (Refresh times for doubly-weighted graphs):
Consider a Markov chain on a doubly-weighted graph
G = (V,E,P,W) with stationary distribution 7 and
associated mean first passage time matrix N. The refresh
time for node i is given by n;; = (w1 (P o W)1,)/m;,
implying that

Ny =7 (PoW)1,Mj.

Proof: The stationary distribution of the transition matrix
P is m € R™*L, Therefore, premultiplying equation (6) by

7T, we obtain

0=n"(PoW)1,17 — T Ny,

where the left hand side of equation (6) is zero since 77 (I —
P) = 7T — 7T = 0. Now we have that (77 (PoW)1,)1L =
T Ny. Since Ny is a diagonal matrix and w2 (P o W)1,, is
a scalar, we get that w;n;; = w! (P o W)1,,. Thus, dividing
by m; we have that n;; = w7(P o W)1,/m;, and in matrix



form Ny = w7 (PoW)l,diag({1/71,...,1 7,}) =L (Po
W)lnMd . |
This theorem implies that the refresh time n;; of the random
walk is directly proportional to the visit frequencies 1/r;.
Therefore, the relative visit frequencies of one node compared
to another are not a function of the weight matrix W and only
depend on the stationary distribution of the transition matrix
P.

We now investigate the properties of the mean first passage
time of the weighted random walk. The mean first passage
time for a doubly-weighted graph G = (V, E, P,W) with
associated passage times matrix N is given by Ky = w7 kyy,
where ky = N is the vector of first passage times and the
i—th entry kyw,; in ky denotes the mean time to go from %
to any other node. We refer to the mean first passage time
for a doubly-weighted graph, Ky, as the weighted Kemeny
constant. We now provide an analytic expression for the vector
kw € R

Lemma 7: (First passage times for a doubly-weighted
graph): Given a Markov chain on a doubly-weighted graph
G = (V,E,P,W) with stationary distribution 7 and associ-
ated first passage time matrix /N, the following equality holds:

(I = P)kw = (PoW)l, —1,w"(PoW)l,, (8

where ky = Nr.

Proof: Post multiplying equation (6) on both sides by 7
gives

(I - P)N=w

(I — P)kw

(PoW)1,1 7 — PNym,
(PoW)1, — P(rT(PoW)1,)1,
(PoW)l, — 1,7 (PoW)1,.

|
The right hand side of (8) gives the insight that, in general,
kw; # kw,; on the doubly-weighted graph, unlike the
counterpart for the single-weighted graph (where k; = K
for all ¢ € {1,...,n}). Interestingly enough however, there
does exist a relation between the weighted Kemeny constant
Ky and the Kemeny constant K as is stated in the following
theorem, whose proof is postponed to the Appendix.
Theorem 8: (Weighted Kemeny constant of a Markov
chain): For the doubly-weighted graph G = (V, E, P,W), the
weighted Kemeny constant Ky of the Markov chain is given
by

Ky =7 (PoW)1,K, )

where K is the Kemeny constant associated with the irre-
ducible transition matrix P with stationary distribution 7 .

Remark 9: The expected number of hops to go from one
node to another in a Markov chain with transition matrix P
is its Kemeny constant. The expected distance travelled (and
hence time taken) executing one hop is ), 7; > jPijwij =
(P o W)1,. Hence, it is consistent with intuition that the
expected time to travel from one node to another should be
KnT(PoW)1, as is formally shown in the appendix.

Given the above results, we are now ready to state another
problem of interest.

Problem 3: (Optimizing the weighted Kemeny constant of a
reversible Markov chain): Given the stationary distribution m
and graph G with vertex set V, edge set E and weight matrix
W, determine the transition probabilities P = [p;;] solving:

minimize

(Tl'T(P ) W)ln) (Tr [(I —TY2prr/2? 4 qu)ﬂD

subject to Zpij =1, foreachi e {1,...,n}
j=1
TiDij = T;jDji, for each (Z,]) cFk
0 <pi; <1, foreach (i,j) € E
pi; =0, for each (i,j) ¢ E.

The following theorem establishes the convexity of the
weighted Kemeny constant for transition matrices with fixed
stationary distribution.

Theorem 10 (Convexity of Problem 3): Given the graph G
with vertex set V), edge set I/ and weight matrix W, let Pg
denote the set of matrices associated with G that are irreducible
reversible Markov chains with stationary distribution 7r. Then,
Pg . is a convex set and P +— 7wl (PoW)1, K (P) is a convex
function over Pg .

Proof: Let S denote the set of symmetric positive definite
matrices, for any stationary distribution 7w € RZY,, denote
the set Sg.pn := {I —TY2PII"/2 4 qq" | P € Pg r}.
The proof of convexity of the set Pg . is similar to that
of the proof of P, in Theorem 4 and so is omitted for
brevity. Then from the proof of Theorem 4 we know there
exists an affine mapping g(X) : Pgr — Sgp.n given by
g(X) = I —TI'/2PII~'/2 + qq". We know from [18] that
f(X) = Tr[X ~!] is convex, therefore the perspective function
h(X,t) = {tf(X/t) | t > 0} is also convex [8, Chapter 3.2.6].
Moreover the composition of h(X,t) with the affine mapping
g(X), h(g(X),t) is also convex. Let t = (77 (X o W)1,)"/2,
and notice that w7 (X o W)1, > 0 for X € Pg . and
therefore ¢ > 0. Also notice that for a constant k¥ € RY,
and matrix X € R™ " that Tr[(5)~!] = kTr[X ']. Then
h(g(X),t) = 1Te[(%G) 1] = £Tr[(g(X) '] = #"(X o
W)L, Tr[(I — 2 XTI7Y2 + qq") ) for X € Pgr. ™

B. SDP framework for optimizing the weighted Kemeny con-
stant

In a similar fashion to Problem 1, we can formulate Problem
3 as an SDP by introducing the symmetric slack matrix X €
R™*™ and the scalar variable ¢ as is shown in the following.

Problem 4: (Optimizing the weighted Kemeny constant of
a reversible Markov chain (SDP)): Given the stationary dis-
tribution 7 and graph G with vertex set V, edge set £ and



weight matrix W, determine Y = [y;,], X and ¢ solving:
minimize Tr[X]
subject to
t(I+qq") —IV2YIITV2 T )
I X |~

Zyij =1, foreach i € {1,...,n}
j=1

T;Yi; = T;Y;i, for each (4,j) € E
0 <y,;; <t, for each (i,j) € £

y;j = 0, for each (i,j) ¢ E

WT(Y oW1, =1

t>0.

Then, the transition matrix P is given by P = Y/t.

As in Problem 2, the first inequality constraint in Problem 4
represents an LMI. Before noting when the LMI holds, first
note that the constraints in Problem 4 imply that Pt = Y
and that ¢ = m. Hence, using a similar argument
as in Problem 2, the LMI constraint holds true if and only if
X = 7T(PoW)1,(I-T1"2PI~'/%2 4 qq")~" where X and
7T (PoW)1,(I — I'/2PII-/2 4+ qq")~" are both positive
definite, and therefore the SDP given by Problem 4 minimizes
the weighted Kemeny constant.

C. Minimizing single hop distance

We now look at the objective of minimizing the mean time
for a single hop of a random walk. At time k, let S;; be the
time required to transition from ¢ to j in a single hop along
an edge of length w;;. Then,

i=1 j=1

=) PXy =il Y wiP[Xp+1 =]
i=1 j=1
n n

= Z Z mwijpi; = L (PoW)l,.  (10)
i=1 j=1

The function w7 (P o W)1,, is clearly convex in P. If one
assumes that w;; = 0 for all 4 € {1,...,n}, then minimiz-
ing (10) over P yields the trivial solution P = I. We can
take into account both the single hop distance as well as the
Kemeny constant to design a Markov chain as follows.

Problem 5: (Optimizing Kemeny constant and mean dis-
tance): Given the stationary distribution 7v and graph G with
vertex set V, edge set E' and weight matrix W, and given
user specified constant o € [0, 1], determine the transition

probabilities P = [p;;] solving:
minimize oTr [(I —'Y2PIY/2 4 qq7)~*

+ (1 —a)mt (PoW)l,
subject to Zpij =1, foreachi e {1,...,n} (11)
j=1
mipi; = ™;pji, for each (i,j) € E
0 <pi; <1, foreach (i,j) € E
pi; =0, for each (i,j) ¢ E.

This problem is convex since the sum of two convex problems
is convex, moreover, it can be extended to an SDP utilizing
the LMI defined in Problem 2. In the context where w;; = 0
for all i € {1,...,n}, varying the parameter v can be used
to control the connectivity of the Markov chain; the choice
a = 1 ensures connectivity, and the choice @ = 0 minimizes
the single hop distance while making the graph disconnected.

IV. APPLICATIONS OF THE MEAN FIRST PASSAGE TIME TO
SURVEILLANCE

The results on mean first passage time for doubly-weighted
graphs (i.e., the weighted Kemeny constant) presented in this
work provide a general framework which can potentially be
applied to the analysis and design in a myriad of fields. We
focus on one application in particular; the intruder detection
and surveillance problem. We look at two variations of this
problem:

a) Scenario I

In practical stochastic intruder detection and surveillance
scenarios, there is often a desire to surveil some regions more
than others (i.e.,have a pre- specified stationary distribution)
while simultaneously minimizing the time any one region has
to wait before it is serviced. For this setup, in every step
of the random walk, the agent must move to a new region
and execute its surveillance task. Assuming we are working
on a doubly-weighted graph described by G = (V, E, P,W),
let us also assume there is a fixed persistent intruder in the
environment and it takes s; time for an agent to determine
if the intruder is in region ¢ € V. Denote the time to move
from region i to region j by d;;, where we can assume, without
loss of generality, that d;; = 0. Then, we can define the weight
corresponding to the edge from ¢ to j as w;; = d;; +s;. In this
scenario we wish to minimize the expected time to capture the
persistent intruder when no prior knowledge of their position
is known.

b) Scenario 11

In this scenario we consider the intruder detection problem
and adopt a similar setup to Scenario I, however, we now
assume a set of intruders are distributed throughout the envi-
ronment. Each intruder performs a malicious activity in its host
region for a fixed duration of time, which we call the intruder
life-time, followed instantaneously by another intruder. The
intruder is caught only if the agent is in the same region
as the intruder for any duration of the intruder life-time. For
simplicity only a single intruder appears at a time.

In the following subsections we analyze the performance of
various stochastic surveillance policies as applied to Scenario I



and Scenario II described above. More specifically, we gauge
the performance of other well-known Markov chain design
algorithms against the algorithms presented in this paper.

A. Optimal strategy for Scenario 1

In the context of Scenario I the weighted Kemeny constant
of the agent’s transition matrix, P, corresponds to the average
time it takes to capture an intruder regardless of where the
agent and intruder are in the environment. Therefore by
definition of the Kemeny constant, we have the following
immediate corollary for Scenario 1.

Corollary 11 (Optimal surveillance and service strategy):
The transition matrix P which has minimal mean first passage
time is the optimal strategy for the intruder detection problem
described by Scenario I.

This tells us that if we restrict ourselves to reversible
Markov chains, then not only is the chain with minimal mean
first passage time optimal, but given the results from Section II
and III, we can also optimally design this chain.

B. Numerical analysis of Scenario Il

In Scenario II the transition matrix with minimum mean
first passage time is not guaranteed to be the optimal policy,
and thus to gauge its performance compared to other poli-
cies we analyze both homogeneous (uniform service/travel
times) and heterogeneous environment cases. To compare
performance we generate a random walk for the environment
using the Metropolis-Hastings, fastest mixing Markov chain
(FMMC) [7], and Kemeny constant algorithms. While game
theoretic frameworks [11], [6] also generate stochastic poli-
cies, they are based on assumptions on the intruder behavior.
We avoid such assumptions here and, therefore, omit them
from our comparative analysis.

We first look at the homogeneous case which is described
by the discretized environment shown in Figure 2. We assume
that a single surveillance agent executes a random walk in the
environment, spending 1 time unit in each region, and that
the agent transitions between two connected regions instanta-
neously. Also, we assume a uniform stationary distribution on
the transition matrix (each node in the region must be visited
with equal likelihood). The Markov chain generated by the
Metropolis-Hastings algorithm is generated by applying the
algorithm to the random walk described by p;; = 1/d; for
i # j and p;; = 0 for ¢ = j, where d; is the degree of a node
i (excluding self-loops) [21]. The intruder life-time is set to
66 time units and 500 intruders appear per simulation run (the
sequence in which the intruders appear is determined before
each simulation run), for a total simulation run of 33,000
time units. As stated in the scenario description, the intruder
is caught if the surveillance agent is in the same region as
the intruder for any portion of the intruder life-time. Table
I summarizes the statistical performance of each algorithm
after 200 runs of the simulation and justifies our use of the
Kemeny constant algorithm as a valid surveillance strategy; the
Kemeny constant algorithm captures intruders more frequently
than the other two algorithms, and its worst case performance
is still better than the worst case performance of the other

Fig. 2. Environment with two obstacle represented by an unweighted graph.

two algorithms. Although results for an intruder life-time of
only 66 time units are presented here, we have found that the
Kemeny constant algorithm always outperforms the other two
algorithms or is equivalent; the algorithms become equivalent
in the limiting case, when the intruder life-times are so low
that no intruder can be caught, or when the intruder-life times
are so large that the intruder is always caught.

Algorithm Min Mean Max StdDev K
Kemeny constant 26.6 324 38.2 2.1 207
FMMC 24.6 29.8 34.4 1.9 236
Metropolis-Hastings ~ 24.8 31.1 37 2.1 231
TABLE I

STATISTICS ON THE PERCENTAGE OF INTRUDERS CAUGHT IN 200
SIMULATION RUNS FOR THE ENVIRONMENT IN FIG. 2.

For the heterogeneous case, we work with the environment
shown in Figure 3. In this environment the time taken by the
agent to travel an edge is no longer instantaneous and has
travel weights as shown in the figure. Once in a new region,
the agent is required to spend 1 time unit examining the region
for malicious activities. We again assume that each node in
the region must be visited with equal likelihood. We again
also assume an intruder is caught if the surveillance agent
is in the same region as a intruder for any portion of the
intruder life-time, but now set the intruder life-time to 11 time
units with a intruder appearing 500 times (total of 5500 time
units per simulation run). Since the design of the FMMC and
Metropolis-Hastings algorithms do not inherently account for
non-uniform travel and service times, we also compare the
performance of the random walk generated by the weighted
Kemeny constant algorithm against the random walk generated
by solving Problem 5 with a = 0.1 (smaller o emphasizes
minimizing the length of the average edge traveled in the
graph). Table II summarizes the statistical performance of
each algorithm after 200 runs of the simulation. The weighted
Kemeny constant algorithm’s performance compared to the
FMMC and Metropolis-Hastings stochastic policies in this
scenario is significantly better than what was seen in the first
scenario. We also note that the random walk policy determined
by solving Problem 5 performs comparably to the weighted
Kemeny constant policy. This is to be expected since the
Metropolis-Hastings and FMMC stochastic policies do not
account for heterogeneous travel/service times on the graph.



Fig. 3. Various airport hub locations (top), and the corresponding weight map
(bottom). Edge weights between two hubs account for travel time between
hubs plus required service time once at hub. Self loops have no travel time
so encompass only service time required at hub.

To get a better understanding of each algorithm’s performance
in this intruder scenario, the simulation is run for different
intruder life-times, the results of which can be seen in Figure 4.
There are several key items worth noting from the simulation.
First, we see that the weighted Kemeny constant algorithm
significantly outperforms the other algorithms for a large range
of intruder life-times. This matches our intuition since the
algorithm inherently minimizes average travel time between
nodes. Second, notice that the Markov chain generated by
solving Problem 5 (with o« = 0.1) performs well for small
intruder life-times but its performance plateaus quickly. This
is due to the fact that the transition matrix generated by
solving Problem 5 forces agents to stay at a given node rather
than jump nodes; as one would suspect, once intruder life-
times increase, a strategy which places emphasis on an agent
that moves between regions will begin to perform relatively
better. Finally, observe that as intruder life-time increases,
the algorithms’ capture rates start to converge. As in the
homogeneous case, this is due to the fact that once the
intruder’s life-time is long enough, the agent will almost surely
reach the intruder regardless of the policy it follows.

Algorithm Min Mean Max StdDev Ky

Weighted Kemeny 44 50.1 56 22 19.5

Kemeny+Mean Dist.  40.6 47.1 53 22 23.1

FMMC 29.8 354 40.4 22 26.2

Metropolis-Hastings ~ 30.4 36 41.6 2.1 26.5
TABLE II

STATISTICS ON THE PERCENTAGE OF INTRUDERS CAUGHT IN 200
SIMULATION RUNS FOR THE ENVIRONMENT IN FIG. 3.
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Fig. 4. Percentage of intruders detected for varying intruder life-times by a
surveillance agent executing a random walk according to the Markov chain
generated by the mean first-passage time algorithm (circle), FMMC algorithm
(square), M-H algorithm (asterisk), and the Markov chain generated by solving
Problem 5 (diamond). Average points and standard deviation error bars are
taken over 200 runs, where the intruder appears 500 times for each run.

To solve for the Markov chains with minimal Kemeny
constant (Problem 2 and Problem 4) and with fastest mixing
rate, we use CVX, a Matlab-based package for convex pro-
grams [20]. The execution time to solve each Markov chain for
the examples described above takes on the order of a couple
seconds using a computer with a 1.3 GHz processor.

V. CONCLUSIONS

We have studied the problem of how to optimally design
a Markov chain which minimizes the mean first passage time
to go from one region to any other region in a connected
environment. We have presented the first formulation of the
mean first passage time for a doubly-weighted graph, which
we refer to as the weighted Kemeny constant, and have
also provided a provably correct convex formulation for the
minimization of both the Kemeny constant and the weighted
Kemeny constant. Finally, we have shown that both problems
can be written as SDPs and, moreover, have demonstrated the
effectiveness of using a Markov chain with minimal mean first
passage time as a surveillance policy as compared to other
well-known Markov chain policies.

This work leaves open various directions for further re-
search. First, we designed surveillance policy only for single
agent systems and it would be of practical interest to consider
the case where there are multiple agents: [37], [9], [3], [10] are
examples of work in this direction. Second, it would be useful
to understand bounds on the design of of the mean first passage
time for general graph topologies. Finally, we treat only the
optimization of the transition matrix of the graph. It would be
of interest to study how we can optimize the weight matrix
W in conjunction with the transition matrix. This can have
the interpretation of optimizing the “capacity” or “resistance”
of the graph, a topic in optimization which is of independent
interest [18].



APPENDIX A
PROOF OF THEOREM 8

Proof of Theorem 8: Let 3 = n? (P oW)1,, then from
Theorem 6 we have that Ng from (6) can be written as SMj.
Now from Theorem 13 the general solution to (6) is

N =G((PoW)1,1T — BPMy) + (I — G(I — P))U, (12)

where G is a generalized inverse of (I — P) (see Theorem
15) and U is an arbitrary matrix as long as the consistency
condition

(I—(I—=P)G)((PoW)L,1} - BPMy) =0 (13)

holds. Substituting (18) from Lemma 16 in for (I — P)G in
(13) gives that

(I - =P)G)((PoW)1,1y —
tnT T
=Ty (PoW)1,1,

t
Tt (
_ T
and so we have that the system of equations is consistent. This
implies we can design U to reduce (12). We start by seeing
how the second term in (12) can be reduced. Usmg (19) from
Lemma 16 we have that (I —G(I—P))U = 1#1 U=1,h",

where hT = “

BPMy)
— BPMy),
w T (PoW)1,1L — BrT PMy),

- B1}) =0,

. Hence, we can re-write (12) as

N = G((P oW)1,1T — gPMy) + 1,7, (14

designing U reduces to designing the n elements of h. Let
H = diag[h], then 1,h" = 1,1TH. Also, let £ = 1,77,
where =4 = diag[wr]. Utilizing these expressions in (14) and
taking the diagonal elements gives
(N =G((PoW)1,1} — BPMy) + 1,17 H) ,
= Mg = (G(P o W)E)aMy — B(GP)aMa + H,
= H = My — (G(P o W)E)gMqa + B(GP)aMy,
where we use Lemma 14 to get the initial diagonal reduction.
Substituting the expression for H into (14), and recalling that
1,h" = 1,17 H gives
N = (G(PoW)E - 1,1 (G(PoW)E)4
+ 81,15 (GP)a = GP + 1,17)) My,

5)

where we use the fact that 1, 1T = ZMy. Now from (19)
we have that ] — G — GP = 1”” . Notice that 1,17(I —
G—-GP)y = 1”1T(uTl Ja = iTl" and so this implies that
1,17 -1,17Gy+1,17 (GP)d = I — G+ GP, which implies
that 1n1£+1nlf(GP)d—GP = I-G+1,1TGy. Substituting

this into (15) gives the following reduced form.
N = (G(PoW)E - 1,1} (G(PoW)E)4

+ B(1,1) Ga + I — G)) My.

(16)

Observing the definition of the generalized inverse, GG, given
by Theorem 15 part (ii) and recalling that = = 1,77, we
can rewrite the first term on the right hand side of (16) as

G(PoW)Z=(I—P+tul)"1(PoW)1,nT. Substituting
(20) in for the rlght hand side with t = (P o W)1,, gives

G(PoW)= = iT’i = uTll Z, and s0 1, 1T(G(PoW)Z)q =
1,17 (g B)a = uTll = = G(P o W)E. Therefore, the first

two terms in (16) cancel giving the equality

N =B(1,17Gy+ I — G)Mj. (17)

We have already defined ¢ in the generalized inverse G but
not u. Let w = 7 and multiply the right hand side of (17) by
7 and the left hand side by 7”7 Utilizing equality (21) from
Lemma 16 gives

7' N =77 81,15 Gy + I — G) Mym

=8(1TGy + =T — 7‘;)1n
= BTGl +1— %)
=B(Tr[G] +1) —

Noting that the eigenvalue at 1 for an irreducible row-
stochastic matrix is unique, it can be easily verified using the
orthogonality property of left and right eigenvectors that the
eigenvalues of G™1 are \; = (1 — \;) for i € {2,...,n},
where \; are eigenvalues of P and \; # 1. Therefore, it
only remains to find ;. Taking the trace of G~! gives
Tr[l — P+ (P o W)l,n"] = Tr[l — P] + Tr[(P o
W)L, w7 =" (1= X)+«"(PoW)1,, which implies
that \; = w7 (PoW) = (. Therefore, 5(Tr[G]+1)—1=

( +Zl 21—\, +1)717 (1+Zz:21—ki)' u

APPENDIX B
SUPPLEMENTAL MATERIAL

For completeness, we include the following results which
are needed in the proof of Theorem 8. We begin with some
standard results on generalized inverses. For more details refer
to [23, Chapter 4] or [22] .

Definition 12 (Generalized inverse): A generalized inverse
of an m x n matrix A is defined as any n X m matrix A~ that
has the property

AATA= A

It should be noted that a generalized inverse always exists,
although it is not always unique. However, for non-singular
matrices the generalized inverse is unique and corresponds to
the usual notion of a matrix inverse. The following theorems
summarize practical considerations when working with gener-
alized inverses.

Theorem 13: The equation Az = b admits a solution if and
only if every generalized inverse A~ satisfies

AATb=0.

Then, we say Ax = b is consistent and all its general solutions
are given by

r=A"b+ (A A-1I)z,

where z is an arbitrary vector. Moreover, a necessary and
sufficient condition for the equation AX = C' to be consistent



is that (I — AA~)C = 0, in which case the general solution
is given by

X=AC+({I-A"A)U,
where U is an arbitrary matrix.

The next two results come from [24, Chapter 7].

Lemma 14 (Diagonal matrix properties): For 7 with posi-
tive non-zero elements, let 1,77 = =, where Z4 = diag[m].
Also, let A be any diagonal matrix, X any square matrix of
same dimensions as A, and D = (Z4)7!, then
(1) (XA)d = (Xd)A, and
(i) (X1,17)y = (XZ)¢D, and
{ii.) 1,172, =

Theorem 15 (Generalized inverse of I — P): Let
P € R™™ be the transition matrix of a irreducible
Markov Chain with stationary distribution 7. Let u,t € R"
be any vectors such that u”'1,, # 0 and w7t # 0, then
(.) I — P+ tu” is nonsingular, and
(i.) (I —P+tu”)~!is a generalized inverse of I — P.

[

Lemma 16 (Properties of the generalized inverse of I — P):

Let G = (V,E,P,W) be a doubly-weighted graph with
associated weight matrix W and irreducible transition matrix
P with stationary distribution 7r. Also let G = (I—P+tu®)~!
denote the generalized inverse of (I — P), then the following
relations hold.

(I—P)G:I—%, (18)
GUI—-P)=1- 11;;11: and (19)
ui’in = Gt. (20)
If t = (PoW)1, and u” =« then
7TG = 7rT(P7TTVV)1n @1

Proof: First, notice that (I—P+tu®)(I-P+tul)=1 =1
implies that

(I-P)G=1-tu’G. (22)

Multiplying both sides on the left by w7 and noting that
7wl (I—P) = 0 gives that 77" = (wT¢t)u” G. Dividing through
by (w7t) gives

T

Tt
and substituting (23) into (22) gives (18).

Following a similar procedure as before with (I — P +
tul)"1(I — P + tu®) = I, where we now multiply both
sides on the right by 1,, and note that (I — P)1,, = O results
in (20), which after appropriate substitution gives (19).

For the proof of equality (21), first we check that ¢ = (P o
W)1, and u? = 7T satisfy the conditions of Theorem 15.
The definition of W guarantees that P o W has at least one
non-zero element which implies 77t = w7 (P o W)1,, # 0.
Also, uT1,, = w71, = 1. Now substituting u and ¢ into (23)
gives (21). [ |

=uTG, (23)
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