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Abstract— We propose stochastic surveillance strategies for
quickest detection of anomalies in discrete network environ-
ments. Our surveillance strategy is determined by optimizing
the mean first passage time also known as the Kemeny constant
of a Markov chain. We generalize the notion of mean first
passage time to environments with heterogeneous travel and
service times and develop analogous theories and relations to
previous results in the literature. For reversible Markov chains,
we show that both the Kemeny constant and its heterogeneous
counterpart can be formulated as convex optimization problems
and, moreover, can be expressed as semidefinite programs
(SDPs). We illustrate the performance of the proposed surveil-
lance strategies with numerical simulations.

I. INTRODUCTION

A. Problem description and motivation

The subject of this paper is the minimization of the mean
first passage times between any two nodes over a network.
This problem is akin to minimizing the travel time over
a network, a field of research which has applications in a
broad range of areas. In the area of robotics, key applica-
tions include surveillance tasks such as reducing detection
time of anomalies, and quickest detection of intruders [14],
[18]. Other applications that arise in single and multi-agent
systems include tasks such as minimizing emergency vehicle
response times [2] as well as various servicing tasks which
can arise in robotic warehouse management [20]. In areas
of research outside of robotics, minimizing travel time has
potential applications in analyzing how quickly information
can propagate in social networks [1] or determining how an
epidemic spreads through the population [19].

B. Literature review

In this paper we consider the design of a surveillance strat-
egy over an environment in order to detect an intruder while
simultaneously providing a desired coverage frequency. The
surveillance problem has appeared in the literature in various
manifestations. Authors in [18] look at minimizing time
of detection of noisy anomalies via persistent surveillance
strategies. Robot networks are utilized for intruder detection
in [13] and a game theoretic approach is presented in [16],
[5].

This work was supported in part by NSF grant CNS 1035917 and ARO
grant W911NF-11-1-0092.

1 Pushkarini Agharkar and Rushabh Patel are with the Center for
Control, Dynamical Systems and Computation, University of California at
Santa Barbara, CA 93106-5070, USA agharkar@umail.ucsb.edu,
r patel@engineering.ucsb.edu

2Francesco Bullo is with Faculty of Mechanical Engineering,
University of California Santa Barbara, CA 93106-5070, USA
bullo@enigneering.ucsb.edu

In our setup we utilize a discrete set of locations and thus
formulate our problem as a random walk on a graph. Other
works with a similar setup optimize surveillance strategies
using Markov chain Monte Carlo methods [7], [17]. In [7]
they also utilize convexity results for symmetric matrices to
further optimize their strategy. We take an alternate approach
and look at minimizing the property of a Markov chain
known as the mean first passage time. The mean first passage
time, also known as the Kemeny constant of a Markov chain,
first appeared in [10] and has since been studied by several
other groups [9], [11]. It has also been linked to the mixing
rate of a Markov chain [11], a quantity which has received
wide interest [3]. Results analyzing bounds on the mean
first passage time for an arbitrary Markov chain for various
network topologies appear in [9], [12], however, there are
no results known that focus on the design of the mean first
passage time.

C. Contribution

Before stating our contributions, it should be noted that all
work done to date on the mean first passage time and mixing
rate of a Markov chain has been for graphs which assume
homogeneous travel time along edges in the graph. The
contributions of this paper are then six fold. First, we provide
a convex optimization framework to minimize the Kemeny
constant of a reversible Markov chain given the underlying
graph topology of the random walk and the desired station-
ary distribution. Second, using doubly-weighted graphs we
extend the formulation of the mean first passage time to the
case where there are non-homogenous travel times along the
edges of a graph, a property not yet looked at in the literature.
Third, we derive a closed form solution for the mean first
passage time for the doubly-weighted graph scenario and
show its relation to the Kemeny constant. Fourth, we provide
a convex optimization framework to minimize the mean
first passage time of a reversible Markov chain with desired
stationary distribution for the doubly-weighted graph setup.
Finally, we provide a SDP formulation for the optimization
of the Kemeny constant and the mean first passage time for
doubly-weighted graphs. Due to space constraints, all proofs
are omitted and will be made available in a forthcoming full-
length paper.

D. Organization

The paper is organized as follows. In section II we provide
relevant mathematical background and notation which we
use throughout the paper. In section III we present relevant
known results as well as provide a convex optimization
formulation to find the Kemeny constant and provide and



show it can be written as an SDP. In section IV we provide
a closed form expression for the mean first passage time
of a doubly-weighted graph. We then provide a convex
optimization framework for the mean first passage time
of a doubly-weighted graph and show it can be written
as an SDP. In section V we provide examples which tie
the mean first passage time for doubly-weighted graphs to
practical applications. In section VI we present simulation
results comparing our surveillance strategies against other
established Markov chain algorithms, and in the final section
we present our conclusions and future research directions.

E. Notation

We use the notation A = [aij ] to denote a matrix A
with the element aij in its i-th row and j-th column and,
unless otherwise indicated, use bold-faced letters to denote
vectors. Letting δij denote the Kronecker delta, Ad = [δijaij ]
represents the diagonal matrix whose diagonal elements are
the diagonal elements of the matrix A. The column vector
of all ones and length n is denoted by 1n ∈ Rn×1 and I
represents the identity matrix of appropriate dimension.

II. PROBLEM SETUP

Consider an environment under surveillance where the
environment is divided into n regions defined by the set
of vertices V := {v1, . . . , vn}. These points can represent
small areas of interest, and are assumed to be connected
by weighted edges. Let G = (V, E, P ) be an undirected
weighted connected graph with edge set E ⊂ V × V and
weight matrix P = [pij ] with the property that pij ≥ 0 if
(i, j) ∈ E and pij = 0 otherwise. The weight of edge (i, j)
can be thought of as the distance that a vehicle has to travel
in order to traverse the edge or the probability of moving
along that edge.

Consider an autonomous vehicle that surveils these re-
gions. The trajectory of the vehicle is viewed as a random
walk which is assumed to be a Markov chain. The vehicle
visits a new region, or possibly stays in its current region,
at each time step (hop) in its trajectory. The surveillance
objective is to achieve a long term (infinite horizon) visit
frequency πi at region vi. Here, the frequency πi is the ratio
of visits to region vi divided by the total number of visits
to all the regions. We refer to the vector of visit frequencies
π ∈ Rn as the surveillance criterion.

Given an environment of interest, the routing policy of a
vehicle depends on the level of sophistication of the intruder
it is trying to detect as well as the desired performance
objective for surveillance of the environment. We study a
specific surveillance objective: if there exists a stationary
intruder continuously performing some malicious activity in
some part of the environment, we wish to design a stochastic
policy for the vehicle in order to minimize the detection time
of that intruder while simultaneously achieving a desired pre-
determined visit frequency to all regions in the environment.

Throughout the paper, we describe random walks of the
vehicle using realizations of a Markov chain with transition
matrix P = [pij ]. The element pij in the matrix represents

the probability with which the vehicle visits region vj from
region vi.

A. Background

A finite Markov chain is a sequence of random variables
where Xt take values in {1, . . . , n} with the Markov prop-
erty, namely that, the future state depends only on the present
state. In this paper, we consider only finite row stochastic
Markov chains.

We summarize some terminology regarding finite Markov
chains for later reference. For more details refer to [8].

i. A time-homogenous Markov chain has the following
property: P(Xn+1 = j|Xn = i) = P(Xn = j|Xn−1 =
i) = pij , where P ∈ Rn×n is the transition matrix of
the Markov chain.

ii. The vector π ∈ Rn×1 is a stationary distribution of
P if

∑n
i=1 πi = 1, 0 ≤ πi ≤ 1 ∀i ∈ {1, . . . , n} and

πTP = πT .
iii. A time-homogenous Markov chain is said to be re-

versible if πipij = πjpji, ∀ i, j ∈ {1, . . . , n}. For
reversible Markov chains, π is always a steady state
distribution.

iv. A Markov chain is irreducible if it has a finite state
space and there exists a t such that for all i, j ∈
{1, . . . , n} , (P t)ij > 0.

v. If the Markov chain is finite irreducible of dimension
n, then there is a unique stationary distribution π, and
the corresponding eigenvalues of the transition matrix
λi for i ∈ {1, . . . , n} are such that λ1 = 1, |λi| ≤ 1
and λi 6= 1 for i ∈ {2, . . . , n}.

In this paper we consider finite irreducible time-homogenous
Markov chains in the analysis and design of stochastic
routing policies. We are now ready to state some standard
results on generalized inverses. We begin with the following
definition.

III. MINIMIZING THE KEMENY CONSTANT OF A
MARKOV CHAIN

Consider a scenario where an intruder wishes to perform
malicious activities somewhere in an environment but if
detected, it is permanently deactivated. Assume also, that
if a surveillance vehicle is in the same region as the
intruder, then it detects the intruder. Then, the optimal
strategy for a surveillance vehicle should minimize the
detection time of the intruder. Let Xk = i denote that
the vehicle is in region vi at time k. Suppose the vehicle
starts at an arbitrary region vi in the environment so that
X0 = i. Let Tij be the random variable tracking the
first passage time from state i to state j, that is, Tij =
min {k ≥ 1 such that Xk = j given that X0 = i} and let
mij = E[Tij |Xo = i]. Then, regardless of which region
vi the surveillance vehicle starts in, we wish to minimize
the mean first passage time, ki =

∑n
j=1mijπj , from that

region to any other region. Remarkably, for a Markov chain
associated with a graph, the mean first passage time ki = K
for all i ∈ {1, . . . , n}, where K is known as the Kemeny
constant [9].



Henceforth, we will use the term first passage time matrix
to denote the matrix M = [mij ] where mij is the mean time
to go from vi to vj . Mathematically,

mij = pij +
∑
k 6=j

pik(mik + 1) = 1 +
∑
k 6=j

pikmkj ,

or in matrix notation,

(I − P )M = 1n1T
n − PMd, (1)

where P is the transition matrix of the Markov chain
associated with the graph. Moreover, if the Markov
chain is irreducible with stationary distribution π, then
Md = diag[{1/π1, . . . , 1/πn}] Further πTMπ =∑n

i=1 πi
∑n

j=1 πjmij =
∑n

i=1 πiki = K. Clearly the
Kemeny constant can be written as the function P 7→ K(P ),
however, to ease notation we simply write K and use K(P )
when we wish to emphasize the constant’s dependence on
P .

Finding K = πTMπ from (1) can be simplified to finding
the eigenvalues of the transition matrix P as is stated in the
following theorem.

Theorem 1 (Kemeny constant of a Markov chain [9]):
Let G be a graph with associated irreducible transition
matrix P with eigenvalues λi for i ∈ {1, . . . , n} where
λ1 = 1, then the Kemeny constant of the Markov chain is
given by

K = 1 +

n∑
i=2

1

1− λi
.

Using Theorem 1, we derive the following equivalent
expression for reversible Markov chains in terms of the
trace of a symmetric positive definite matrix. Before stat-
ing our result, we first introduce some notation. Given a
stationary distribution vector π ∈ Rn for a Markov chain
with transition matrix P ∈ Rn×n, we define the matrix
Π ∈ Rn×n as Π = diag[π] and the vector q ∈ Rn as
qT = (

√
π1, . . . ,

√
πn). We are now ready to state our first

result.
Theorem 2: (Kemeny constant of a reversible Markov

chain): The Kemeny constant of a reversible irreducible
Markov chain with transition matrix P and stationary dis-
tribution π is given by

K = Tr
[
(I −Π1/2PΠ−1/2 + qqT )−1

]
. (2)

Given the above result, we are now ready to state our first
problem of interest.

Problem 3: (Optimizing the Kemeny constant of a re-
versible Markov chain): Given the stationary distribution π
and graph G with vertex set V and edge set E, determine

the transition probabilities P = [pij ] solving:

minimize Tr
[
(I −Π1/2PΠ−1/2 + qqT )−1

]
subject to

n∑
j=1

pij = 1, for each i ∈ {1, . . . , n}

πipij = πjpji, for each (i, j) ∈ E
0 ≤ pij ≤ 1, for each (i, j) ∈ E
pij = 0, for each (i, j) /∈ E.

(3)

The following theorem establishes the convexity of the
Kemeny constant for transition matrices with fixed stationary
distribution.

Theorem 4 (Convexity of Problem 3): Let Pπ denote the
set of matrices associated to irreducible reversible Markov
chains with stationary distribution π. Then, Pπ is a convex
set and P 7→ K(P ) is a convex function over Pπ .

Problem 3 includes constraints on the stationary distribu-
tion of the transition matrix, a notion which has not been
looked at in the literature before. [11] provides bounds to
determine the set of transition matrices such that K is
minimized and [9] gives special matrices for which the
optimal Kemeny constant can be found, but these are all
approached for the general setting with no constraint on the
actual stationary distribution. In the following we introduce
the notion of distance between regions when calculating the
mean first passage time.

A. SDP framework for optimizing the Kemeny constant
We can re-write Problem 3 for solving the Kemeny con-

stant as an SDP by introducing a symmetric slack matrix
X ∈ Rn×n and writing the problem as in the following.

Problem 5: (Optimizing the Kemeny constant of a re-
versible Markov chain (SDP)): Given the stationary dis-
tribution π and graph G with vertex set V and edge set
E, determine X = [xij ] and the transition probabilities
P = [pij ] solving:

minimize Tr[X]

subject to [
I −Π1/2PΠ−1/2 + qqT I

I X

]
> 0

n∑
j=1

pij = 1, for each i ∈ {1, . . . , n}

πipij = πjpji, for each (i, j) ∈ E
0 ≤ pij ≤ 1, for each (i, j) ∈ E
pij = 0, for each (i, j) /∈ E.

The first inequality constraint in Problem 5 represents a
linear matrix inequality (LMI) and denotes that the matrix
is positive definite and. The LMI holds true if and only if
X−(I−Π1/2PΠ−1/2+qqT )−1 is positive definite therefore
the SDP given by Problem 5 minimizes the Kemeny constant.

IV. STOCHASTIC SURVEILLANCE USING
DOUBLY-WEIGHTED GRAPHS

In most practical robotic applications, distance/time trav-
eled and service times are important factors in designing
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Fig. 1. Example of a doubly-weighted graph G = (V, E, P,W ) with three
nodes: (a) shows the edge set, E, allowed for the graph with three nodes,
(b) shows the probabilities, pij to move along each edge, and (c) shows the
time (i.e. distance traveled), ωij to move along each edge.

routing policies. We incorporate these concepts by allowing
for an additional set of weighted edges in our graph in
addition to the edge weights which describe the transition
probabilities. Such an environment can be represented by the
doubly-weighted graph G = (V, E, P,W ), where W = [ωij ]
is a weight matrix with the property that ωii ≥ 0, ωij > 0 if
(i, j) ∈ E and ωij = 0 otherwise. The weighted adjacency
matrix P = [pij ] has the same interpretation as before as a
irreducible row-stochastic transition matrix P which governs
the random walk on the graph. An example of a doubly-
weighted graph is shown in Figure 1. In the following, we
will interpret ωij , i 6= j as time to travel between two regions
in the graph and ωii as service time.

If Xk is the state of the vehicle at the k−th step in its
random walk, then a sample trajectory of the vehicle is X0 =
vi, X1 = vj , X2 = vk, and the time instant at which the
vehicle is in state X2 is ωij + ωjk. Thus the time interval
between two consecutive steps of this random walk depends
on the weighted adjacency matrix, W , of the graph and is
not constant.

In the following analysis, we consider two objectives for
surveillance: The first involves minimizing the mean first
passage time (a quantity that is analogous to the Kemeny
constant for the described in section III) and the second
looks at minimizing the mean time for a single hop of
the vehicle. The first objective is motivated by the need
to minimize detection time of malicious activities in the
environment and the second objective can realize aims such
as minimizing fuel consumption of the vehicle, minimizing
refresh times (time interval between consecutive visits) for all
the regions under surveillance. We seek transition matrices
P with stationary distribution π for realizing the vehicle’s
trajectory. We start with developing some foundation for
achieving the first objective.

A. Minimizing the mean first passage time for a doubly-
weighted graph

The mean first passage time for the Markov chain on a
weighted graph G = (V, E, P ) by definition, is simply its
Kemeny constant. Recall that the mean first passage time for
node i, defined by ki, is determined by taking the expectation
over the first passage times mij , from node i to all other
nodes j. We present an analogous notion of the first passage
time between two nodes on a doubly-weighted graph. We

start with defining the first passage time random variable for
a random walk on a doubly-weighted graph.

Definition 6 (First passage time random variable): The
first passage time Tij to go from vi to vj is

Tij =

{
ωij with probability pij ,
Tkj + ωik with probability pik, k 6= j.

Then taking expectations over Tij gives the following
result.

Lemma 7: (First passage time for a doubly-weighted
graph): If nij = E[Tij |X0 = i] is the mean first passage
time to go from vi to vj for a graph with weight matrix W
and transition matrix P , then

nij = pij(ωij) +
∑
k 6=j

pik(nkj + ωik), (4)

or in matrix notation,

(I − P )N = (P ◦W )1n1T
n − PNd, (5)

where (P ◦W ) denotes an element-wise product and Nd =
[δijnij ].

The matrix N , which we call the first passage time matrix
for a doubly-weighted graph thus satisfies an equation similar
to (1) for the passage time matrix M of a graph which has
only one weight matrix, the transition matrix P .

The random variable tracking the time interval between
consecutive visits to a region has been referred to as the
refresh time of the vehicle [15] and nii is the expected value
of the refresh time for a stochastic policy. We now obtain a
relation between π and the refresh times nii.

Theorem 8 (Refresh times for doubly-weighted graphs):
Given the graph G = (V, E, P,W ) with stationary
distribution π and associated first passage time
matrix N , the refresh time for region vi is given by
nii = (πT (P ◦W )1n)/πi, implying that

Nd = πT (P ◦W )1nMd.
This means that in order to achieve a desired refresh

time nii, the vehicle should visit region vi with frequency
proportional to 1/πi. It is interesting to note that the visit
frequency is not a function the weight matrix W . We now
investigate the properties of the mean first passage times of
the trajectory of the vehicle.

The mean first passage time of a vehicle for a doubly-
weighted graph G = (V, E, P,W ) with associated passage
times matrix N is given by KW = πTkW , where kW = Nπ
and the i−th entry kW,i in kW denotes the mean time to
go from vi to any other node. We first provide an analytic
expression for the vector kW ∈ Rn×1.

Lemma 9: (First passage times for a doubly-weighted
graph): For a graph G = (V, E, P,W ) with stationary
distribution π and associated first passage time matrix N ,
the following equality holds.

(I − P )kW = (P ◦W )1n − 1nπ
T (P ◦W )1n,

where kW = Nπ.



This gives the insight that, in general, kW,i 6= kW,j on the
doubly-weighted graph, unlike the counterpart for the single-
weighted graph (where ki = K for all i ∈ {1, . . . , n}).
Interestingly enough however, there does exist a relation
between the mean first passage time KW and the Kemeny
constant K as is stated in the following theorem.

Theorem 10: (Mean first passage time of doubly-weighted
graphs): For the doubly-weighted graph G = (V, E, P,W ),
the mean first passage time KW of a vehicle on the graph
is given by

KW = πT (P ◦W )1nK, (6)

where K is the Kemeny constant associated with the transi-
tion matrix P whose stationary distribution is π .

Remark 11: The expected number of hops to go from one
region to another in a Markov chain with transition matrix P
is its Kemeny constant. The expected distance travelled (and
hence time taken) executing one hop is

∑
i πi
∑

j pijωij =
π(P ◦W )1n. Hence, it fits with intuition that the expected
time taken to go from one region to another should be
KπT (P ◦W )1n as was formally shown above.

Problem 12: (Optimizing mean first passage time of a
reversible Markov chain): Given the stationary distribution
π and graph G with vertex set V , edge set E and weight
matrix W , determine the transition probabilities P = [pij ]
solving:

minimize(
πT (P ◦W )1n

) (
Tr
[
(I −Π1/2PΠ−1/2 + qqT )−1

])
subject to

n∑
j=1

pij = 1, for each i ∈ {1, . . . , n}

πipij = πjpji, for each (i, j) ∈ E
0 ≤ pij ≤ 1, for each (i, j) ∈ E
pij = 0, for each (i, j) /∈ E.

Theorem 13 (Convexity of Problem 12): Given the G
with vertex set V , edge set E and weight matrix W ,
let PG,π denote the set of matrices associated with
G that are irreducible reversible Markov chains with
stationary distribution π. Then, PG,π is a convex set and
P 7→ πT (P ◦W )1nK(P ) is a convex function over PG,π .

B. SDP framework for optimizing the mean first passage
time of a doubly-weighted graph

In a similar fashion to Problem 3, we can formulate
Problem 12 as a SDP by introducing the symmetric slack
matrix X ∈ Rn×n and the scalare variable t as shown in the
following.

Problem 14: (Optimizing mean first passage time of a
reversible Markov chain (SDP)): Given the stationary dis-
tribution π and graph G with vertex set V , edge set E and

weight matrix W , determine Q = [qij ], X and t solving:

minimize Tr[X]

subject to [
t(I + qqT )−Π1/2QΠ−1/2 I

I X

]
> 0

Q1n = t1,

πiqij = πjqji, for each (i, j) ∈ E
0 ≤ qij ≤ t, for each (i, j) ∈ E
qij = 0, for each (i, j) /∈ E
πT (Q ◦W )1n = 1

t ≥ 0

Then, the transition matrix P is given by P = Q/t.
Again the first inequality constraint represents an LMI.

Before noting when the LMI holds first note that the
constraints in Problem 14 imply that Pt = Q and that
t = 1

πT (P◦W )1n
. Hence, the LMI constraint holds true if

and only if X −πT (P ◦W )1n(I −Π1/2PΠ−1/2 + qqT )−1

is positive definite therefore the SDP given by Problem 14
minimizes the mean first passage time for doubly-weighted
graphs.

V. INTERPRETATIONS OF THE MEAN FIRST PASSAGE TIME
FOR DOUBLY-WEIGHTED GRAPHS

The results on mean first passage time for doubly-weighted
graphs presented in this work provide a general framework
which can potentially be applied to the analysis and design
in a myriad of fields. We highlight three in particular in
the following, where the first two are inspired by our initial
motivation of detecting an intruder in a network. All the
scenarios assume we are working on the doubly-weighted
graph described by G = (V, E, P,W ).

a) Environment Service/Surveillance
In practical service/surveillance scenarios, there is often

a desire to service some regions more than others while
simultaneously minimizing the time any one region has to
wait before it is serviced. In this formulation, in every step
of the random walk, the vehicle moves to a new region and
executes its service task. For region vi ∈ V denote the service
time as si and denote the time to move from region vi to
region vj by dij , where we can assume dii = 0. Then, we
can define the weight corresponding to the edge from vi to
vj as ωij = dij + sj . Optimizing the transition matrix P
corresponds to minimizing the average time a region has to
wait before getting serviced, regardless of what region the
vehicle starts its service task in.

b) Quickest Intruder Detection
Quickest intruder detection is closely related to environ-

ment service task and given the appropriate setup, it can be
the same. If, for example, there is a persistent intruder in the
environment and it takes si time to determine if an intruder is
in the environment, then minimizing the mean first passage
time optimizes the time it takes to capture an intruder.



c) Social Networks
In the social network scenario it is often possible to

distinguish different sub-groups in the network (i.e., people
who have a certain political view over another). If we let the
weighted edges ωij represent the influence group i has on
group j, and let pij denote the probability that two groups
talk to each other, then one could study how changes in
influences ωij affect information propagation in the network.
Alternatively, one could use a similar concept to force search
results in some optimal way such that it minimizes the time
for information to spread through the network regardless of
where it is initially planted.

VI. APPLICATION TO ROBOTIC SURVEILLANCE

In this section we demonstrate through simulation how
using the mean first passage time is advantageous for the
design of surveillance policies over other well known algo-
rithms. We look at both homogeneous and heterogeneous
environment cases.

In the first scenario, we work on the discretized envi-
ronment shown in Figure 2. We assume a set of intruders
are distributed throughout the environment. Each intruder
performs a malicious activity in its host region for a fixed du-
ration of time, which we call the intruder life-time, followed
instantaneously by another intruder. The intruder life-time
is set to 5 time units and 20 intruders appear per simulation
run (the sequence in which the intruders appear is determined
before each simulation run), for a total simulation run of 100
time units. We also assume that a single surveillance vehicles
executes a random walk in the environment, spending 1
time unit in each region, and that the vehicle transition
between two connected regions instantaneously. The intruder
is caught if the surveillance vehicle is in the same region
as the intruder for any portion of the intruder life-time. To
compare performance we generate a random walk for the
environment using the Metropolis-Hastings, fastest mixing
Markov chain (FMMC), and Kemeny constant algorithms,
where we assume a stationary distribution on the transition
matrix (each node in the region must be visited with equal
likelihood). Figure 3 shows a representative example of how
each algorithm performs for one simulation run. The red
squares correspond to when a intruder and vehicle are in the
same region at the same time (when a intruder is captured).
As can be seen, the Kemeny constant algorithm captures
intruders more frequently than the other two algorithms.
Table I summarizes the statistical performance of each algo-
rithm after 100 runs of the simulation and justifies our use
of the Kemeny constant algorithm as an valid surveillance
strategy; the Kemeny constant algorithm captures intruders
more frequently than the other two algorithms, and its
worst case performance is still better than the worst case
performance of the other two algorithms. .

In the second scenario, we work with the discretized
environment shown in Figure 4. In this environment the
time taken by the vehicle to travel an edge is no longer
instantaneous and is equal to the edge’s length, where edge
lengths are non-uniform. Once in a new region, the vehicle

Fig. 2. Environment represented by a graph.
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Fig. 3. Performance of three Markov chain design algorithms. The solid
lines indicate the vehicle trajectory along the graph, gray dots indicate
intruder location with time, and the squares indicate intruder detection.

is required to spend 0.2 time units examining the region
for malicious activities. We again assume there are a set of
intruders with behavior as described in the first scenario. We
again also assume a intruder is caught if the surveillance
vehicle is in the same region as a intruder for any portion
of the intruder life-time, but now set the intruder life-time
to 10 time units with a intruder appearing 50 times (total
of 500 time units per simulation run). Since the design of
the FMMC and Metropolis-Hastings algorithms do not in-
herently account for non-uniform travel weights and service
times, we also compare the performance of the random walk
generated by the mean first-passage time algorithm against
a standard traveling salesman problem (TSP) tour. Figure
5 shows a representative example of how each algorithm
performs for one simulation run and Table II summarizes
the statistical performance of each algorithm after 100 runs
of the simulation. The mean first-passage time algorithm’s
performance compared to the other two stochastic policies
in this scenario is much better than what was seen in
the first scenario. This is to be expected since the other
two stochastic polices do not account for heterogeneous
travel/service times on the graph. However, it is clear that
every stochastic algorithm outperforms the TSP tour. This
lack of performance in the TSP tour is most likely attributed
to the fact that each region is only visited once per tour.

Remark 15: The surveillance task described in the above
simulations involves intruders which disappear after a spec-
ified intruder life-time. However, if an intruder stays fixed
in some region until it is detected, then the expected time



Algorithm Min Mean Max StdDev K

Kemeny constant 5 11.38 17 2.07 51.99
FMMC 4 10.81 16 2.15 58.03

Metropolis-Hastings 4 11.18 17 2.23 55.80

TABLE I
STATISTICS ON THE TOTAL NUMBER OF INTRUDERS CAUGHT IN 100

SIMULATION RUNS FOR THE ENVIRONMENT IN FIG. 2.

Fig. 4. Environment represented by a doubly-weighted graph. The weight
of an edge is its length.
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Fig. 5. Performance of mean first-passage time, FMMC, Metropolis-
Hastings algorithm and the TSP tour. The solid lines indicate the vehicle
trajectory along the graph, gray dots indicate intruder location with time,
and the squares indicate intruder detection.

taken by a surveillance vehicle to detect such an intruder
is simply the mean first-passage time associated with its
random walk. Also, if restricted to reversible Markov chains,
then the minimum mean-first passage time is the provably
optimal solution for the fixed intruder surveillance problem.

VII. CONCLUSIONS

We have studied the problem of how to optimally design
the surveillance policy which minimizes the mean first
passage time to go from one region to any other region
in a connected environment. We have presented the first
formulation of the mean first passage time for a doubly-
weighted graph and have also provided a convex formulation
for the design of the mean first passage time for both single-
weighted and doubly-weighted graph topologies. Finally, we
have shown that both problems can be written as SDPs

Algorithm Min Mean Max StdDev KW

Mean first passage time 3 7.00 11 2.50 82.16
FMMC 2 5.27 10 2.11 110.66

Metropolis-Hastings 2 6.09 10 1.54 86.85
TSP tour 1 3.18 6 1.56

TABLE II
STATISTICS ON THE TOTAL NUMBER OF INTRUDERS CAUGHT IN 200

SIMULATION RUNS FOR THE ENVIRONMENT IN FIG. 4.

and have demonstrated the effectiveness of our surveillance
policy against other well known Markov chain policies.

This work leaves various extensions open for further
research. First, this policy looks at the design of one vehicle’s
trajectory in an environment, it would be of practical interest
to consider the case where there are multiple vehicles: [4]
is an example of work in this direction. Second, it would be
useful to understand bounds on the design of of the mean first
passage time for general graph topologies. Finally, we treat
only the optimization of the transition matrix of the graph.
It would be of interest to study how we can optimize the
weight matrix W in conjunction with the transition matrix.
This can have the interpretation of optimizing the ”capacity”
or ”resistance” of the graph, a topic in optimization which
is of independent interest [6].
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