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Competitive Propagation: Models, Asymptotic
Behavior and Quality-Seeding Games

Wenjun Mei Francesco Bullo

Abstract—In this paper we propose a class of propaga-
tion models for multiple competing products over a social
network. We consider two propagation mechanisms: social
conversion and self conversion, corresponding, respectively,
to endogenous and exogenous factors. A novel concept,
the product-conversion graph, is proposed to characterize
the interplay among competing products. According to
the chronological order of social and self conversions,
we develop two Markov-chain models and, based on
the independence approximation, we approximate them
with two corresponding difference equations systems. Our
theoretical analysis on these two approximated models
reveals the dependency of their asymptotic behavior on
the structures of both the product-conversion graph and the
social network, as well as the initial condition. In addition to
the theoretical work, we investigate via numerical analysis
the accuracy of the independence approximation and the
asymptotic behavior of the Markov-chain model, for the
case where social conversion occurs before self conversion.
Finally, we propose two classes of games based on the
competitive propagation model: the repeated one-shot game
and the dynamic infinite-horizon game. We characterize the
quality-seeding trade-off for the first game and the Nash
equilibrium in both games.

Index Terms—competitive propagation, independence
approximation, network structure, stability analysis, multi-
stage uncooperative game, seeding, product quality

I. INTRODUCTION

a) Motivation and problem description: It is of
great scientific interest to model some sociological phe-
nomenon as dynamics on networks, such as consensus,
polarization, synchronization and propagation. Indeed,
the past fifteen years have witnessed a flourishing of
research on propagation of diseases, opinions, commer-
cial products etc, collectively referred to as memes, on
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social networks. Much progress has been made both
on obtaining and analyzing empirical data [2]–[5], and
mathematical modeling [6]–[9]. In a more recent set of
extensions, scientists have begun studying the simulta-
neous propagation of multiple memes, in which not only
the interaction between nodes (or equivalently referred
to as individuals) in the network, but also the interplay of
multiple memes, plays an important role in determining
the system’s dynamical behaviors. These two forms of
interactions together add complexity and research value
to the multi-meme propagation model.

This paper proposed a series of mathematical models
on the propagation of competing products. Three key
elements: the interpersonal network, the individuals and
the competing products, are modeled respectively as a
graph with fixed topology, the nodes on the graph, and
the states of nodes. Our models are based on the char-
acterization of individuals’ decision making behaviors
under the social pressure. Two factors determine individ-
uals’ choices on which product to adopt: the endogenous
factor and the exogenous factor. The endogenous factor
is the social contact between nodes via social links,
which forms a tendency of imitation, referred to as social
pressure in this paper. The exogenous factor is what is
unrelated to the network, e.g., the products’ quality.

In the microscopic level, we model the endogenous
and exogenous factors respectively as two types of
product-adoption processes: the social conversion and
the self conversion. In social conversion, any node ran-
domly picks one of its neighbors and follows that neigh-
bor’s state with some given probability characterizing
how open-minded the node is. In the self conversion,
each node independently converts from one product
to another with some given probability depending on
the two products involved. Although individuals exhibit
subjective preferences when they are choosing the prod-
ucts, statistics on a large scale of different individuals’
behaviors often reveal that the relative qualities of the
competing products are objective. For example, although
some people may have special affections on feature
phones, the fact that more people have converted from
feature phones to smart phones, rather than the other
way around, indicates that the latter is relatively better.
We assume that the transit probabilities between the
competing products are determined by their relative
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qualities and thus homogeneous among the individuals.
b) Literature review: Various models have been pro-

posed to describe the propagation on networks, such
as the percolation model on random graphs [10], [11],
the independent cascade model [12]–[14], the linear
threshold model [15]–[17] and the epidemic-like mean-
field model [18]–[20].

As extensions to the propagation of a single meme,
some recent papers have discussed the propagation of
multiple memes, e.g., see [21]–[32]. Some of these
papers adopt a Susceptible-Infected-Susceptible (SIS)
epidemic-like model and discuss the long-term coexis-
tence of multiple memes in single/multiple-layer net-
works, e.g., see [25]–[27]. Some papers focus instead
on the strategy of initial seeding to maximize or prevent
the propagation of one specific meme in the presence of
adversaries [29]–[32]. Among all these papers mentioned
in this paragraph, our model is most closely related
to the work by Stanoev et. al. [28] but the social
contagion process in [28] is different from our model and
theoretical analysis on the general model is not included.

c) Contribution: Firstly we propose a generalized and
novel model for the competitive propagation on social
networks. By taking into account both the endogenous
and exogenous factors and considering the individual
variance as well as the interplay of the competing
products, our model is general enough to describe a large
class of multi-meme propagation processes. Moreover,
many existing models have difficulty in dealing with
the simultaneous contagions of multiple memes, and
have to avoid the problem by adding an additional
assumption of the infinitesimal step length that only
allows the occurrence of a single contagion at every
step. Differently from these models, the problem of
multiple contagions does not occur in our model since
we model the contagion process as the individual’s
initiative choice under the social pressure, which is more
suitable for the product-adoption process. In addition,
compared with the independent cascade model, in which
individuals’ choices are irreversible, our models adopt
a more realistic assumption that conversions from one
product to another are reversible and occur persistently.

Secondly, we propose a new concept, the product-
conversion graph, to characterize the interplay between
the products. There are two graphs in our model: the
social network describing the interpersonal connections,
and the product-conversion graph defining the transitions
between the products in self conversion, which in turn
reflect the products’ relative quality.

Thirdly, starting from the description of individuals’
behavior, we develop two Markov-chain competitive
propagation models different in the chronological order
of the social conversion and the self conversion pro-
cesses. Applying the independence approximation, we

propose two corresponding network competitive propa-
gation models, which are difference equations systems,
such that the dimension of our problem is reduced and
some theorems in the area of dynamical systems can be
applied to the analysis of the approximation models.

Fourthly, both theoretical analysis and simulation re-
sults are presented on the dynamical properties of the
network competitive propagation models. We discuss the
existence, uniqueness and stability of the fixed point,
as well as how the systems’ asymptotic state proba-
bility distribution is determined by the social network
structure, the individuals’ open-mindedness, the initial
condition and, most importantly, the structure of the
product-conversion graph. We find that, if the product-
conversion graph contains only one absorbing strongly
connected component, then the self conversion domi-
nates the system’s asymptotic behavior; With multiple
absorbing strongly connected components in the product-
conversion graph, the system’s asymptotic state probabil-
ity distribution also depends on the initial condition, the
network topology and the individual open-mindedness.
In addition, simulation results are presented to show the
high accuracy of the independence approximation and
reveal that the original Markov-chain model also exhibits
the same asymptotic behavior.

At last, based on the network competitive propaga-
tion model, we propose two classes of non-cooperative
games. In both games the players are the competing
companies with bounded investment budgets on seeding,
e.g., advertisement and promotion, and improving their
products’ quality. The first model is a infinitely repeated
one-shot game, in which the players myopically maxi-
mize their next-step pay-off. We investigate the unique
Nash equilibrium at each stage. Theoretical analysis
also reveals some strategic and realistic insights on the
seeding-quality trade-off and the allocation of seeding
resources among the individuals. The second model is a
dynamic game with infinite horizon, in which the players
aim to maximize their discounted accumulated pay-offs.
The existence of Nash equilibrium for the two-player
case is proved and numerical analysis is given on the
comparison with the one-shot game.

d) Organization: The rest of this paper is organized as
follows. Section II give the assumptions for two Markov-
chain propagation models. Section III and IV discuss
the approximation of these two models respectively. In
Section V, we discuss the two classes of games. Section
VI is the conclusion.

II. MODEL DESCRIPTION AND NOTATIONS

a) Social network as a graph: In this model, a social
network is considered as an undirected, unweighted,
fixed-topology graph G = (V,E) with n nodes. The
nodes are indexed by i ∈ V = {1, 2, . . . , n}. The
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Fig. 1. Diagram illustration for the social-self conversion model

adjacency matrix is denoted by A = (aij)n×n with
aij = 1 if (i, j) ∈ E and aij = 0 if (i, j) /∈ E.

The row-normalized adjacency matrix is denoted by
Ã = (ãij)n×n, where ãij = 1

Ni
aij with Ni =

∑n
j=1 aij .

The graph G = (V,E) is always assumed connected and
there is no self loop, i.e., ãii = 0 for any i ∈ V .

b) Competing products and the states of nodes:
Suppose there are R competing products, denoted by
H1, H2, . . . ,HR, propagating in the network. We con-
sider a discrete-time model, i.e., t ∈ N, and assume
the products are mutually exclusive. We do not specify
the state of adopting no product and collectively refer
to all the states as “products”. Denote by Di(t) the
state of node i after time step t. For any t ∈ N,
Di(t) ∈ {H1, H2, . . . ,HR}. For simplicity let Θ =
{1, 2, . . . , R}, i.e., the set of the product indexes.

c) Nodes’ production adoption behavior: Two mecha-
nisms define the individuals’ behavior: the social conver-
sion and the self conversion. The following two assump-
tions propose respectively two models different in the
chronological order of the social and self conversions.

Assumption 1 (Social-self conversion model): Con-
sider the competitive propagation of R products in the
network G = (V,E). At time step t+ 1 for any t ∈ N,
suppose the previous state of any node i is Di(t) = Hr.
Node i first randomly pick one of its neighbor j and
following j’s previous state, i.e., Di(t + 1) = Dj(t),
with probability αi. If node i does not follow j’s state
in the social conversion, with probability 1 − αi, then
node i converts to product Hs with probability δrs for
any s 6= r, or stay in Hr with probability δrr.

Assumption 2 (Self-social conversion model): At any
time step t + 1, any node i with Di(t) = Hr converts
to Hs with probability δrs for any s 6= r, or stay in the
state Hr with probability δrr. If node i stays in Hr in the
process above, then node i randomly picks a neighbor j
and following Dj(t) with probability αi, or still stay in
Hr with probability 1− αi.

Assumptions 1 and 2 are illustrated by Figure 1 and
Figure 2 respectively. By introducing the parameters
δrs we define a directed and weighted graph with the
adjacency matrix ∆ = (δrs)R×R, referred to as the

Di(t + 1) = H1

Di(t + 1) = HrDi(t) = Hr

Di(t + 1) = HR

�r1

�rr

�rR

randomly pick
neighbor j

1 � ↵i

↵i

Di(t + 1) = Di(t)

Di(t + 1) = Dj(t)

self conversion social conversion

Fig. 2. Diagram illustration for the self-social conversion model
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Fig. 3. An example of the product-conversion graph for different smart
phone operation systems.

product-conversion graph. Figure 3 gives an example of
the product-conversion graph for different smart phone
operation systems. Based on either of the two assump-
tions, ∆ is row-stochastic. In this paper we discuss
several types of structures of the product-conversion
graph, e.g., the case when it is strongly connected,
or consists of a transient subgraph and some isolated
absorbing subgraphs. The parameter αi characterizes
node i’s inclination to be influenced by social pressure.
Define α = (α1, α2, . . . , αn)> as the individual open-
mindedness vector. Assume 0 < αi < 1 for any i ∈ V .

d) Problem description: According to either Assump-
tion 1 or Assumption 2, at any time step t + 1, the
probability distribution of any node’s states depends on
its own state as well as the states of all its neighbors
at time t. Therefore, the collective evolution of nodes’
states is a Rn-state discrete-time Markov chain. Define
pir(t) as the probability that node i is in state Hr after
time step t, i.e., pir(t) = P[Di(t) = Hr]. We aim to
understand the dynamics of pir(t). Since the Markov
chain models have exponential dimensions and are diffi-
cult to analyze, we approximate it with lower-dimension
difference equations systems and analyze instead the
dynamical properties of the approximation systems.

e) Notations: Before proceeding to the next section,
we introduce some frequently used notations in Table I.
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TABLE I
NOTATIONS FREQUENTLY USED IN THIS PAPER

� (�) entry-wise no less(greater) than
� (≺) entry-wise strictly greater(less) than

1n, 0n (1, 1, . . . , 1)> ∈ Rn×1, (0, 0, . . . , 0)> ∈ Rn×1

0n×m (0)n×m

V set of individuals. V = {1, . . . , n}
Θ set of products. Θ = {1, . . . , R}

Snm(a) the set {X ∈ Rn×m |X � 0n×m, X1m = a}
for any a ∈ Rn

S̃nm(a) the set {X ∈ Rn×m |X � 0n×m, X1m � a}
for any a ∈ Rn

w(M) the normalized dominant left eigenvector for matrix
M ∈ Rl×l if it has one

xr the r-th column vector of the matrix X ∈ Rn×m

x(i) the i-th row vector of the matrix X ∈ Rn×m

x(−i) the i-th row vector of the matrix ÃX ∈ Rn×m, i.e.,
x(−i) = (x−i1, x−i2, . . . , x−im) where x−ir =∑n

j=1 ãijxjr
G(A) the graph with the adjacency matrix A

III. NETWORK COMPETITIVE PROPAGATION MODEL
WITH SOCIAL-SELF CONVERSION

This section is based on Assumption 1. We first derive
an approximation model for the time evolution of pir(t),
referred to as the social-self conversion network compet-
itive propagation model (social-self NCPM), and then
analyze the asymptotic behavior of the approximation
model and its relation to the social network topology, the
product-conversion graph, the initial condition and the
individuals open-mindedness. Further simulation work is
presented in the end of this section.

A. Derivation of the social-self NCPM

Some notations are used in this section.
Notation 3: For the competitive propagation of prod-

ucts {H1, H2, . . . ,HR} on the network G = (V,E),
(1) define the random variable Xr

i (t) by Xr
i (t) = 1

if Di(t) = Hr; Xr
i (t) = 0 if Di(t) 6= Hr. Due to the

mutual exclusiveness of the products, for any i ∈ V , if
Xr
i (t) = 1, then Xs

i (t) = 0 for any s 6= r;
(2) Define the n − 1 tuple D−i(t) =

(D1(t), . . . , Di−1(t), Di+1(t), . . . , Dn(t)), i.e., the
states of all the nodes except node i after time step t;

(3) Define the following notations for simplicity:

P rsij (t) = P[Xr
i (t) = 1 |Xs

j (t) = 1],

P ri (t;−i) = P[Xr
i (t) = 1 |D−i(t)],

Γri (t; s,−i) = P[Xr
i (t+ 1) = 1 |Xs

i (t) = 1,D−i(t)].

In the derivation of the network competitive propaga-
tion model, the following approximation is adopted:

Approximation 4 (Independence Approximation): For
the competitive propagation of R products on the net-
work G = (V,E), approximate the conditional probabil-

ity Pmsij (t) by its corresponding total probability pim(t)
for any m, s ∈ Θ and any i, j ∈ V .

With the independence approximation, the social-self
NCPM is presented in the theorem below.

Theorem 5 (Social-self NCPM): Consider the competi-
tive propagation based on Assumption 1, with the social
network and the product-conversion graph represented
by their adjacency matrices Ã = (ãij)n×n and ∆ =
(δrs)R×R respectively. The probability pir(t) satisfies

pir(t+ 1)− pir(t)

=
∑
s6=r

αi

n∑
j=1

ãij
(
P srij (t)pjr(t)− P rsij (t)pjs(t)

)
+
∑
s 6=r

(1− αi)(δsrpis(t)− δrspir(t)),

(1)

for any i ∈ V and r ∈ Θ. Applying the independence ap-
proximation, the approximation model for equation (1),
i.e., the social-self NCPM, is

pir(t+ 1)

= αi

n∑
j=1

ãijpjr(t) + (1− αi)
R∑
s=1

δsrpis(t).
(2)

Proof: By definition,

pir(t+ 1)−pir(t)=E
[
E[Xr

i (t+ 1)−Xr
i (t) |D−i(t)]

]
,

where the conditional expectation is given by

E[Xr
i (t+ 1)−Xr

i (t) |D−i(t)]
=
∑
s6=r

(
Γri (t; s,−i)P si (t;−i)− Γsi (t; r,−i)P ri (t;−i)

)
.

According to Assumption 1,

Γri (t; s,−i)P si (t;−i)
= αi

∑
j

ãijX
r
j (t)P si (t;−i) + (1− αi)δsrP si (t;−i).

Therefore,

E[Γri (t; s,−i)P si (t;−i)] = αi
∑
j

ãijE[Xr
j (t)P si (t;−i)]

+ (1− αi)δsrE[P si (t;−i)].
One the right-hand side of the equation above,
E[P si (t;−i)] = pis(t). Moreover,

E[Xr
j (t)P si (t;−i)]

=
∑

d−i−j

P[Xs
i (t) = 1, Xr

j (t) = 1,D−i−j(t) = d−i−j ]

= P srij (t)pjr(t).

Apply the same computation to E[Γsi (t; r,−i)P ri (t;−i)]
and then we obtain equation (1). Replace P srij (t) and
P rsij (t) by pis(t) and pir(t) respectively and according to
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the equations
∑
s6=r pis(t) = 1−pir(t) and

∑
s6=r δrs =

1− δrr, we obtain equation (2).
The derivation of Theorem 5 is equivalent to the

widely adopted mean-field approximation in the mod-
eling of the network epidemic spreading [19], [33],
[34]. Notice that the independence approximation neither
neglects the correlation between any two nodes’ states,
nor destroys the network topology, since pjr(t), pjs(t)
and ãij all appear in the dynamics of pir(t).

B. Asymptotic behavior of the social-self NCPM

Define the map f : Rn×R → Rn×R by

f(X) = diag(α)ÃX + (I − diag(α))X∆. (3)

According to equation (2), the matrix form of the social-
self NCPM is written as

P (t+ 1) = f
(
P (t)

)
, (4)

where P (t) = (pir(t))n×R. We analyze how the asymp-
totic behavior of system (4), i.e., the existence, unique-
ness and stability of the fixed point of the map f , is
determined by the two graphs introduced in our model:
the social network with the adjacency matrix Ã, and the
product-conversion graph with the adjacency matrix ∆.

1) Structures of the social network and the product-
conversion graph: Assume that the social network G(Ã)
has a globally reachable node. As for the product-
conversion graph, we consider the more general case.
Suppose that the product-conversion graph G(∆) has
m absorbing strongly connected components (absorbing
SCCs) and a transient subgraph. Re-index the products
such that the product index set for any l-th absorbing
SCCs is given by Θ1 = {1, 2, . . . , k1}, and

Θl =
{ l−1∑
u=1

ku + 1,

l−1∑
u=1

ku + 2, . . . ,

l∑
u=1

ku

}
,

for any l ∈ {2, 3, . . . ,m}, and the index set for the
transient subgraph is Λ = {∑m

l=1 kl + 1, . . . ,
∑m
l=1 kl +

2, . . . , R}. then the adjacency matrix ∆ of the product-
conversion graph takes the following form:

∆ =

[
∆̄ 0(R−k0)×k0

Bk0×(R−k0) ∆0

]
, (5)

where ∆̄ = diag[∆1,∆2, . . . ,∆m] and B =
[B1, B2, . . . , Bm], with Bl ∈ Rk0×k1 for any l ∈
{1, 2, . . . ,m}, is nonzero and entry-wise non-negative.
Matrix ∆l = (δΘl

rs )kl×kl , with δΘ1
rs = δrs and δΘl

rs =
δ∑l−1

u=1 ku+r,
∑l−1

u=1 ku+s for any l ∈ {2, 3, . . . ,m}, is the
adjacency matrix of the l-th absorbing SCC, and is thus
irreducible and row-stochastic. The following definition
classifies four types of structures of G(∆).

Definition 6 (Four sets of product-conversion graphs):
Based on whether the product-conversion graph G(∆)

has a transient subgraph and a single or multiple ab-
sorbing SCCs, we classify the adjacency matrix ∆ into
the following four cases:

(i) Case 1 (single SCC): The graph G(∆) is strongly
connected, i.e., ∆ = ∆1, with k1 = R;

(ii) Case 2 (single SCC + transient subgraph): The
graph G(∆) contains one absorbing SCC and a
transient subgraph, i.e., ∆̄ = ∆1 and k0 ≥ 1;

(iii) Case 3 (multi-SCC): The graph G(∆) contains m
absorbing SCCs, i.e., ∆ = diag[∆1,∆2, . . . ,∆m],
with

∑m
l=1 kl = R;

(iv) Case 4 (multi-SCC + transient subgraph): The
graph G(∆) contains m absorbing SCCs and a
transient subgraph, with ∆ given by equation (5).

2) Stability analysis of the social-self NCPM: The
following theorem states the distinct asymptotic behav-
iors of the social-self NCPM, with different structures
of the product-conversion graph.

Theorem 7 (Asymptotic behavior for social-self
NCPM): Consider the social-self NCPM on a strongly
connected social network G(Ã), with the product-
conversion graph G(∆). Assume that

(i) Each absorbing SCC G(∆l) of G(∆) is aperiodic;
(ii) For any ∆l, l ∈ {1, 2, . . . ,m}, as least one column

of ∆l is entry-wise strictly positive;
(iii) For any r ∈ Λ,

∑
s∈Λ δrs < 1, i.e., ∆01k0 ≺ 1k0 .

Then, for any P (0) ∈ SnR(1n), the solution P (t) to
equation (4) has the following properties, depending
upon the structure of ∆:

(i) in Case 1, P (t) converges to P ∗ = 1n∆>

exponentially fast, where P ∗ is the unique fixed
point in SnR(1n) for the map f defined by equa-
tion (3). Moreover, the convergence rate is ε(∆) =
αmax+(1−αmax)ζ(∆), where αmax = maxi αi and
ζ(∆) = 1−∑R

r=1 mins δsr;
(ii) in Case 2, for any i ∈ V ,

lim
t→∞

pir(t) =

{
0, for any r ∈ Λ,

wr(∆1), for any r ∈ Θ1;

(iii) in Case 3, for any l ∈ {1, 2, . . . ,m} and i ∈ V ,

lim
t→∞

pΘl(i)(t) =
(
w>(M)PΘl(0)1kl

)
w>(∆l),

where M = diag(α)Ã+I−diagα and PΘl(t) =(
pΘl
ir (t)

)
n×kl , with pΘl

ir (t) = pi,
∑l−1

u=1 ku+r(t) and
pΘl(i)(t) being the i-th row of PΘl(t);

(iv) in Case 4, for any l ∈ {1, 2, . . . ,m} and i ∈ V ,

lim
t→∞

pir(t) =

{
0, for any r ∈ Λ,

γlwr(∆l), for any r ∈ Θl,

where γl depends on Ã, Bl, PΘl(0), PΛ(0) and
satisfies

∑m
l=1 γl = 1.
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Before proving the theorem above, a useful and well-
known lemma is stated without the proof.

Lemma 8 (Row-stochastic matrices after pairwise-
difference similarity transform): Let M ∈ Rn×n be row-
stochastic. Suppose the graph G(M) is aperiodic and has
a globally reachable node. Then the nonsingular matrix

Q =


−1 1

. . . . . .
−1 1

1/n . . . 1/n 1/n


satisfies

QMQ−1 =

[
Mred 0n−1

c> 1

]
for some c ∈ Rn−1 and Mred ∈ R(n−1)×(n−1). More-
over, Mred is discrete-time exponentially stable.

Proof of Theorem 7: (1) Case 1:
Since matrix ∆ is row-stochastic, irreducible and

aperiodic, according to the Perron-Frobenius theorem,
w(∆) ∈ RR is well-defined. By substituting P ∗, defined
by p∗(i) = w(∆)> for any i ∈ V , into equation (3), we
verify that P ∗ is a fixed point of f .

For any X and Y ∈ Rn×R, define the distance d(·, ·)
by d(X,Y ) = ‖X − Y ‖∞. Then (SnR(1n), d) is a
complete metric space. For any X ∈ SnR(1n), it is easy
to check that f(X) � 0n×R and

f(X)1R = diag(α)ÃX1R + (I − diag(α))X1R = 1n.

Therefore, f maps SnR(1n) to SnR(1n).
For any X ∈ SnR(1n), according to equation (3),

‖f(X)(i)−f(P ∗)(i)‖1
≤ αi‖x(−i) − p∗(−i)‖1

+ (1− αi)‖(x(i) − p∗(i))∆‖1.
(6)

The first term of the right-hand side of (6) satisfies

‖x(−i) − p∗(−i)‖1 ≤
R∑
r=1

n∑
j=1

ãij |xjr − wr(∆)|

≤ ‖X − P ∗‖∞.
The second term of the right-hand side of (6) satisfies

‖(x(i) − p∗(i))∆‖1 =

R∑
r=1

|
R∑
s=1

(
xis − ws(∆)

)
δsr|.

If x(i) = p∗(i), then ‖f(X)(i) − f(P ∗)(i)‖1 ≤ αi‖X −
P ∗‖∞. If x(i) 6= p∗(i), since x(i)1R = p∗(i)1R = 1,
both the set θ1 = {s |xis ≥ ws(∆)} and the set θ2 =
{s |xis < ws(∆)} are nonempty and∑

s∈θ1

(
xis − ws(∆)

)
=
∑
s∈θ2

(
ws(∆)− xis

)
=

1

2

R∑
s=1

|xis − ws(∆)|.

Therefore,

‖(x(i) − p∗(i))∆‖1

=

R∑
r=1

R∑
s=1

|xis − ws(∆)|δsr

− 2

R∑
r=1

min{
∑
s∈θ1

(xis − ws(∆))δsr,∑
s∈θ2

(ws(∆)− xis)δsr}, where

(7)

min{
∑
s∈θ1

(xis − ws(∆))δsr,
∑
s∈θ2

(ws(∆)− xis)δsr}

≥ 1

2
min
s
δsr‖x(i) − p∗(i)‖1.

Substituting the inequality above into (7), we obtain

‖(x(i)−p∗(i))∆‖1 ≤
(

1−
R∑
r=1

min
s
δsr

)
‖x(i)−p∗(i)‖1.

Since
∑R
r=1 δsr = 1 for any s,

∑R
r=1 mins δsr is no

larger than 1. In addition, since at least one column of
∆ is strictly positive,

∑R
r=1 mins δsr > 0. Therefore,

0 ≤ ζ(∆) = 1−∑R
r=1 mins δsr < 1, and

‖f(X)(i) − p∗(i)‖1 ≤
(
αi + (1−αi)ζ(∆)

)
|X −P ∗‖∞.

This leads to

‖f(X)− f(P ∗)‖∞ ≤ ε(∆)‖X − P ∗‖∞,
for any X ∈ SnR(1n) and 0 < ε(∆) < 1. This
concludes the proof for Case 1.

(2) Case 2:
For the transient subset Λ, define PΛ(t) =(
pΛ
ir(t)

)
n×k0 , with pΛ

ir(t) = pi,r+k1(t), for any i ∈ V

and r ∈ {1, 2, . . . , k0}. Then,

PΛ(t+1) = diag(α)ÃPΛ(t)+(I−diag(α))PΛ(t)∆0.

According to Assumption (iii) of Theorem 7,

c = max
r∈{1,2,...,k0}

k0∑
s=1

δΛ
rs < 1, and ∆01k0 ≤ c1k0 .

Therefore,

PΛ(t+1)1k0

�
(

diag(α)Ã+ c
(
I − diag(α)

))
PΛ(t)1k0 .

Since ρ
(

diag(α)Ã + c
(
I − diag(α)

))
< 1, for any

PΛ(0) ∈ S̃nk0(1n), PΛ(t)→ 0n×k0 exponentially fast.
Define PΘ1(t) = (pir(t))n×k1 . then we have

PΘ1(t+ 1)

= diag(α)ÃPΘ1(t) +
(
I − diag(α)

)
PΘ1(t)∆1

+
(
I − diag(α)

)
PΛ(t)B.
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Since PΛ(t) converges to 0n×k0 exponentially fast, we
have: 1) there exists C > 0 and 0 < ξ < 1 such that

‖
(
I − diag(α)PΛ(t)B

)
‖∞ ≤ Cξt;

2) ‖PΘ1(t)1k1 − 1k1‖∞ → 0 exponentially fast, which
implies d

(
PΘ1(t), Snk1(1n)

)
→ 0 exponentially fast.

For any X ∈ S̃nk1(1n), define map f̃ by

f̃(X) = diag(α)ÃX +
(
I − diag(α)

)
X∆1.

According to the proof for Case 1, there exists a unique
fixed point P̃ ∗ for the map f̃ in Snk1(1n), given by
p̃∗ir = wr(∆1). Moreover, there exists 0 < ε < 1 such
that, for any X ∈ Snk1(1n),

‖f̃(X)− P̃ ∗‖∞ ≤ ε‖X − P̃ ∗‖∞.

Since the function ‖f̃(X)−P̃∗‖∞
‖X−P̃∗‖∞

is continuous in

S̃nk1(1n) \ P̃ ∗ and d
(
PΘ1(t), Snk1(1n)

)
→ 0, there

exists T > 0 and 0 < η < 1 such that, for any t > T ,

‖f̃
(
PΘ1(t)

)
− P̃ ∗‖∞ ≤ η‖PΘ1(t)− P̃ ∗‖∞.

For t ∈ N much larger than T ,

‖PΘ1(t)− P̃ ∗‖∞

≤ ηt−T ‖PΘ1(T )− P̃ ∗‖∞ + C
ξt − ηt−T ξT

η/ξ
.

Since 0 < η < 1, 0 < ξ < 1 as t → ∞, ‖PΘ1(t) −
P̃ ∗‖∞ → 0. This concludes the proof for Case 2.

(3) Case 3:
For any l ∈ {1, 2, . . . ,m},
PΘl(t+ 1)

= f̂
(
PΘl(t)

)
=
(
I − diag(α)

)
PΘl(t)∆l + diag(α)ÃPΘl(t),

where ∆l1kl = 1kl since Θl is absorbing and strongly
connected. Therefore,

PΘl(t+ 1)1kl = MPΘl(t)1kl ,

where M = I − diag(α) + diag(α)Ã is row-stochastic
and aperiodic. Moreover, the graph G(M) has a glob-
ally reachable node and therefore the matrix M has a
normalized dominant left eigenvector w(M). Applying
the Perron-Frobenius theorem,

lim
t→∞

PΘl(t)1kl =
(
w>(M)PΘl(0)1kl

)
1n.

Let cl = w>(M)PΘl(0)1kl . Following the same line
of argument in the proof for Case 2, f̂ maps Snkl(cl1n)
to Snkl(cl1n), and maps S̃nkl(cl1n) to S̃nkl(cl1n).
Moreover, P̂ ∗ ∈ Rn×kl with p̂∗(i) = clw

>(∆l), for
any i ∈ V , is the unique fixed point of the map f̂ in

Snkl(cl1n). In addition, there exists 0 < ε < 1 such that
for any X ∈ Snkl(cl1n),

‖f̂(X)− P̂ ∗‖∞ ≤ ε‖X − P̂ ∗‖∞.

The function ĥ(X) = ‖f̂(X)−P̂∗‖∞
‖X−P̂∗‖∞

is continuous in

S̃nkl(cl1n) \ P̂ ∗. Since for any PΘl(0) ∈ S̃nkl(cl1n) \
P̂ ∗, we have PΘl(t)1kl → cl1kl , which implies
d
(
PΘl(t), Snkl(cl1kl)

)
→ 0 as t → 0. Therefore, there

exists 0 < η < 1 and T > 0 such that for any t > T ,

‖f̂
(
PΘl(t)

)
− P̂ ∗‖∞ ≤ η‖PΘl(t)− P̂ ∗‖∞.

Therefore, PΘl(t)→ P̂ ∗ as t→∞.

(4) Case 4:

PΘl(t+ 1) = diag(α)ÃPΘl(t)

+
(
I − diag(α)

)
PΘl(t)∆l

+
(
I − diag(α)

)
PΛ(t)Bl.

for any l ∈ {1, 2, . . . ,m}. Therefore,

PΘl(t+ 1)1kl = MPΘl(t)1kl + φ(t), (8)

where M = diag(α)Ã+ I − diag(α) is row-stochastic
and primitive. The vector φ(t) is a vanishing perturba-
tion according to the proof for Case 2.

Let x(t) = PΘl(t)1kl and y(t) = Qx(t)
with Q defined in Lemma 8. Let yerr(t) =
(y1(t), y2(t), . . . , yn−1(t))>, where yi(t) = xi+1(t) −
xi(t) for any i = 1, 2, . . . , n− 1. Then we have

y(t+ 1) = QMQ−1y(t) +Qφ(t).

Let ϕ(t) =
(
ϕ1(t), ϕ2(t), . . . , ϕn−1(t)

)>
with ϕi(t) =∑

j Qijφj(t). ϕ(t) is also a vanishing perturbation and

yerr(t+ 1) = Mredyerr(t) +ϕ(t).

The equation above is an exponentially stable linear sys-
tem with a vanishing perturbation. Since ρ(Mred) < 1,
yerr → 0n−1 as t→∞, which implies that PΘl(t)1kl →
γ1n and γl depends on M , Bl, PΘl(0) and PΛ(0).
Moreover,

∑
l γl = 1 since P (t)1R = 1n. Following

the same argument in the proof for Case 3, we obtain

lim
t→∞

pΘl(i)(t) = γlw
>(∆l).

3) Interpretations of Theorem 7: Analysis on Case
1 to 4 leads to the following conclusions: 1) The
probability of adopting any product in the transient
subgraph eventually decays to zero; 2) For the product-
conversion graph with only one absorbing SCC G(∆1),
the system’s asymptotic product-adoption probability
distribution only depends on w(∆1). In this case, the
self conversion dominates the competitive propagation
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Fig. 4. Difference between the solutions to the social-self NCPM (blue
dash) and the original Markov-chain model (red) in complete graphs
or Erdős-Rényi graphs.

process; 3) With multiple absorbing SCCs in the product-
conversion graph, the initial condition P (t) and the
structure of the social network G(Ã) together determine
the fraction each absorbing SCC eventually takes in the
total probability 1; 4) In each absorbing SCC G(∆l),
the asymptotic adoption probability for each product is
proportional to its corresponding entry of ∆l.

C. Further simulation work

a) Accuracy of the social-self NCPM solution: Simula-
tion results have been presented to compare the solution
to the social-self NCPM with the solution to the original
Markov chain model defined by Assumption 1. Let the
matrix ∆ take the following form

∆ =

∆1 0 0
0 ∆2 0
B1 B2 ∆0

 =


0.6 0.4 0 0
0.3 0.7 0 0
0 0 1 0
0 0.8 0 0.2

 . (9)

The Markov-chin solution is computed by the Monte
Carlo method. In each sampling, A, α and P (0) are
randomly generated and set identical for the Markov
chain and the NCPM. The probability p12(t) is plotted
for both models on different types of social networks,
such as the complete graph, the Erdős-Rényi graph,
the power-law graph and the star graph. As shown in
Figure 4 and Figure 5, the solution to the social-self
NCPM nearly overlaps with the Markov-chain solution
in every plot, due to the i.i.d self conversion process.

b) Asymptotic behavior of the Markov chain model
In Figure 6 and Figure 7, all the trajectories pir(t), for
the Markov-chain model on an Erdős-Rényi graph with
n = 5, p = 0.4 and randomly generated α, are computed
by the Monte Carlo method. Figure 6(a) corresponds to
the structure of the product-conversion graph defined by
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(a) power-law graph
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(b) star graph

Fig. 5. Difference between the solutions to the social-self NCPM
(blue dash) and the original Markov-chain model (red) in the power-
law graph and the star graph. The power-law graph has 100 nodes, with
the degree distribution p(k) = 1010k−2.87. The star graph consists
of 10 nodes with node 1 as the center.
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Fig. 6. Asymptotic behavior of the Markov chain model with the
production-conversion graphs defined by Case 3 or Case 4 in Defin-
tion 6. Every curve in this plot is a trajectory pir(t) for i ∈ V and
r ∈ Θ. Here xlr = w>(M)PΘl (0)1kl

wr(∆l).

Case 4 in Definition 6 with

∆1 =

[
0.6 0.4
0.3 0.7

]
,∆2 = 1,∆0 = 0.2, B = [0 0.8 0].

The transient subgraph is only connected to SCC Θ1 and
the intial adoption probability for H3 is 0. Figure 6(b)
corresponds to the structure of the product-conversion
graph defined by Case 3 in Defintion 6 with

∆ =

[
∆1 0
0 ∆2

]
,∆1 =

[
0.6 0.4
0.3 0.7

]
,∆2 =

[
0.5 0.5
0.1 0.9

]
.

The simulation results shows that, in these two cases the
Markov-chain solutions converge exactly to the values
indicated by the social-self NCPM, regardless of the
initial condition. The matrix ∆ used in Figure 7 is
given by equation (9). As illustrated by Figure 7, the
asymptotic adoption probabilities vary with the initial
condition in the Markov-chain model, in consistence
with the results of Theorem 7.

IV. ANALYSIS ON THE SELF-SOCIAL NETWORK
COMPETITIVE PROPAGATION MODEL

In this section we discuss the network competitive
propagation model based on Assumption 2, i.e, the case
in which self conversion occurs before social conversion
at each time step. Firstly we propose an approximation
model, referred to as the self-social network competitive
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Fig. 7. Asymptotic behavior of the Markov chain model with the
production-conversion graph consisting of multiple SCCs and a tran-
sient subgraph. Every curve in this plot is a trajectory pir(t) for i ∈ V
and r ∈ Θ.

propagation model (self-social NCPM), and then analyze
the dynamical properties of this approximation model.

Theorem 9 (Self-social NCPM): Consider the compet-
itive propagation model based on Assumption 2, with the
social network and the product-conversion graph repre-
sented by their adjacency matrices Ã and ∆ respectively.
The probability pir(t) satisfies

pir(t+ 1)− pir(t) =
∑
s 6=r

(
δsrpis(t)− δrspir(t)

)
+
∑
s6=r

δssαi

n∑
j=1

ãijpis(t)P
rs
ji (t)

−
∑
s6=r

δrrαi

n∑
j=1

ãijpir(t)P
sr
ji (t),

for any i ∈ V and r ∈ Θ. Applying the independence
assumption, the matrix form of the self-social NCPM is

P (t+ 1)

= P (t)∆ + diag(α) diag
(
P (t)δ

)
ÃP (t)

− diag(α)P (t) diag(δ),

(10)

with P (t) = (pir(t))n×R and δ = (δ11, δ22, . . . , δRR)>.

It is straightforward to check that, for any P (t) ∈
SnR(1n), P (t + 1) is still in SnR(1n). According to
the Brower fixed point theorem, there exists at least one
fixed point for the system (10) in SnR(1n). Since the
nonlinearity of equation (10) add much difficulty to the
analysis of it, in the remaining part of this section we
discuss the special case when R = 2.

For simplicity, in this section, let p(t) = p2(t) =(
p12(t), p22(t), . . . , pn2(t)

)>
. Without loss of generality,

assume δ22 ≥ δ11. Define the map h : Rn → Rn by

h(x) = δ121n + (1− δ12 − δ21)x

+ δ11 diag(α)Ãx− δ22 diag(α)x

+ (δ22 − δ11) diag(α) diag(x)Ãx.

(11)

Then the self-social NCPM for R = 2 is written as

p(t+ 1) = h(p(t)), (12)

and p1(t) is computed by p1(t) = 1n − p(t).
We present below the main theorem of this section.
Theorem 10 (Dynamical behavior of self-social NCPM

with R = 2): Consider the two-product self-social
NCPM, given by equations (11) and (12), with the pa-
rameters δ11, δ12, δ21, δ22, α1, . . . , αn all in the interval
(0, 1), and δ22 ≥ δ11. We conclude that,

(i) system (12) has a unique fixed point p∗ ∈ [0, 1]n;
(ii) the unique fixed point p∗ satisfies

1

2
1n � p∗ �

δ12

δ12 + δ21
1n, and (13)

p∗i − p∗−i ≤
1− 1

2αi

αi

δ22 − δ11

δ22 + δ11
; (14)

(iii) if δ22 = δ11, the unique fixed point p∗ for
system (12) is globally exponentially stable; (By
“globally” we mean “for any p(0) ∈ [0, 1]n.”)

(iv) if δ22 > δ11, and

αi <
8δ11δ22

(δ22 − δ11)2 + 8δ11δ22
for any i ∈ V, (15)

then p∗ is locally asymptotically stable;
(v) if δ22 > δ11, and

αi <
δ22 + δ11

3δ22 − δ11
for any i ∈ V, (16)

then p∗ is globally exponentially stable. More-
over, the convergence rate is upper bounded by
maxi

(
max{εi,Kiεi + Ki − 1}

)
, where εi and

Ki are defined as εi = (2δ22 − δ11)αi/Ki and
Ki = δ12 + δ21 + δ22αi, respectively.

Proof: We start the proof by establishing that h is a
continuous map from [0, 1]n to [0, 1]n itself. Firstly, since

h(x) = δ12(1n − x) + δ11 diag(α)Ãx

+ (1− δ21)x− δ22 diag(α)x

+ (δ22 − δ11) diag(α) diag(x)Ãx, and

(1− δ21)x− δ22 diag(α)x � (1− δ21 − δ22)x = 0n,

the right-hand side of the expression of h is non-negative.
Therefore, for any x ∈ [0, 1]n, h(x) � 0n. Secondly,
recall that x−i = (Ãx)i =

∑
j ãijxj . That is, x−i is the

weighted average of all the xj’s except xi and the value
of x−i does not depend on xi since ãii = 0. Moreover,
since

∑
j ãij = 1 for any i ∈ V , x−i is also in the

interval [0, 1]. According to equation (11), rewrite the
i-th entry of h(x) as

h(x)i = δ12 + δ11αix−i + ηixi,

where ηi = 1−δ12−δ21−δ22αi+(δ22−δ11)αix−i. The
maximum value of ηi is 1− δ12− δ21− δ11αi, obtained
when x−i = 1. Therefore,

ηixi ≤ max(1− δ12 − δ21 − δ11αi, 0).
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Then we have
h(x)i ≤ δ12 + δ11αi + max(1− δ12 − δ21 − δ11αi, 0)

= max(δ22, δ12 + δ11αi) < 1.

The inequality above leads to h(x) � 1n for any x ∈
[0, 1]n. Since h maps [0, 1]n to [0, 1]n itself, according to
the Brower fixed point theorem, there exists p∗ such that
h(p∗) = p∗. This concludes the proof of the existence
of a fixed point.

Any fixed point of h should satisfy h(p∗) = p∗, i.e.,

0n = δ121n + δ11 diag(α)Ãp∗

+ (δ22 − δ11) diag(α) diag(p∗)Ãp∗

− (δ12 + δ21)p∗ − δ22 diag(α)p∗.

(17)

Therefore,

p∗ = δ12K
−11n + δ11K

−1 diag(α)Ãp∗

+ (δ22 − δ11)K−1 diag(α) diag(p∗)Ãp∗,

where K = (δ12 + δ21)I + δ22 diag(α) is a positive
diagonal matrix. Define a map T : Rn → Rn by

T (x) = δ12K
−11n + δ11K

−1 diag(α)Ãx

+ (δ22 − δ11)K−1 diag(α) diag(x)Ãx.
(18)

We have that map h has a unique fixed point if and
only if map T has a unique fixed point. For any x and
y ∈ [0, 1]n, define the distance d(x,y) = ‖x − y‖∞.
Then ([0, 1]n, d) is a complete metric space. According
to equation (18), since K−1, diag(α), Ã, δ22 − δ11 and
diag(x) are all nonnegative, for any x, y ∈ [0, 1]n and
x � y, we have T (x) � T (y). Moreover,

T (0n) = δ12K
−11n � 0n, and

T (1n) = δ12K
−11n + δ11K

−1α+ (δ22 − δ11)K−1α

= δ12K
−11n + δ22K

−1α.

Since
T (1n)i =

δ12 + δ22αi
δ12 + δ21 + δ22αi

< 1,

we have T (1n) ≺ 1n. Therefore, T maps [0, 1]n to
[0, 1]n. For any x, y ∈ [0, 1]n,

T (x)i − T (y)i =
δ11αi
Ki

(x−i − y−i)

+
(δ22 − δ11)αi

Ki
(xix−i − yiy−i).

Moreover,

|x−i − y−i| ≤ (

n∑
j=1

ãij) max
j
|xj − yj | = ‖x− y‖∞,

and
|xix−i − yiy−i|
≤ max

(
max
i
y2
i −min

i
x2
i , max

i
x2
i −min

i
y2
i

)
≤ 2‖x− y‖∞.

Therefore,

|T (x)i − T (y)i| ≤ εi‖x− y‖∞,

where εi = (2δ22−δ11)αi

δ12+δ21+δ22αi
. One can check that εi < 1

for any i ∈ V and εi does not depend on the x and y.
Let ε = maxi εi. Then for any x, y ∈ [0, 1]n,

‖T (x)− T (y)‖∞ ≤ ε‖x− y‖∞ with ε < 1.

Applying the Banach fixed point theorem, we know that
the map T possesses a unique fixed point p∗ in [0, 1]n. In
addition, for any p(0), the sequence {p(t)}t∈N defined
by p(t+1) = T

(
p(t)

)
satisfies limt→∞ p(t) = p∗. This

concludes the proof of statement (i).
For statement (ii), one can check that T maps S =
{x ∈ Rn | 1

21n � x � δ12
δ12+δ21

1n} to S itself. Since T
is a contraction map, the unique fixed point p∗ is in S.
The concludes the proof for equation (13). According to
equation (17), we have Cip∗i − C−ip∗−i = δ12 − δ12p

∗
i ,

where Ci = δ21 + δ22αi and C−i = δ11αi + (δ22 −
δ11)αip

∗
i . Firstly we point out that Ci > C−i, since

Ci−C−i = δ21 +αi(δ22− δ11)(1− p∗i ) > 0. Moreover,

p∗i−p∗−i

=
δ12 −

(
δ12 + δ21 + αi(δ22 − δ11)(1− p∗i )

)
p∗i

δ11αi + (δ22 − δ11)αip∗i
.

The right-hand side of the equation above with 1
2 ≤ p∗i ≤

δ12
δ12+δ21

achieves its maximum value 1− 1
2αi

αi

δ22−δ11
δ22+δ11

at
p∗i = 1

2 . This concludes the proof for equation (14).
Now we prove statement (iii). With δ11 = δ22,

h
(
x
)

= x+ δ121n − 2δ12x+ δ11 diag(α)
(
Ãx− x

)
.

One can check that p∗ = 1
21n is a fixed point.

According to statement (i), the fixed point is unique.
Let p(t) = y(t) + 1

21n. Then the two-product self-
social NCPM becomes y(t + 1) = My(t), where
M = (1 − 2δ12)I + δ11 diag(α)Ã − δ11 diag(α). For
any i ∈ V , if 1− 2δ12 − δ11αi ≥ 0, then
n∑
j=1

|Mij | = 1− 2δ12 − δ11αi + δ11αi = 1− 2δ12 < 1;

and, if 1− 2δ12 − δ11αi < 0, then
n∑
j=1

|Mij | = 2δ12 + δ11αi + δ11αi − 1 < 1.

Since ρ(M) ≤ ‖M‖∞ = maxi
∑n
j=1|Mij |, the spectral

radius of M is strictly less than 1. Therefore, the fixed
point p∗ = 1

21n is globally exponentially stable.
Now consider the case when δ22 > δ11. Let p(t) =

y(t) + p∗. Then system (12) becomes

y(t+ 1) = My+ (δ22− δ11) diag(α) diag(y(t))Ãy(t).



11

The right-hand side of the equation above is a linear term
My(t) with a constant matrix M , plus a quadratic term.
The matrix M can be decomposed as M = M̃−δ12I and
M̃ = M̃ (1) + M̃ (2) is further decomposed as a diagonal
matrix M̃ (1) plus a matrix M̃ (2) in which all the diagonal
entries are 0. Since

M̃ (1) = (1− δ12)I − δ22 diag(α)

+ (δ22 − δ11) diag(α) diag(Ãp∗)

is a positive diagonal matrix, and

M̃ (2) = δ11 diag(α)Ã+ (δ22 − δ11) diag(α) diag(p∗)Ã

is a matrix with all the diagonal entries being zero and
all the off-diagonal entries being nonnegative. The matrix
M̃ = M̃ (1) + M̃ (2) is nonnegative.

Since Ã = diag( 1
N1
, 1
N2
, . . . , 1

Nn
)A, the matrix M̃

can be written in the form DA + E, where A is
symmetric and D, E are positive diagonal matrix. One
can easily prove that all the eigenvalues of any matrix
in the form M̃ = DA + E are real since M̃ is similar
to the symmetric matrix D

1
2 (A+D−1E)D

1
2 .

The local stability of p∗ is equivalent to the inequality
ρ(M) < 1, which is in turn equivalent to the intersection
of the following two conditions: λmax(M̃) < 1 + δ12

and λmin(M̃) > −1 + δ12. First we prove λmax(M̃) <
1 + δ12. Since A is irreducible and α � 0n, p∗ � 0n,
we have M̃ij > 0 if and only if aij > 0 for any i 6= j.
In addition, M̃ii > 0 for any i ∈ V . Therefore, M̃ is
irreducible, aperiodic and thus primitive. According to
the Perron-Frobenius theorem, λmax(M̃) = ρ(M̃). We
have ρ(M̃) ≤ ‖M̃‖∞ and for any i ∈ V ,∑
j

|M̃ij | = 1− δ21 + (δ22 − δ11)
(
αi(p

∗
−i + p∗i )− αi

)
.

According to equation (13), for any i ∈ V ,

1−δ21 ≤
∑
j

|M̃ij | ≤ 1−δ21+
(δ12 − δ21)2

δ12 + δ21
αi < 1+δ12.

Therefore,

λmax(M̃) ≤ 1− δ21 +
(δ12 − δ21)2

δ12 + δ21
αi < 1 + δ12.

Now we prove λmin(M̃) > −1 + δ12. According to the
Gershgorin circle theorem,

λmin(M̃) ≥ min
i

(M̃ii −
∑
j 6=i
|M̃ij |).

For any i ∈ V ,

M̃ii −
∑
j 6=i
|M̃ij | = 1− δ21 − αi(δ22 + δ11)

− αi(δ22 − δ11)(p∗i − p∗−i).

According to equation (14),

p∗i − p∗−i ≤
1− 1

2αi

αi

δ22 − δ11

δ22 + δ11
.

Moreover, inequality (15) is necessary and sufficient to

1− 1
2αi

αi

δ22 − δ11

δ22 + δ11
<

1− αi
αi

δ22 + δ11

δ22 − δ11
.

Therefore,

M̃ii−
∑
j 6=i
|M̃ij |

> 1− δ21 − αi(δ22 + δ11)− (1− αi)(δ22 + δ11)

= −1 + δ12,

for any i ∈ V . That is to say, the inequality (15) is
sufficient for ρ(M) < 1, i.e., the local stability of p∗.
This concludes the proof for statement (iv).

For statement (v), observe that the maps h and T
satisfy the following relation:

h(x) = KT (x) + (I −K)x,

for any x ∈ [0, 1]n, where K = (δ12 + δ21)I +
δ22 diag(α). For any x, y ∈ [0, 1]n,

|h(x)i−h(y)i|
= |Ki

(
T (x)i − T (y)i

)
+ (1−Ki)(xi − yi)|.

We estimate the upper bound of |h(x)i−h(y)i| in terms
of ‖x− y‖∞ in two cases.

Case 1: δ12 + δ21 + δ22αi < 1 for any i. Firstly,

δ11

δ22
+ 1− 1

δ22
<

δ11 + δ22

3δ22 − δ11

always holds as long as δ11 < δ22. Then recall that, for
any x, y ∈ [0, 1]n,

|T (x)i − T (y)i| ≤ εi‖x− y‖∞,

where εi = (2δ22−δ11)αi

Ki
< 1. Therefore,

|h(x)i − h(y)i| ≤ (Kiεi + 1−Ki)‖x− y‖∞,
for any i ∈ V . The coefficient Kiεi + 1−Ki is always
strictly less than 1 because it is a convex combination
of εi < 1 and 1. Therefore, h is a contraction map.

Case 2: There exists some i such that δ12 + δ21 +
δ22αi ≥ 1. In this case, for any such i,

|h(x)i − h(y)i| ≤ (Kiεi +Ki − 1)‖x− y‖∞.
If αi < δ11+δ22

3δ22−δ11 , then we have

Kiεi +Ki − 1 = (3δ22 − δ11)αi + δ12 + δ21 − 1

< δ11 + δ22 + δ12 + δ21 − 1 = 1.

Therefore, h is also a contraction map.
Combining Case 1 and Case 2 we conclude that if

αi <
δ11+δ22
3δ22−δ11 for any i ∈ V , then h is a contraction
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Fig. 8. This figure illustrates how the conditions for the local
stability and global stability change with the ratio δ11/δ22. Curve
(1) is 8δ11δ22/((δ22)− δ11)2 + 8δ11δ22), i.e, corresponding to the
condition for local stability. Curve (2) is (δ22 + δ11)/(3δ22 − δ11),
corresponding to the condition for global stability. Curve (3) is
δ11/δ22.

map. According to the proof for statement (i), h maps
[0, 1]n to [0, 1]n. Therefore, according to the Banach
fixed point theorem, for any initial condition p(0) ∈
[0, 1]n, the solution p(t) converges to p∗ exponentially
fast and the convergence rate is upper bounded by
maxi

(
max(εi,Kiεi +Ki − 1)

)
.

The rest of this section are some remarks of Theo-
rem 10. Firstly, equation (13) has a meaningful interpre-
tation: The condition δ22 ≥ δ11 implies that product H2

is advantageous to H1, in the sense that the nodes in
state H1 have a higher or equal tendency of converting
to H2 than the other way around. As the result, the fixed
point is in favor of H2, i.e., p∗ ≥ 1

21n.

From the proof of statement (iv), we know that,
around the unique fixed point, the linearized system
is y(t + 1) = My(t), where M is a Metzler matrix
and is Hurwitz stable. Usually the Metzler matrices are
presented in continuous-time network dynamics models,
e.g., the epidemic spreading model [35], [36]. In the
proof of Theorem 10 (iv), we provide an example of
the Metzler matrix in a stable discrete-time system.

Figure 8 plots the right-hand sides of inequalities (15)
and (16), respectively, as functions of the ratio δ11

δ22
, for

the case when 0 < δ11
δ22

< 1. One can observe that, for
a large range of δ11

δ22
, the sufficient condition we propose

for the global stability is more conservative than the
sufficient condition for the local stability.

One major difference between the self-social and the
social-self NCPM in the asymptotic property is that, in
the self-social NCPM, every individual’s state probabil-
ity distribution is not necessarily identical. Moreover,
distinct from the social-self NCPM, for any of the four
cases of G(∆) defined in Definition 6, the asymptotic
behavior of the self-social NCPM depends on not only
the structure of G(∆), but also the structure of the social
network G(Ã) and the individual open-mindedness α.

V. NON-COOPERATIVE QUALITY-SEEDING GAMES

Based on the social-self NCPM given by equation (4),
we propose two non-cooperative multi-player games
distinct in the pay-off functions, and analyze their Nash
equilibria. These two games share the common idea that,
companies benefit from the adoption of their products,
and thereby invest on both improving their products’
quality, and seeding, e.g., advertisement and promotion,
to maximize their products’ adoption probabilities. All
the notations in Table I and the previous sections still
apply, and, in Table II, we introduce some additional
notations and functions exclusively for this section.

TABLE II
NOTATIONS AND FUNCTIONS USED IN SECTION V

X(t) seeding matrix at time t. X(t) =
(
xir(t)

)
n×R

,
where xir(t) ≥ 0 is company r’s investment on
seeding for individual i. xr(t) is the r-th column
of X(t) and x(i)(t) is the i-th column of X(t)

w(t) the quality investment vector at time t. w(t) ∈
RR×1, and each entry wr(t) ≥ 0 is company r’s
investment at time t on product Hr’s quality

Y (t) action matrix at time t. Y (t) =
(
X(t)>,w(t)

)>,
in which any yr(t) = (xr(t)>, wr(t))> is Player
r’s action at t.

c the budget vector. c ∈ RR×1 and c � 0R. entry
cr is the budget limit for company r

Ωr player r’s action set. Ωr = {y ∈
Rn+1
≥0 | 1

>
n+1y ≤ cr}

ψr(x(i); γ) ψr : R1×R
≥0 → R≥0 defined by ψr(x(i); γ) =

xir/(x
(i)1R + γ), with model parameter γ > 0

gr(w; ς) gr : RR×1
≥0 → R≥0 defined by gr(w; ς) = (wr+

ςr)/1>R(w + ς), where ς ∈ RR
>0

βr(t) βr(t) =
(
β1r(t), . . . , βnr(t)

)>
= Ãpr(t)

ur(P ) single-stage reward for player r with system state
P . ur(P ) = 1>n pr

A. Repeated one-shot quality-seeding game

1) Game set-up and analysis: In this subsection we
consider the scenario in which the companies allocate
their investments aiming to maximize their instant pay-
offs. The game is referred to as the repeated one-shot
quality-seeding game, and is formalized as follows.

(a) Players: The players are the R companies. Each
company r has a product Hr competing on the network.

(b) Players’ actions: At each stage (or time step
equivalently) t, each company r has two types of invest-
ments. The investment on seeding, i.e., xr(t), and the
investment on quality, i.e., wr(t). The total investment is
bounded by a fixed budget cr, i.e., 1>n xr(t)+wr(t) ≤ cr.

(c) Rules: The investment on seeding changes the
individuals’ product-adoption probability in the social
conversion process. For any individual i ∈ V , each
company r’s investment xir(t) creates a ”virtual node”
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in the network, who is always adopting the product Hr.
In the social conversion process, the probability that indi-
vidual i picks company r’s virtual node is ψr

(
x(i)(t); γ

)
for any i ∈ V and r ∈ Θ. The probability that
individual i picks individual j in the social conversion
process is then given by

(
1 − ∑R

s=1 ψs
(
x(i); γ

))
ãij .

The investment on quality, i.e., wr(t), influences the
product-conversion graph. We assume that the product-
conversion graph is associated with a rank-one adjacency
matrix [δ11n, δ21n, . . . , δR1n] and δr = gr(w(t); ς)
is determined by all the companies’ investments on
product quality and the products’ preset qualities ς =
(ς1, . . . , ςR)> � 0R. With each company r’s action
yr(t) =

(
xr(t)

>, wr(t)
)>

at time t, the dynamics of the
product-adoption probabilities P (t) ∈ Rn×R≥0 is given by

P (t+ 1) = H
(
P (t),y1(t), . . . ,yR(t)

)
, (19)

where the map H is defined by

H
(
P,y1(t), . . . ,yR(t)

)
ir

= αi
γ

x(i)(t)1R + γ

n∑
k=1

ãikpkr

+ αiψr
(
x(i)(t); γ

)
+ (1− αi)gr

(
w(t); ς

)
,

for any P ∈ SnR(1n), i ∈ V , and r ∈ Θ.
(d) Pay-offs and goals: At each stage t, each player r

chooses its action yr(t), in order to maximize the pay-
off ur(P (t+ 1)) = 1>n pr(t+ 1), i.e., the total adoption
probability of product Hr at the next stage.

The following theorem gives a closed-form expression
of the Nash equilibrium at each stage and the system’s
asymptotic behavior when every player is adopting the
policy at the Nash equilibrium.

Theorem 11 (Repeated one-shot quality-seeding
game): Consider the R-player quality-seeding game de-
scribed in this subsection. Further assume that the budget
limit cr for any company r satisfies

cr ≥ max
{

(
n

mini αi
− 1)γ − ςr,

1>nα
n− 1>nα

ςr

}
. (20)

Then we have the following conclusions:
i) for each t, there exists a unique pure-strategy Nash

equilibrium Y ∗(t) =
(
X∗(t)>,w∗(t)

)>
, given by

x∗ir(t) =
αi
n
cr +

αiγ

n
1>nβr(t) +

αi
n
ςr − βir(t)γ, (21)

w∗r(t) =
(
1− 1>nα

n

)(
cr + 1>nβr(t)γ

)
− 1>nα

n
ςr, (22)

and x∗ir(t) ≥ 0, w∗r(t) ≥ 0 for any i ∈ V, r ∈ Θ;
ii) if

(
X(t),w(t)

)
=
(
X∗(t),w∗(t)

)
for any t ∈ N

and P (0) ∈ SnR(1n), then P (t) obeys the following
iteration equations:

pr(t+ 1) =
cr + ςr + 1>n Ãpr(t)γ

1>Rc+ 1>Rς + nγ
1n, (23)

for any r ∈ Θ, t ∈ N. As the result, pr(t) converges to
(cr + ςr)

/(
1>R(c + ς)

)
exponentially fast with the rate

nγ
/(

1>R(c+ ς) + nγ
)
.

Proof: Since we only discuss the actions at stage t
in this proof, for simplicity of notations and without
causing any confusion, we use xir (wr, x∗ir, w

∗
r resp.)

for xir(t) (wr(t), x∗ir(t), w∗r(t) resp.).
If company r knows the actions of all the other

companies at time step t, i.e., ys, for any s 6= r, the
optimal response for company r is the solution to the
following optimization problem:

minimize
(x,w)∈Ωr

− 1>n pr(t+ 1)

subject to 1>nx+ w − cr ≤ 0.
(24)

Let x̃ir = xir + βir(t)γ, w̃r = wr + ςr, and
Lr(xr, wr, µr) = −1>n pr(t + 1) + µr1>nxr + µrwr −
µrcr, for any i ∈ V and r ∈ Θ. The solution to the
optimization problem (24) satisfies

∂Lr
∂xir

= −αi
∑
s 6=r x̃is

(
∑R
s=1 x̃is)

2
+ µr = 0, (25)

∂Lr
∂wr

= −1>n (1n −α)

∑
s6=r w̃s

(1>Rw̃)2
+ µr = 0, (26)

∂Lr
∂µr

= 1>nxr + wr − cr = 0. (27)

According to the definition of Nash equilibrium,
(x∗r , w

∗
r) solves the optimization problem (24) with

(xs, ws) = (x∗s, w
∗
s) for any s 6= r. One immediate

result is that 1>nx
∗
r + w∗r − cr = 0 for any r ∈ Θ.

Moreover, equation (25) leads to:

1√
µr

=
1∑n

k=1

√
αk
∑
s6=r

x̃∗ks

R∑
s=1

(
cs−w∗s + 1>nβs(t)γ

)
,

and therefore,√
αi
∑
s6=r x̃

∗
is

n∑
k=1

√
αk
∑
s6=r

x̃∗ks

=

R∑
s=1

x̃∗is

R∑
s=1

(
cs − w∗s + 1>nβs(t)γ

) . (28)

The right-hand side of the equation above does not
depend on the product index r. Therefore,

∑
s6=r x̃

∗
is∑

s6=τ x̃
∗
is

=

∑n
k=1

√
αk
∑
s6=r x̃

∗
ks∑n

k=1

√
αk
∑
s6=τ x̃

∗
ks

2

,

for any r, τ ∈ Θ. Since the right-hand side of the
equation above does not depend on i, we have∑

s6=r x̃
∗
is∑

s6=r x̃
∗
js

=

∑
s6=τ x̃

∗
is∑

s6=τ x̃
∗
js

=

∑R
s=1 x̃

∗
is∑R

s=1 x̃
∗
js

=
x̃∗ir
x̃∗jr

,
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for any r, τ ∈ Θ. Combine the equation above with
equation (28) and then we obtain∑R

s=1 x̃
∗
is∑R

s=1 x̃
∗
js

=

√
αi
αj

√∑
s6=r x̃

∗
is∑

s6=r x̃
∗
js

⇒ x̃∗ir
x̃∗jr

=
αi
αj
,

for any r ∈ Θ. Therefore,

x̃∗ir =
αi

1>nα

(
cr − w∗r + 1>nβr(t)γ

)
. (29)

Combining equation (29) and (26), we obtain

cr − w∗r + 1>nβr(t)γ

w̃∗r
=
cτ − w∗τ + 1>nβτ (t)γ

w̃∗τ
= η,

for any r, τ ∈ Θ and some constant η. Substitute the
equation above into equation (26), we solve that η =
1>nα/1

>
n (1n − α). Therefore, we obtain equation (22),

and by substituting equation (22) into equation (29)
we obtain equation (21). The uniqueness of the pure-
strategy Nash equilibrium (X∗>,w)> is implied from
the computation. Moreover, equation (20) guarantees
x̃∗ir ≥ 0 and w∗r ≥ 0 for any i ∈ V and r ∈ Θ.

Substituting euqation (21) and (22) into the dynamical
system (19), after simplification, we obtain equation (23)
and thereby all the results in Conclusion ii).

2) Interpretations and Remarks: : The basic idea
of seeding-quality trade-off in the competitive seeding-
quality game is similar to the work by Fazeli et. al. [32],
but, in our model, players take actions at every step,
instead of just at the beginning of the game. Moreover,
our model is based on a different propagation model.

Theorem 11 reveals the behavior of the competitive
propagation dynamics under the players’ rational but
myopic actions, and provides some strategic insights on
the investment decisions and the seeding-quality trade-
off for short-term reward maximization.

(a) Interpretation of βir(t): By definition, βir(t) is
the average probability, among all the neighbors of
individual i, of adopting product Hr at time step t. The
larger βir(t), the more individual i is inclined to adopt
Hr via social conversion. Therefore, βir(t) characterizes
the current “social attraction” of Hr for individual i,
and 1>nβr(t)/n characterizes the current overall social
attraction of product Hr in the network.

(b) Seeding-quality trade-off: According to equa-
tion (22), at the Nash equilibrium, the investment
on Hr’s product quality monotonically decreases with
1>nα/n, and increases with 1>nβr. This observation
implies that: 1) in a society with relatively low open-
mindedness, the competing companies should relatively
emphasize more on improving their products’ quality,
rather than seeding, and vice versa; 2) for products which
do not have much social attraction, seeding is more
efficient than improving the product’s quality.

(c) Allocation of seeding resources among the individ-
uals: According to equation (21), for any company r, at
the Nash equilibrium at each time step t, the investment
on seeding for any individual i, i.e., xir(t), increases
with individual i’s open-mindedness, since it is easier for
a more open-minded individual to be influence by seed-
ing. Moreover, by rewriting equation (21), one would
observe that x∗ir(t) monotonically decreases with βir(t).
A possible interpretation is that, seeding is relatively
not efficient for products with strong social attraction.
Moreover, one can also observe that x∗ir(t) increases with∑n
l=1 ãlipir(t), in which

∑n
l=1 ãli is individual i’s in-

degree, reflecting i’s potential of influencing the others,
and

∑n
l=1 ãlipir(t) characterizes individual i’s potential

of converting other individuals to product Hr.
(d) Nash equilibrium on the boundary: Without equa-

tion (20), the right-hand sides of equation (21) and (22)
could be non-positive. In this case, the Nash equilibrium
would be on the boundary of the feasible action set, i.e.,
some of the x∗ir(t) or w∗r(t) might be 0.

B. Dynamic quality-seeding game with infinite-horizon
In this subsection we introduce a multi-stage game

among more farsighted players than in the previous sub-
section. The players aim to maximize the accumulated
pay-offs of all the stages. We refer to this game as the
dynamic quality-seeding game. The model set-up is the
same with the game defined in the previous subsection,
except for the following two modifications:

(a) Players’ policies Denote by Yr the set of functions
mapping SnR(1n) to Ωr. Each player r’s policy is a
sequence of maps, denoted by Yr = {Yr,t}t∈N, where
Yr,t ∈ Yr for any t. Player r’s action at each stage t
is thus given by yt = Yr,t

(
P (t)

)
. We refer to Yr =

{Yr,t}t∈N as stationary policy if Yr,t = Yr,τ for any
t 6= τ , and simply use Yr for the map at each stage.

(b) Pay-offs and goals: Denote by vr(P ; Y1, . . . ,YR)
the pay-off of Player r, with initial condition P (0) = P
and each Player s adopting the policy Ys. The pay-off
vr(P ; Y1, . . . ,YR) is given by the accumulated step pay-
offs with discount, that is,

vr(P ; Y1, . . . ,YR) =

∞∑
t=0

εtur(P (t)),

where P (0) = P and P (t + 1) =
H
(
P (t); Y1(P (t)), . . . ,YR(P (t))

)
for any t ∈ N.

This model set-up defines a multi-stage non-
cooperative dynamic game with infinite horizon. One
interpretation of the discounted accumulated pay-off is
that, people tend to value the immediate profit more than
the future profit. An alternative explanation is that, the
discount factor ε characterizes the interest rate 1/ε − 1
when the players deposit their current pay-off to the
banks, or use them for some other investments.
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The R-tuple (Y ∗1 , . . . ,Y
∗
R ) is a Nash equilibrium if,

for any P ∈ SnR(1n) and r ∈ Θ, vr(P ; Y ∗1 , . . . ,Y
∗
R ) ≥

vr(P ; Y ∗1 , . . . ,Y
∗
r−1,Yr,Y

∗
r+1, . . . ,Y

∗
R ), for any Yr ∈

Y∞r = Yr × Yr × . . . . In this subsection, we limit our
discussion to the case of two players. The following
theorem presents some results on the stationary Nash
equilibrium and the equilibrium pay-off function for this
dynamic quality-seeding game.

Theorem 12 (Two-player infinite-horizon dynamic
game): Consider the dynamic quality-seeding game de-
fined in this subsection, with R = 2. Define the subset of
continuously differentiable functions V =

{
v : [0, 1]n →

R
∣∣ v satisfies properties P1 and P2

}
, where

P1 : p � p̂⇒ v(p) ≤ v(p̂) for any p, p̂ ∈ [0, 1]n,

P2 : v(p) is convex in p.

We conclude that:
(i) There exists a Nash equilibrium (Y ∗1 ,Y

∗
2 ), where

Y ∗1 and Y ∗2 are both stationary policies;
(ii) The total pay-off for Player 2 at this Nash equi-

librium is given by v2(P ; Y ∗1 ,Y
∗

2 ) = v∗(Pe2),
where e2 is the second standard basis vector of
R2, and v∗ is the unique fixed point of the map
T : V → V , defined by

T v(p) = 1>n p+ ε sup
y2∈Ω2

inf
y1∈Ω1

v
(
H(P ;y1,y2)e2

)
,

where P = [1n − p,p] ∈ Rn×2. As a result,
v1(P ; Y ∗1 ,Y

∗
2 ) = n/(1− ε)− v2(P ; Y ∗1 ,Y

∗
2 );

(iii) The stationary Nash policies Y ∗1 , Y ∗2 are given by

Y ∗1 (P ) = argmin
y1∈Ω1

sup
y2∈Ω2

v∗
(
H(P ;y1,y2)e2

)
,

Y ∗2 (P ) = argmax
y2∈Ω2

inf
y1∈Ω1

v∗
(
H(P ;y1,y2)e2

)
.

Before proving the theorem above, we summarize
Theorem 4.4 and Property 4.1 in [37], on the two-player
zero-sum continuous games, into the following lemma.

Lemma 13 (Pure-strategy Nash equilibrium): Consider
the two-player zero-sum continuous game with Player 1
as the minimizer and Player 2 as the maximizer. Suppose
the action sets of Player 1 and 2, denoted by Ω1 and
Ω2 respectively, are both compact and convex subsets of
finite-dimension Euclidean spaces. If the cost function
v(y1,y2) : Ω1 ×Ω2 → R is continuously differentiable,
convex in y1, and concave in y2, then: (1) the game
admits at least one saddle-point Nash equilibrium in
pure strategies; (2) if there are multiple saddle points,
the saddle points satisfy the ordered interchangeability
property. That is, if (y∗1 ,y

∗
2) and (ỹ1, ỹ2) are saddle

points, so are (y∗1 , ỹ2) and (ỹ1,y
∗
2).

Proof of Theorem 12: In this proof, for simplicity,
denote by p the second column of the matrix P , i.e.,
P = [1n − p,p], and correspondingly, P̂ = [1n − p̂, p̂].

Since Ω1 and Ω2 are compact subsets of Rn+1, for any
v ∈ V , there exists (y1,y2) such that T v(p) = 1>n p +
εv
(
H(P ;y1,y2)e2

)
. Moreover, from the expression of

map H , one can deduce that H(P,y1,y2) satisfies

p � p̂⇒ H(P ;y1,y2)e2 � H(P̂ ;y1,y2)e2,

for any (y1,y2) ∈ Ω1 × Ω2 and p, p̂ ∈ [0, 1]n. This
leads to the conclusion that T v also satisfies property
P1. Moreover, by definition, H(P ;y1,y2) is linear in P .
Since v(p) is convex in p, one can check that T v(p) is
also convex in p. Therefore, T satisfies property P2 and
maps V to V itself. Now we prove that T is a contraction
map. Define the function norm ‖·‖ for any v ∈ V as
‖v‖ = supp∈[0,1]n |v(p)|. For any v, v̂ ∈ V , we have

‖T v − T v̂‖ = ε sup
p∈[0,1]n

|T v(p)− T v̂(p)|

≤ ε sup
p∈[0,1]n

sup
y2∈Ω2

sup
y1∈Ω1

|v(p)− v̂(p)| ≤ ε‖v − v̂‖.

According to the Banach fixed-point theorem, there
exists a unique v∗ ∈ V satisfying

v∗(Pe2)=1>nPe2 + ε sup
y2∈Ω2

inf
y1∈Ω1

v∗
(
H(P ;y1,y2)e2

)
.

According to the expression of the map H(P ;y1,y2),
one can check that, for any η ∈ [0, 1], P ∈ SnR(1n),
and y1, ŷ1 ∈ Ω1,

H
(
P ;ηy1 + (1− η)ŷ1,y2

)
e2

� ηH(P ;y1,y2) + (1− η)H(P ; ŷ1,y2).

Since v∗(p) satisfies properties P1 and P2,

v∗
(
H(P ; ηy1 + (1− η)ŷ1,y2)e2

)
≤ ηv∗

(
H(P ;y1,y2)e2

)
+ (1− η)v∗

(
H(P ; ŷ1,y2)e2

)
.

That is, v∗
(
H(P ;y1,y2)e2

)
is convex in y1. Similarly,

we have v∗
(
H(P ;y1,y2)e2

)
is concave in y2.

According to Lemma 13, for any P ∈ SnR(1n)
and the two-player zeros-sum game with cost function
v∗
(
H(P ;y1,y2)e2

)
, there exists a saddle-point Nash

equilibrium (y∗1 ,y
∗
2) ∈ Ω1 × Ω2 such that

v∗
(
H(P ;y∗1 ,y

∗
2)e2

)
= sup

y2∈Ω2

inf
y1∈Ω1

v∗
(
H(P ;y∗1 ,y

∗
2)e2

)
= inf

y1∈Ω1

sup
y2∈Ω2

v∗
(
H(P ;y1,y2)e2

)
.

Therefore, there exists functions Y1, Y2 such that y∗1 =
Y ∗1 (P ) and y∗2 = Y ∗2 (P ) satisfy the equation above, for
any P ∈ SnR(1n). Moreover, since

v∗(Pe2)− v2(P ; Y ∗1 ,Y
∗

2 )

= ε
(
v∗
(
H(P ; Y ∗1 (P ),Y ∗2 (P ))e2

)
− v2

(
H(P ; Y ∗1 (P ),Y ∗2 (P )); Y ∗1 ,Y

∗
2

))
,
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for any P ∈ SnR(1n), and functions v and v2 are
bounded, we conclude that v∗(Pe2) = v2(P ; Y ∗1 ,Y

∗
2 ).

Therefore, for any τ ∈ N, we have

v2(P ; Y ∗1 ,Y
∗

2 ) ≥
τ−1∑
t=0

εtu2(P (t))

+ ετv2

(
H
(
P (τ); Y ∗1 (P (τ)),y2); Y ∗1 ,Y

∗
2

))
,

for any y2 ∈ Ω2, and, due to the fact that
v1(P ; Y1,Y2) = n/(1 − ε) − v2(P ; Y1,Y2) for any
(Y1,Y2), we have

v1(P ; Y ∗1 ,Y
∗

2 ) ≥
τ−1∑
t=0

εtu1(P (t))

+ ετv1

(
H
(
P (τ);y1,Y

∗
2 (P (τ))); Y ∗1 ,Y

∗
2

))
,

for any y1 ∈ Ω1. Since both v1(P ; Y1,Y2) and
v2(P ; Y1,Y2) satisfy the property of continuity at in-
finity, according to the one-stage deviation principle,
(Y ∗1 ,Y

∗
2 ) is a Nash equilibrium of the dynamics game.

This concludes the proof.
Theorem 12 provides an iteration algorithm to com-

pute the stationary Nash policy (Y ∗1 ,Y
∗

2 ), and the
players’ respective pay-offs at the Nash equilibrium. A
comparison by simulation is given in Figure 9, between
the Nash policies for the dynamic game discussed in this
subsection, and the repeated one-shot game in the previ-
ous subsection. The model parameters are set as n = 3,
α = (0.51, 0.87, 0.77)>, γ = 5, ς1 = ς2 = 1, c1 = 30,
c2 = 60, ε = 0.8, and Ã such that ã13 = ã23 = 1,
ã31 = ã32 = 0.5, and ãij = 0 otherwise. Simulation
results show that, with the same initial condition, for the
two types of games, the players’ total pay-offs at the
respective Nash equilibria are very close to each other.
Moreover, from Figure 9 we can observe that, for each
of the two games, the players’ pay-offs are almost linear
to the initial average probability of adopting H2.

VI. CONCLUSION

This paper discusses a class of competitive propa-
gation models based on two product-adoption mecha-
nisms: the social conversion and the self conversion.
Applying the independence approximation we propose
two difference equations systems, referred to as the
social-self NCPM and the self-social NCPM respec-
tively. Theoretical analysis reveals that the structure of
the product-conversion graph plays an important role
in determining the nodes’ asymptotic state probability
distributions. Simulation results reveal the high accuracy
of the independence approximation and the asymptotic
behavior of the original social-self Markov chain model.
Based on the social-self NCPM, we propose two-types
of competitive propagation games and discuss their Nash

1>P (0)e2

v2(P (0), y⇤
1 , y⇤

2)

0.5 1 1.5 2 2.5 3

8.5

9

9.5

10

10.5

11

Fig. 9. Comparison between the Nash policies for the dynamic game
discussed in Subsection V.B (blue dots), and the repeated one-shot
game in Subsection V.A (red dots).

equilibria, as well as the trade-off between seeding and
quality for the repeated one-shot game. One possible
future work is the deliberative investigation on the Nash
equilibrium on the boundary. It is also of research value
to explore the extension of the analysis in Section V.B
to the case of multiple-player dynamic games. Another
open problem is the stability analysis of the self-social
NCPM with R > 2. Simulation results support the
claim that, for the case when R > 2, there also exists
a unique fixed point P ∗ and, for any initial condition
P (0) ∈ SnR(1n), the solution P (t) to equation (10)
converges to P ∗. We leave this statement as a conjecture.
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