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Abstract— In this paper we model a class of propagation
processes for multiple competing products on a contact network
and analyze the resulting dynamical behaviors. We assume three
types of product-adoption processes for each individual: self
adoption, social adoption and social conversion. On this basis,
we build a Markov chain model of the competitive propagation
process. Based on the independence approximation, a difference
equations system, referred to as the network competitive
propagation model, is derived to approximate the original
Markov chain. Both simulation work and theoretical results are
given to show the accuracy of the independence approximation.
The network competitive propagation model does not exclude
the long-term coexistence of the mutually exclusive competing
products spreading in a single-layer network. The result on
coexistence is contrary to some previous literature on the
propagation of multiple memes. Moreover, we find that the
probability distributions of nodes’ states achieve asymptotic
consensus, which indicates that our network competitive prop-
agation model is a good example of network dynamics with
both consensus and propagation behaviors.

I. INTRODUCTION

a) Motivation and problem description: It is great
scientific interest to model some aspects of human society
as a large-scale complex network exhibiting dynamics such
as consensus, polarization, synchronization and propagation.
Indeed, the past fifteen years have witnessed a flourishing of
research on propagation process on social networks. Much
progress has been achieved both statistically [1], [2], [3]
and theoretically [4], [5], [6], [7], [8]. Propagation pro-
cesses over network can describe the spread of an infectious
disease in a contact network, an innovative product in an
economic network or a ideology in an influence network.
Infections, products and ideologies are collectively referred
to as “memes.”

In a more recent set of extensions, scientists have began
studying the simultaneous possibly-competitive propagation
of multiple memes. Such phenomena have significant re-
search value since there exist numerous real examples of
competitive propagation processes in real society. Due to
the interactions among both the nodes in the network and
propagating memes, multi-meme propagation systems ex-
hibit interesting dynamical behaviors deserving of scientific
investigation.

This paper studies a class of propagation processes for
competing innovative products. We focus on the kind of inno-
vative products that pervade the social network and become
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daily necessities for every people. The popularization of cell-
phones is an appropriate example. Studying the competitive
propagation of such kind of products helps to understand net-
work dynamics with multiple types of interactions, and might
provide some directions for business companies to evaluate
and adjust their marketing and promotion strategies. In this
paper, we build a mathematical model of such competitive
propagation phenomena and analyze their dynamic behavior.

b) Literature review: Propagation on networks are usu-
ally modeled and analyzed in the context of epidemic
spreading or innovation diffusion. Among various models
of propagation processes on networks, three are widely
adopted: the percolation model on random graphs [9], [5],
the Markov chain on fixed topology with the mean-field
approximation [10], [6], [11], [12] and the linear threshold
model [7], [13], [14].

As extensions to the propagation of a single meme, some
recent papers have focused on the propagation of multiple
memes. The modeling of multiple-meme propagation has
been studied from various perspectives, e.g., see [15], [16],
[17], [18], [19], [20], [21]. Among these papers, our paper
is closely related to [19], [20], [21], which present vari-
ants of the Susceptible-Infected-Susceptible (SIS) epidemic
spreading model, i.e., the network SI1SI2S model. The model
proposed in [19] assumes that the two diseases are mutually
exclusive. Under such an assumption they proved that the
long-term coexistence of the two diseases is impossible. Pa-
per [20] relaxed the mutual exclusion assumption and showed
that coexistence is possible if any node can be infected by
two diseases at the same time. In this model, infection of one
disease affects the infection probability of another disease.
The mutual exclusion assumption was kept in [21], while
the propagation of memes was assumed to occur on multi-
layer networks and each competing meme propagates on its
own layer. On such conditions the coexistence of competitive
memes is also possible.

c) Contribution: Our first contribution is a novel
Markov chain model which is more suitable to the competi-
tive propagation processes we aim to understand, compared
with the epidemic-like models [19], [20], [21]. Similar to
the linear threshold model, our paper assumes that it is the
ratio, instead of the number, of neighbors in different states
that influences an individual’s behavior because adopting a
product is an initiative selection process rather than a passive
contagion. The main difference from the linear threshold
model is that our model is stochastic and no predetermined
threshold is assumed. Moreover, our model is a variant of
SI model instead of the SI1SI2S model for that we are
considering the propagation of innovative products, such as
cellphones, which successfully pervade the social network
and become daily necessities. Adopting such a product can
be considered as an irreversible action.



Secondly, starting from discussing individuals’ product-
adoption behaviors, we develop a difference equations sys-
tem, referred to as the network competitive propagation
model, to approximate the original Markov chain. The deriva-
tion is based on the independence approximation, which
is mathematically equivalent to the widely-used mean-field
mean-field approximation [6], [12], [22], [23]. A rigorous
and self-contained derivation of the network competitive
propagation model is given. Simulation work is done to show
the accuracy of the independence approximation in the cases
of Erdős-Rényi graphs and complete graphs.

Thirdly, by relaxing the independence approximation to
the independence assumption, a theorem is given that in
complete graphs the solution to the original Markov chain
converges to the solution to the network competitive propa-
gation model as the size of the network tends to infinity.

Our fourth contribution is a long-term prediction that, mu-
tually exclusive competing products persist in a single-layer
network. The prediction of coexistence is distinct from the
works [19], [20], [21] but is consistent with numerous real
world examples such as the competition between different
auto insurances.

At last, the theoretical analysis of the network propagation
model reveals some interesting dynamical properties. As
an extension to the classic Bass diffusion model [24], the
network competitive propagation model persists the almost-
sure adoption/infection property. Moreover, an important
property is found: as long as the network is connected, the
probability distribution of every individual’s state achieves
consensus as time tends to infinity, i.e., our system achieves
social learning in the sense of probability distribution. The
consensus property makes our model a good example of net-
work dynamics possessing both consensus and propagation.

d) Organization: The rest of this paper is organized as
follows. Section II is the basic assumptions of the Markov
chain competitive propagation model. Section III is the
derivation of the network competitive propagation model.
In Section IV we discuss the accuracy of the independence
approximation and the qualitative properties of the network
competitive propagation model. Section V gives conclusion.

We include some proofs of the theorems in this paper and
refer the interested reader to a following journal submission
for proofs of all the other theorems/propositions/lemmas.

II. DESCRIPTION OF THE MARKOV CHAIN MODEL

A. Social Network as a Graph

In this model, a social network is considered as an undi-
rected, unweighted graph G = (V,E) with fixed topology.
The nodes set V = {1, 2, . . . , n} refers to the set of
individuals in the network. The set E of social links is
represented by the adjacency matrix A = (aij)n×n. Entry
aij = 1 if the pair of nodes (i, j) ∈ E and aij = 0 if
(i, j) /∈ E. The presence of self loops is not considered,
i.e., aii = 0 for any i ∈ V . If aij = 1, we say that node
i and j are neighbors. The cardinality of node i’s neighbor
set is denoted by Ni, which is the ith row sum of A, i.e.,
Ni =

∑n
j=1 aij .

B. States of Nodes

Suppose that there are R competitive products spread-
ing on the graph. The set of the competing products is
{H1, H2, . . . ,HR}. These products are mutually exclusive,
that is, at any time, every individual in the network adopts at
most one product. We consider the competitive propagation
as a discrete-time stochastic process, i.e., t ∈ Z≥0. Denote
the state of node i after time step t by Di(t), i ∈ V , then
Di(t) ∈ {H0, H1, H2, . . . ,HR}, where H0 corresponds to
the state of not adopting any product.

C. Production-adoption Process

In this model, the product-adoption process is divided into
three possible chronologically-ordered events: self adoption,
social adoption and social conversion. The behavior of nodes
is described by the following three assumptions, which apply
to all sections in this paper.

Assumption 1 (Self adoption): For competitive propaga-
tion on social networks, at any time step t, for any node
i ∈ V , if it has not adopted any product up to time t − 1,
i.e., Di(t − 1) = H0, then node i will adopt product Hr

with probability εr, where r ∈ {1, 2, . . . , R} and 0 ≤
ε1 + ε2 + · · · + εR ≤ 1. If some product Hr is adopted
in the self adoption process, the adoption process for node i
at time step t ends up with state Di(t) = Hr.

Assumption 2 (Social adoption): For any node i, if it has
not adopted any product up to time t − 1 and not adopted
any product in the self adoption process at time step t (with
probability ε0 = 1 − ε1 − · · · − εR), this node will first
uniformly likely pick one of its neighbors j, and then follow
node j’s state at the previous time step t − 1, i.e., Di(t) =
Dj(t− 1), with probability β.

Assumption 3 (Social Conversion): For any node i, if it
has already adopted some product Hr before time step t,
then at time t, it will first uniformly likely pick one of its
neighbors j and then follow node j’s state at time t−1 with
probability α.

The last two assumptions depict how a node is influence
by the “social pressure” formed by its neighbors: the more
neighbors have adopted some product Hs, the higher proba-
bility that this node will adopt or be converted to the product
Hs. For simplicity, in this paper we assume homogeneous
nodes, i.e., the parameters α, β, ε1, . . . , εR, which together
defines nodes’ adoption behavior, are identical for any node
i ∈ V . The complete adoption process for node i at time
step t+ 1 is illustrated as a diagram in Figure 1.

D. Competitive Propagation as a Markov Chain

According to the assumptions above, at any time step
t+1, the probability distribution of any node’s states depends
on its own state at previous time step, Di(t), as well as
the states of all its neighbors at time t, i.e., Dj(t) for
any j satisfying aij = 1. Since every node has R + 1
possible states, the collective evolution of nodes’ states is a
(R+ 1)n-state discrete-time Markov chain. The exponential
dimension adds much difficulty to the analysis of this model.
An approximation model is proposed in the next section to
reduce the dimension and simply the analysis of the problem.
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Fig. 1. This graph illustrates the self adoption, social adoption and social
conversion process for node i, at time step t+ 1.

III. DERIVATION OF THE NETWORK COMPETITIVE
PROPAGATION MODEL

In this section we derive the network competitive propaga-
tion model to approximate the Markov chain process defined
in the previous section. The core idea is to figure out the
dynamical evolution of the probability distributions of nodes’
states.

Define pri (t), i ∈ V , r ∈ {0, 1, 2, . . . , R} and t ∈ Z≥0, as
the probability that node i is in state Hr at time step t, that is,
pri (t) = P[Di(t) = Hr]. Our goal is to find an expression of
pri (t+1) as a function of psj(t), j ∈ V , s ∈ {0, 1, 2, . . . , R},
t ∈ Z≥0, with parameters α, β, ε1, . . . , εR. With such an
expression, given the initial condition, pri (0) for any i, r and
the model parameters, the probability distribution pri (t), r ∈
{1, 2, . . . , R}, for any node i at any time t can be computed
iteratively.

In the derivation of the iteration function, a useful lemma
and the independence approximation are used and stated
below. The useful lemma can be proved using probability
theory and Assumptions 1, 2 and 3.

Lemma 4: Define random variables Xr
i (t), i ∈ V, r ∈

{0, 1, . . . , R}, t ∈ Z≥0, as “whether node i has adopted
product Hr at time step t”, i.e.,

Xr
i (t) =

{
1, if Di(t) = Hr,

0, if Di(t) 6= Hr,

and define

D−i(t) =
(
D1(t), . . . , Di−1(t), Di+1(t), . . . , Dn(t)

)
as the states of all the nodes except node i at time t. For
simplicity, let

P rs
ij (t) = P[Di(t) = Hr |Dj(t) = Hs],

P r
i (t;−i) = P[Di(t) = Hr |D−i(t)],

P rs
i (t;−i) = P[Di(t) = Hr, Di(t+ 1) = Hs |D−i(t)]

for any i, j ∈ V, r, s ∈ {0, 1, . . . , R} and t ∈ Z≥0. Then the
following equations hold:

P 0r
i (t;−i) =

(
εr +

βε0
Ni

∑
j

aijX
r
j (t)

)
P 0
i (t;−i) (1)

P sr
i (t;−i) = α

Ni

∑
j

aijX
r
j (t)P

s
i (t;−i) (2)

and
E[Xs

j (t)P
r
i (t;−i)] = psj(t)P

rs
ij (t). (3)

The independence approximation is stated as follows. The
core idea of the independence approximation is to take the
state of any node as independent of any other node’s state
at the same time.

Approximation 5 (Independence Approximation): For the
competitive propagation model on an arbitrary graph,
approximate any conditional probability P[Di(t) =
Hr |Dj(t) = Hs] by its corresponding total probability
P[Di(t) = Hr], i.e.,

P rs
ij (t) ' pri (t)

for any i, j ∈ V , r, s ∈ 0, 1, . . . , R and t ∈ Z≥0.
With this approximation, the approximation model to

the original Markov-chain competitive propagation is stated
below.

Theorem 6 (Network Competitive Propagation Model):
For the competitive propagation model with self adoption
rates ε1, ε2, . . . , εR, social adoption rate β and social
conversion rate α, the probability that node i has adopted
Hr at time t satisfies

pri (t+ 1)− pri (t)

= εrφi(t) +
βε0
Ni

∑
j

aijp
r
j(t)P

0r
ij (t)

+
α

Ni

∑
s 6=r

∑
j

aij

(
prj(t)P

sr
ij (t)− psj(t)P rs

ij (t)
)
.

(4)

Based on Approximation 5, the discrete-time dynamics for
the probability pri (t) is

pri (t+ 1)− pri (t)

= εrφi(t) +
βε0
Ni

∑
j

aijp
r
j(t)φi(t)

+
α

Ni

∑
s6=r

∑
j

aij

(
prj(t)p

s
i (t)− psj(t)pri (t)

)
,

(5)

where φi(t) = 1 − p1i (t) − p2i (t) − · · · − pRi (t) and
P 0r
ij (t), P

sr
ij (t), P

rs
ij (t) are defined in Lemma 4.

Proof: In order to compute the time evolution of pri (t),
notice that
pri (t+ 1)− pri (t) = E[Xr

i (t+ 1)−Xr
i (t)]

= E
[
E[Xr

i (t+ 1)−Xr
i (t) |D−i(t)]

]
.

The conditional expectation can be expressed as

E[Xr
i (t+ 1)−Xr

i (t) |D−i(t)]
= 0 · P[Xr

i (t+ 1)−Xr
i (t) = 0 |D−i(t)]

+ 1 · P[Xr
i (t+ 1)−Xr

i (t) = 1 |D−i(t)]
+ (−1) · P[Xr

i (t+ 1)−Xr
i (t) = −1 |D−i(t)]

(6)

According to Assumption 1, 2 and 3, we have the following
equations:

P[Xr
i (t+ 1)−Xr

i (t) = 1 |D−i(t)]
= P 0r

i (t;−i) +
∑
s6=r

P sr
i (t;−i) (7)



and
P[Xr

i (t+ 1)−Xr
i (t) = −1 |D−i(t)]

=
∑
s6=r

P rs
i (t;−i). (8)

The expressions of P 0r
i (t;−i), P sr

i (t;−i) and P rs
i (t;−i)

can be computed according to equation (1) and (2) in
Lemma 4. Substitute equation (7) and (8) into equation (6)
we obtain

E[Xr
i (t+ 1)−Xr

i (t) |D−i(t)]

=
(
εr +

βε0
Ni

∑
j

aijX
r
j (t)

)
P 0
i (t;−i)

+
α

Ni

∑
s 6=r

∑
j

aij

(
Xr

j (t)P
s
i (t;−i)−Xs

j (t)P
r
i (t;−i)

)
.

Compute the expectations of both sides of the equation above
and according to equation (3) in Lemma 4, we obtain the
exact equation (4) for the time evolution of pri (t). Finally,
applying Approximation 5 to equation (4) we obtain the
network competitive propagation model (5).

Remark 7: Theorem 6 provides an algorithm to compute
the approximated probability distributions of nodes’ state at
any time step, given all the model parameters and initial
conditions. As simulation results indicate, it is not necessarily
true that only one of limt→∞

(
pr1(t)+ pr2(t)+ · · ·+ prn(t)

)
,

r ∈ {1, 2, . . . , R}, is nonzero, which means that the network
competitive propagation model does not exclude the persis-
tent coexistence of multiple competing products.

The derivation procedure of Theorem 6 was recently
proposed by van Mieghem et. al. [23] and the independence
approximation underlying this paper is equivalent to the
widely adopted mean-field approximation [6], [22], [23].
However, the independence approximation has it own value:
in the case of complete graphs, it can easily relaxed to the
independence assumption, based on which we can prove that
the solution to the original Markov chain converges to the
solution to the network competitive propagation model as
the system size tends to infinity. These concepts will be
discussed in the next section.

IV. NETWORK COMPETITIVE PROPAGATION MODEL:
ACCURACY AND QUALITATIVE PROPERTIES

A. Accuracy of the Independence Approximation
Since the independence approximation is adopted, the

solution to the network competitive propagation is an ap-
proximation to the original Markov chain model described
by Assumptions 1, 2 and 3. In this subsection we discuss how
the solution to the network model approximates the original
Markov chain solution. Two kinds of graphs are considered:
the Erdős-Rényi random graph and the complete graph.

1) Erdős-Rényi graphs: The Erdős-Rényi graph is a ran-
dom graph in which any pair of two nodes forms a link
with an uniform probability p. The probability p together
with the number of nodes, n, determines the structure of
a Erdős-Rényi graph. We consider two competing products
propagating on Erdős-Rényi graphs with n = 20, p = 0.5
and n = 100, p = 0.1 respectively. The model parameters
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Fig. 2. Difference between the solutions to the network competitive
propagation model and the original Markov chain model in Erdős-Rényi
graphs. The red curves are the solution to the network model and the blue
curves correspond to the Markov chain solution.

are set to be ε1 = 0.2, ε2 = 0.1, α = 0.2, β = 0.4.
The initial conditions are all zeroes. Equation (5) gives the
approximation solution and the Markov chain solution is
estimated by the Monte Carlo method.

In figure 2 we plot the probability that node 1 adopts
product H1, and the average probability of adopting H1

of all the nodes, as functions of time step t, i.e., p11(t)
and p1ave(t). The simulation result indicates that both in
the Erdős-Rényi graph with 20 nodes and 100 nodes, the
approximated solutions are very close to the original Markov
chain solutions.

2) Complete graphs: Now we consider the competitive
propagation on complete graphs, i.e., on graphs where every
node is linked to all the other nodes. Therefore a complete
graph G = (V,E) with the adjacency matrix A satisfies
Ni = n − 1 and aii = 0, aij = 1 for any i, j ∈ V ,
i 6= j. Figure 3 indicates that for competitive propagation
on complete graphs, as the size of the graph increases, the
difference between the solution (take p11(t) as an example) to
the network model and the Markov chain model converges
to zero at any time t.

If we consider identical initial conditions, say pri (0) = 0
for any i ∈ V , the time evolution of state probability
distribution in complete graphs will be identical for any node.
Therefore we can omit the node index and then network
competitive propagation model takes a very simple form:

pr(t+ 1)− pr(t) = εrφ(t) + βε0p
r(t)φ(t) (9)

and the exact solution, i.e., the Markov chain solution
satisfies
pr(t+ 1;n)− pr(t;n)
= εrφ(t;n) + βε0p

r(t;n)P 0r
ij (t;n)

+ α
∑
s6=r

(
pr(t;n)P sr

ij (t;n)− ps(t;n)P rs
ij (t;n)

)
.

(10)

where r ∈ {1, 2, . . . , R} and the system size n is added into
the expressions in the exact equation (10) as an important
parameter.
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Fig. 3. Convergence of the original Markov chain to the network
competitive propagation solution on complete graphs. The approximated
solution are the red curves and the Markov chain solution are the blue
curves. As the size of the system, n, increases, the original Markov chain
solution gets closer to the approximated solution.
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Fig. 4. The system size n multiplied by the error between the conditional
probability P[D2(t) = H1 |D1(t) = H1] and the total probability
P[D2(t) = H1], as a function of n. As n increases, the product converges
to a constant value. This result validates that the error is in order O

(
1
n

)
.

The simulation result in Figure 3 can be stated as the
following theorem.

Theorem 8 (Convergence for Complete Graphs): For the
competitive propagation on complete graphs, suppose
pr(t;n) satisfies the exact equation (10) while pr(t) satisfies
the approximated equation (9), as the system size n tends to
infinity, for any t ∈ Z≥0 and r ∈ {1, 2, . . . , R}, we have

lim
n→∞

pr(t;n)− pr(t) = 0.

This theorem is based on the following assumption, which
is a relaxation of the independence approximation.

Assumption 9 (Asymptotic Independence Assumption):
For the competitive propagation model described in Section
2, if the graph is complete and all the nodes have identical
initial conditions, then the following equations hold:

P rs
ij (t;n)− pri (t;n) = O

(
1

n

)
(11)

for any s, r ∈ {0, 1, . . . , R} and any i 6= j, t ∈ Z≥0.
Equation (11) is validated by simulation work, see Fig-

ure 4.

B. Qualitative Properties of the Network Model

1) Almost-sure Adoption: The network competitive prop-
agation model is a variant of the classic susceptible-infected
(SI) epidemic model. A salient feature of SI model is that as

time tends to infinity, the probability of being infected tends
to 1 for any node as long as the graph is connected. Our
model has a similar property named as almost-sure adoption,
that is, if we consider “adopt some product” as one state,
then the probability of being in such state tends to 1 for any
node, as t → ∞. This property is stated as the following
proposition.

Proposition 10 (Almost-sure Adoption): For the network
competitive propagation model given by Theorem 6, if at
least one of the self adoption probabilities ε1, ε2, . . . , εR
is non-zero, then for any initial states pri (0), i ∈ V, r ∈
{1, 2, . . . , R}, we have

lim
t→∞

R∑
r=1

pri (t) = 1. (12)

The result of Proposition 10 is consistent with the original
Markov chain model described by Assumptions 1, 2 and 3. In
the Markov chain model, at any time step the probability of
not adopting any product for any given node i is less than or
equal to ε0 = 1−ε1−ε2−· · ·−εR. Therefore, the probability
of not adopting any product in t time steps is no larger than
εt0, which means the probability of not adopting any product
before t vanishes for any node as t→∞. In addition, once a
node has adopted some product, by our assumptions, it is not
possible for this node to convert from the state adopting some
product to not adopting any product. Therefore, that every
node has adopted some product is a necessary condition
which the fixed point of the original Markov chain must
satisfy.

2) Consensus of Probability Distributions of Nodes’
States: Consider pri (t), r ∈ {1, 2, . . . , R}, as the probability
distribution of node i’s states at time t. The network com-
petitive propagation model has a very interesting property:
as time tends to infinity, the state probability distribution for
any node tends to be identical, i.e., the network competitive
propagation model achieves consensus in the sense of state
probability distribution pri (t). The consensus property is
stated as the theorem below.

Theorem 11 (Consensus of Probability Distribution):
For the network competitive propagation model on any
connected graph, with initial condition 0 ≤

∑R
r=1 p

r
i (t) ≤ 1

for any i ∈ V , if at least one of the self adoption probabilities
ε1, ε2, . . . , εR is non-zero, the state probability distribution
for any node achieves consensus as time tends to infinity,
that is, for any r ∈ {1, 2, . . . , R},

lim
t→∞

pr(t) = cr1n

where pr(t) =
(
pr1(t), p

r
2(t), . . . , p

R
n (t)

)T
and for any r,

cr ∈ [0, 1] is a constant depending on the network topology,
initial conditions and the model parameters. Moreover, c1 +
c2+, . . . ,+cR = 1.

Theorem 11, together with Proposition 10, indicates that
the network competitive propagation model proposed in this
paper is a combination of both propagation and consensus
on social networks. Moreover, in the research of social
dynamics, the time evolution of nodes’ state probability
distributions is usually interpreted as the social learning
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Fig. 5. The consensus of the probability p3i (t) for the original Markov
chain model. Different colors correspond to the curves for different nodes.

process [25]. If we elaborate the self-adoption process in
our model as a sequential hypothesis testing [26], then the
self-adoption process is a type of Bayesian learning and the
social adoption and social conversion can be considered as
non-Bayesian learning processes. From this perspective, our
model can be extended to a mixture of both Bayesian and
non-Bayesian learning, similar to the model proposed in [27].

The time evolution of pri (t) in the Markov chain competi-
tive propagation model is simulated by Monte Carlo method.
We consider the competitive propagation of three products,
H1, H2 and H3, on a graph with 4 nodes. Nodes 2, 3 and
4 are all linked to node 1 and there is no other link in the
graph. The model parameters are set as ε1 = 0.1, ε2 = 0.2,
ε3 = 0.3, α = 0.3 and β = 0.4. Take the probability
of adopting H3 as an example. Probabilities p31(t), p

3
2(t),

p33(t) and p34(t) are estimated as functions of t. As Figure 5
indicates, the curves of p31(t), p

3
2(t), p

3
3(t) and p34(t) merge

into one for large t. This simulation result shows that the
consensus property still holds in the original Markov chain.

V. CONCLUSION

This paper discusses a class of competitive propagation
processes. Starting from the description of individuals’ be-
havior, we proposed a Markov chain model and approxi-
mated it with the network competitive propagation model
based on the independence approximation. The network com-
petitive propagation model reduces the dimension of problem
from (R+1)n to nR and provides an algorithm to compute
the approximated probability distributions of nodes’ states.
Simulation has been done to show how well the network
model approximates the original Markov chain. In addition,
we considered a specific case: competitive propagation on
complete graphs. Based on the asymptotic independence
assumption, we showed that the solution to the network
competitive propagation model converges to the original
Markov chain solution, as the system size n tends to infinity.
Moreover, we have discussed some qualitative properties of
the network competitive propagation model, such as almost-
sure adoption and consensus of state probability distributions.
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