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Abstract— We study a dynamic vehicle routing problem for
moving targets. Our setup is as follows: (i) targets appear
uniformly distributed on a unit disk via a temporal Poisson
process and move radially outward with a constant speed v, (ii)
a single vehicle with speed greater than that of the targets aims
to intercepts them before they escape the disk. With the goal of
maximizing the fraction of captured targets in the steady state,
we propose three policies: Capturable Nearest Neighbor (CNN),
Sector Wise (SW) and Stay Near Boundary (SNB) policy. We
derive lower bounds on the fraction of targets captured by
the CNN, SW and SNB policies. The CNN policy is shown
to be optimal for arrival rate λ below a critical value. For
arrival rates above another critical value, the fraction of targets
captured by the SW policy is more than that of the CNN policy.
Finally, the SNB policy is within a constant factor of optimal
in the limiting regime of v→ 0+ and λ → +∞. We present
numerical simulations to illustrate our results.

I. INTRODUCTION
Vehicle motion planning arises in many important au-

tonomous vehicle applications such as surveillance and
perimeter defense. In this paper we consider a vehicle routing
problem in which a vehicle must intercept targets before they
escape a bounded environment which is a disk of unit radius.
This problem setup is motivated by applications such as
perimeter defense, wherein the demands could be visualized
as moving targets trying to escape a region under surveillance
by a vehicle.

Vehicle routing problems (VRP) are concerned with plan-
ning optimal vehicle routes for providing service to a given
set of customers. The traveling salesperson problem (TSP)
is a specific instance of the VRP and has been extended to
include variations such as the deadline-TSP [2].

Recently, researchers have looked at the TSP with moving
objects. In [6] the authors consider objects moving on
straight lines and consider the case when the objects are
slower than the vehicle and when the vehicle is constrained
to move parallel to the horizontal or vertical axes. The same
problem is studied in [7], but with arbitrary vehicle motion,
and it is called the translational TSP. The authors of [7]
propose a polynomial-time approximation scheme to catch
all objects in minimum time. Other variations of the problem
are studied in [8] and [1].

In the VRP, the routes are planned with complete in-
formation of the customers, and thus the optimization is
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static, and typically combinatorial [15]. In contrast, in the
dynamic vehicle routing (DVR) vehicles must plan paths
through service demand locations that arrive sequentially
over time. DVR problems have been reviewed in [5], [13]
and [12]. In [4] and [14] DVR problems involving targets
moving with a constant velocity are studied. In [4], a single
vehicle intercepts the targets eventually. In [14], the vehicle is
required to intercept the targets before they reach a deadline.
[10] study a DVR problem in which demands disappear if
not serviced within a time window.

In this paper, we introduce a DVR problem in which
demands appear uniformly distributed on a disk and move
radially outward until they escape the disk. The arrival
process is Poisson with rate λ and the demand speed v ∈
(0,1) is fixed. This problem is referred to as the Radially
Escaping Targets (RET) problem for convenience. The goal
of this paper is to design routing policies for a single vehicle
in order to maximize the fraction of demands captured in the
steady state.

The contributions of this paper can be summarized as
follows. For any policy for the RET problem, we determine
a policy independent upper bound on the fraction of targets
captured. We also propose a method to establish upper
and lower bounds on the path through radially escaping
targets. Next, we formulate three policies: Capturable Nearest
Neighbor (CNN), Sector Wise (SW) and Stay Near Boundary
(SNB) policy. Lower bounds on the fraction of targets
captured using the CNN, SW and SNB policies are obtained.
The CNN policy is shown to be optimal for arrival rate below
a critical value for all target speeds. For arrival rates above
another critical value, the capture fraction of the SW policy
is more than that of the CNN policy. The SW policy is
thus more effective than the CNN policy in that regime. In
the limit of low target speed and high arrival rate, the SNB
policy is within a constant factor of optimal and the fraction
of targets captured by the vehicle using the SNB policy
asymptotically tends to 1. We present numerical simulations
which verify our results.

The paper is organized as follows. In Section II, we for-
mally introduce the problem. In Section III, we present some
background results. The CNN, SW and SNB policies are
introduced in Section IV. Results from numerical simulations
are presented in Section V.

II. PROBLEM FORMULATION

We start with introducing a DVR problem in which targets
appear independently and uniformly distributed in an envi-
ronment E := {(r,θ) : 0≤ r ≤ 1 ∀θ ∈ [0,2π)} with uniform
spatial density and according to a temporal Poisson process



with rate λ . Uniform spatial distribution of the targets is
realized through probability density functions f1(r) = 2r and
f2(θ) = 1/2π where r and θ are random variables describing
the location of appearing targets in radial coordinates.

Once the targets appear, they move radially outwards
with a constant speed v ∈ (0,1) and eventually intercept the
boundary of the environment. A vehicle with speed of 1 and
confined to move in E intercepts the targets and captures
them before they escape the environment. We refer to this
problem as the Radially Escaping Targets (RET) problem for
convenience. The parameters of the RET problem are the
target speed v and arrival rate λ .

Let the generation of targets commence at t = 0. Let the
vehicle start servicing the targets at t = 0 as well. Let ncapt(t)
and nesc(t) be the number of targets that have been captured
and have escaped respectively at time t. In this paper, the
goal is to find policies which maximize the fraction of targets
c ∈ [0,1] captured by the vehicle where

c := limsup
t→+∞

E
[

ncapt(t)
ncapt(t)+nesc(t)

]

Fig. 1. Schematic of the Radially escaping targets (RET) problem

III. PRELIMINARY RESULTS

In this section, we provide some results which will be used
to analyze policies for the RET problem.

A. Constant bearing principle

The optimal strategy (i.e. taking minimum time) for a
vehicle to capture a target moving at a speed less than that
of the vehicle is to move in a straight line with maximum
speed to intercept the target based on the constant bearing
principle[9]. Accordingly, the time taken by the vehicle
starting from (x,0) to reach a demand located at (r,θ) and
moving radially outward with constant speed v is

T (x,r,θ) =
−v(xcosθ − r)+(v2(xcosθ − r)2− (1− v2)(2rxcosθ − x2− r2))1/2

1− v2 .

To distinguish static targets from moving targets, we intro-
duce some terminology.

Definition 3.1: (Escaping target) A target moving radially
outward is referred to as an escaping target.
A target is said to have been ‘captured’ by the vehicle if the
vehicle reaches the target before it escapes the environment.

Fig. 2. Optimal vehicle location x∗ and the maximum probability ρ∗ of
capturing an escaping target starting from (x∗,0) as a function of target
speed v.

B. Optimal placement of vehicle

By optimal placement, we mean the location at which the
vehicle should be placed in order for it to have the high-
est probability of capturing a target. To determine optimal
placement, we start by defining the capturable set.

Definition 3.2: (Capturable set) A vehicle located at (x,0)
can only reach demands located in the capturable set

C(x,v) := {(r,θ) : r < rc ∀θ ∈ [0,2π)}

using the constant bearing principle, where

rc(x,v,θ) = max
(

0,1− v
√

1+ x2−2xcosθ

)
.

These are the locations for which r + vT (x,r,θ) ≤ 1. The
expression for rc is obtained by setting rc +vT (x,rc,θ) = 1.
The probability that a target is in the capturable set of a
particular vehicle location (x,0) is

ρ(x,v) :=
∫ 2π

0

∫ 1

0
[P(r,θ) ∈C(x,v)] f1(r) f2(θ)drdθ

=
∫ 2π

0

∫ rc

0
f1(r) f2(θ)drdθ .

When the vehicle is at location (x∗(v),0) where

x∗(v) := arg max
0≤x≤1

ρ(x,v), (1)

the probability of it capturing a target is maximum. The
vehicle location x∗ is referred to as the optimal location. Let
ρ∗(v) := ρ(x∗,v). The variation of x∗(v) and ρ∗(v) is shown
in Fig. 2. For target speed v ≤ 0.5, x∗ = 0 and the vehicle
location (0,0) maximizes the probability of the vehicle being
able to capture a target before it escapes. For higher speeds,
this location is closer to the boundary. There is a qualitative
difference between these two cases. In the former case, (0,0)
is the unique vehicle location which maximizes ρ whereas
for the later case, the set of corresponding optimal locations
is {(x∗(v),θ) ∀θ ∈ [0,2π)}.

We also define the expected time Te taken by a vehicle
starting from (x,0) to service capturable targets appearing
with a uniform spatial distribution in the environment.

Te(x,v) :=
∫ 2π

0
∫ rc

0 T (x,r,θ) f1(r) f2(θ)drdθ

ρ(x,v)
.

Further, T ∗e := Te(x∗,v).



C. Quantification of targets inside the environment

The number of targets in an unserviced region in the
environment is quantified now. We distinguish between
targets originating and accumulating in a certain region.
Targets are said to have accumulated in a region when after
appearing, they spend time in the region in the course of
their trajectories.

Lemma 3.3: (Expected number of targets) The expected
number of targets at steady state in an unserviced

(i) disk of radius s ≤ 1 centered at (0,0) is s3λ/3v with
probability density function fa(r) = λ r2/v and

(ii) environment E is λ/3v.
Proof: Firstly, steady state is assumed, meaning that the

initial transient has already passed, hence t ≥ 1/v. Also, by
unserviced, we mean that the vehicle has not serviced targets
in the region under consideration for at least time 1/v before
the time instant under consideration.

Let us examine the number of demands originating in the
ring of radius p ∈ (0,1] and accumulating in the annulus Br
of inner radius r ∈ [p,1−∆r] and thickness ∆r. The intensity
of the Poisson arrival process λp on this ring is directly
proportional to its area. Hence, λp = 2pλ . P(Br contains n
demands originating from p) =P(n demands originated from
p in time interval [t, t + ∆r/v]) = P(n demands originated
from p in time interval ∆r/v)

=

eλp∆r/v
(

λp∆r
v

)n

n!
.

where t = (r − p)/v. Now, since Poisson processes are
additive, the Poisson distribution of all the targets inside
Br has strength

∫ r
p=0(λp∆r/v)d p = (r2λ∆r/v). It should be

noted that the thickness ∆r� 1 and the above expression
does not include targets originating inside Br . Thus the
expected number of targets in an unserviced annulus of inner
radius r and thickness ∆r due to targets originating from the
disk of radius r is r2λ∆r/v.

Next, consider a disk of radius s ≤ 1. Since Poisson
processes are additive, the expected number of targets in this
disk is the sum of expected number of targets inside disjoint
annuli like Br. In integral form, the expected number of
targets in the disk is

∫ s
0 (r

2λ/v)dr = s3λ/3v. Let fa(r) be the
probability density function of the accumulating targets in
the disk, where r denotes the random variable which is the
radial coordinate of a target. Since

∫ r
0 fa(s)ds = r3λ/3v, we

get fa(r) = λ r2/v.

D. Bounds on paths and tours through static and escaping
targets

The following results are used to estimate and bound the
length of the path/tour through targets in the environment.

Theorem 3.4: (Upper bound on path through escaping
targets) Let targets starting from (ri,θi), i∈ {1, . . . ,N} move
radially outward with speed v. Let T be the length of the
path through these escaping targets in some arbitrary order
γ : {1, . . . ,N}→ {1, . . . ,N}. Let Ts be the length of the path

Fig. 3. The thick line labeled Ti+1 indicates the trajectory of the vehicle
starting from the target i to service the target i+1.

through static targets located at (ri + vT̄ ,θi), i ∈ {1, . . . ,N}
processed in order γ and T̄ ≥ T . Then,

T ≤ Ts

1− v
.

Proof: Without loss of generality, let the targets be
labeled in the order in which they are processed. Let the
vehicle cover distance Tj to service the jth escaping target
after having serviced the ( j−1)th escaping target. Consider
the ith escaping target starting from (ri,θi). The vehicle
services this target after having covered the distance ∑

i
j=1 Tj.

It then starts for the escaping target i+ 1 and reaches it in
time Ti+1. Let T

′
i+1 be the distance between (ri+v∑

i+1
j=1 Tj,θi)

and (ri+1 + v∑
i+1
j=1 Tj,θi+1). Also, let T

′′
i+1 be the distance

between (ri +vT,θi) and (ri+1 +vT,θi+1) while Ts,i+1 is the
distance between (ri + vT,θi) and (ri+1 + vT,θi+1). Since
the distance between two targets moving radially outward
with the same speed is a non-decreasing function of time,
T
′

i+1 ≤ T
′′

i+1 ≤ Ts,i+1. Referring to Fig. 3, from the triangle
inequality, T

′
i+1 + vTi+1 ≥ Ti+1, i.e. Ti+1 ≤ (T

′
i+1)/(1− v) ≤

(Ts,i+1)(1− v). Extending this to all the targets in the path,

T =
n

∑
i=1

Ti+1 ≤
n

∑
i=1

Ts,i+1

1− v
=

Ts

1− v
.

Theorem 3.5: (Lower bound on path through escaping
targets) Let targets starting from (ri,θi), i∈ {1, . . . ,N} move
radially outward with speed v. Let T be the length of the
path through these escaping targets in some arbitrary order
γ : {1, . . . ,N} → {1, . . . ,N}. Let T0 be the length of the
path through static targets located at (ri,θi), i ∈ {1, . . . ,N}
processed in order γ . Then,

T ≥ T0

1+ v
.

Proof: The proof is similar to that of Theorem 3.4 and
is omitted for brevity.

Given a set D of n points, the Euclidean traveling sales-
person problem (ETSP) is to determine the shortest tour, i.e.,
a closed path that visits each point exactly once.



Algorithm 1: Capturable Nearest Neighbor (CNN)
policy

Given: x∗(v)
1 if C((x,0),v) contains outstanding demands then
2 service demand closest to (x,θ) and in C(x,v) using

constant bearing control;
3 else
4 return to (x∗(v),0)
5 end

Theorem 3.6: (Asymptotic ETSP length,[3]) If a set D of
n points is distributed independently and identically in a
compact set Q, then there exists a constant βT SP,2 such that

lim
n→+∞

E[ET SP(D)]√
n

= βT SP,2

∫
Q

ϕ(q)1/2dq,

where ϕ is the density of the absolutely continuous part of
the point distribution.
The constant βT SP has been estimated numerically as βT SP ≈
0.7120±0.0002 [11].

IV. POLICIES

In this section, we propose two policies for the RET
problem. We start by providing an upper bound on the
capture fraction c for any policy for the RET problem.

Theorem 4.1: (Capture fraction upper bound) For every
policy P for the RET(v,λ ) problem, c(P)≤ ρ∗(v).

We now introduce two policies: the capturable nearest
neighbor (CNN) and the sector-wise (SW) policy.

A. Capturable Nearest Neighbor (CNN) Policy
At arrival rates below a critical value, optimizing the

location at which the vehicle waits for new targets to arrive
assumes importance. The CNN policy stated in Algorithm. 1
is motivated by this idea.

Theorem 4.2: (Performance of CNN policy) Given λc =
1/(2ρ∗T ∗e ), the expected fraction of targets c serviced by
the CNN policy satisfies

c =

{
ρ∗(v), if λ ≤ λc

1/(2λT ∗e ), if λ ≥ λc

Theorem 4.3: (CNN policy lower bound) The expected
fraction of targets c serviced by the CNN policy satisfies
the following conditions

if x∗ = 0, c≥

{
ρ∗(v) if λ ≤ 1/4
1/4λ (1+ x∗), if λ ≥ 1/4

if x∗ ≤ 1− v
v

, c≥

{
ρ∗(v) if λ ≤ v/4
1/4λ (1+ x∗), if λ ≥ v/4

if x∗ ≥ 1− v
v

, c≥

{
ρ∗(v) if λ ≤ v/4
v/4λ , if λ ≥ v/4

Remark 4.4: (Optimality of the CNN policy) When λ ≤
λc, the expected fraction of targets caught by the CNN policy
from Theorem 4.2 is ρ∗(v) and based on Theorem 4.1, this
performance is optimal.

Algorithm 2: Sector Wise (SW) policy
Given: a∗,b∗,∆θ ∗

1 i = 1 initialization;
2 θ1← (i−1)∆θ ∗ modulo 2π , θ2← i∆θ ∗ modulo 2π ;
3 if A(a∗,b∗,θ1,θ2) contains outstanding demands then
4 service demand closest to (b∗,θ1) and in

A(a∗,b∗,θ1,θ2) and move to (b∗,θ2) ;
5 i = i+1 ;
6 else
7 move to (b∗,θ2) along the arc with radius b∗ ;
8 i = i+1 ;
9 end

B. Sector-wise policy (SW) Policy

The SW policy stated in Algorithm. 2 is designed for
the regime where λ ≥ 48v/π(1− v)3. The vehicle traverses
an annular sector in every iteration of the SW policy. The
parameters a∗, b∗ and ∆θ ∗ of the SW policy are optimized
to maximize the capture fraction.

Definition 4.5: (Annular Sector) The set A(a,b,θ1,θ2) :=
{(r,θ) : a≤ r ≤ b ∀θ ∈ [θ1,θ2]}, where b≥ a≥ 0.

Lemma 4.6: (Farthest capturable target) Given
A(a,b,0,∆θ) with ∆θ ≤ π , if a vehicle traveling with
unit speed and starting from (b,0) can capture a target
located at (b,∆θ) and moving radially outward with speed
v then it can capture any target starting in A(a,b,0,∆θ) and
moving radially outward with speed v.

Theorem 4.7: (Routing in A(a,b,0,∆θ)) Given an unser-
viced annular sector A(a,b,0,∆θ), with 0 ≤ a < b < 1, the
following holds true:

(i) If a = (b3− 6πv/λ∆θ)1/3, then E[n] = 1 where n is
the number of outstanding targets in A(a,b,0,∆θ).

(ii) If ∆θ = cos−1
(

b2 +1− (1−b)2/v2

2b

)
, then starting

at (b,0), a vehicle can capture any moving target in
A(a,b,0,∆θ) before it escapes the disk.

(iii) If 2πb ≥ (b− a)/v, then the vehicle starting from
(b,0) at time t0 and moving along the circle of radius
b will not return back to A(a,b,0,∆θ) before all
targets accumulated in A(a,b,0,∆θ) at time t0 escape
A(a,b,0,∆θ).

The constraints (i) - (iii) in Theorem 4.7 can be simplified
and the maximum value b∗ that b can take subject to these
constraints can be found by solving the following concave
maximization problem:

maximize b ∈

[
1− v
√

2− v2

2(1− v2)
,1

)
subject to b3

∆θ ≥ 12πv
λ

,

∆θ = cos−1
(

b2 +1− (1−b)2/v2

2b

)
,

b3
∆θ ≥ 6πv

λ (6πv−12π2v2 +8π3v3)
.

(2)



When λ ≥ 48v/π(1−v)3, the concave maximization problem
is feasible and can be solved to obtain b∗. The other two
parameters can then be set:

∆θ
∗ = cos−1

(
b∗2 +1− (1−b∗)2/v2

2b∗

)
,

a∗ =
(

b∗− 12πv
λ∆θ ∗

)1/3

.

Theorem 4.8: (SW policy lower bound) The expected frac-
tion c of targets serviced by the SW policy satisfies

c≥ 1

λ

(
1−b∗+

√
1+b∗2−2b∗∆θ ∗

) .
Theorem 4.9: (SW policy upper bound) The expected

fraction c of targets serviced by the SW policy satisfies

c≤ 1
b∗λ∆θ ∗

.

C. Stay Near Boundary (SNB) Policy

The SNB policy is now introduced for the high arrival
regime. In involves using solution to the Euclidean Minimum
Hamiltonian Path (EMHP) problem which can be stated as
follows:

Given a set D of n points, determine the length of the
shortest path which visits each point exactly once.

Algorithm 3: Stay Near Boundary (SNB) policy
Given: ã, b̃

1 if A(ã, b̃,0,2π) contains outstanding demands then
2 s1 := set of locations of outstanding targets in

A(ã, b̃,0,2π);
3 s2 := set of their locations if they move radially

outward by distance (1− b̃) ;
4 x := order of the EMHP starting from (1,0),

visiting demands in s2 and ending at (1,0) ;
5 service demands in s1 in order x using constant

bearing principle and return to (b̃,0);
6 end

The parameters ã and b̃ of the SNB policy are solution of
the following optimization problem:

maximize
a,b

(
1− v
3βT SP

)√
2

λπv

(
b3−a3

b2−a2

)
subject to δ1(b2−a2)≤ (1−b),

1≤ δ2(b+a),

3v≤ (b3−a3),

0≤ a < b < 1.

where δ1 = kv/(1 − v), δ2 = kv/(1 + v) and k =
βT SP

√
λπ/2v.

Theorem 4.10: (SNB policy lower bound) The expected
fraction c of targets serviced by the SNB policy as λ →+∞

satisfies

c≥ (1− v)3

βT SP
√

2πλv
.

Proof: Consider the set D := {(r,θ) ∈ A(a,b,0,2π)} of
locations (r,θ) of targets accumulated in A(a,b,0,2π). The
normalized probability density function of the radial loca-
tions of these targets is f (r)= 3r2/(b3−a3) for r∈ [a,b]. Let
D̄ be the set of locations (r′,θ ′) of these targets if they move
outwards by distance d and occupy A(a + d,b + d,0,2π).
The normalized probability density functions for the random
variables r′ and θ ′ which denote locations of these targets
are

f̄ (r′) =
3(r′−d)2

b3−a3 and ḡ(θ ′) =
1

2π
.

Using Theorem 3.6,

lim
n→+∞

ET SP(D̄)√
n

= βT SP

√
3∆θ

b3−a3

(
b2−a2

2

)
.

Here n = |D| and since the targets are accumulated in
A(a,b,0,2π), E[n] = λ (b3−a3)/3v. For n→+∞, the length
of the ETSP through static targets D̄ converges to the length
of the EMHP starting from s = (1,0), passes through each of
the n points in D exactly once, and terminating at f = (1,0).
This follows from the fact that as n → +∞, the upper
bound on the distance between two arbitrary points in D
is negligible when compared to the length of the tour/path.
Using Theorem 3.4 and assuming that the vehicle traverses
the path through moving targets in D before they escape
the environment, the expected length of the path through
escaping targets accumulated in A(a,b,0,2π) and located in
the set D is upper bounded by

tu :=
βT SP

1− v

√
2πλ

v

(
b2−a2

2

)
.

The condition

βT SP

1− v

√
2πλ

v

(
b2−a2

2

)
≤ 1−b

v

ensures that the targets in D are serviced before they escape
the environment and Theorem 3.4 is applicable. The condi-
tion

βT SP

1+ v

√
2πλ

v

(
b2−a2

2

)
≥ b−a

v

ensures that A(a,b,0,2π) is unserviced when the vehicle
begins its tour at (1,0). Finally, when the condition (b3−
a3) ≥ 3v is satisfied, E[n]→ +∞ as λ → +∞. The lower
bound on the expected rate at which targets are serviced
using the SNB policy is E[n]/tu and

c≥
(

1− v
3βT SP

)√
2

λπv

(
b3−a3

b2−a2

)
.

Subject to the constraints in the optimization problem, (b3−
a3)/(b2−a2)≥ 3(1− v)2/2 and the result is obtained.
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Fig. 4. Performance of the (a) CNN and (b) SW policies for arrival rates
λ = 2 and λ = 10 respectively.

Remark 4.11: (Necessary condition for SNB policy) A
necessary condition for existence of a solution to the op-
timization problem in Theorem. 4.10 for the SNB policy is
that 1/delta2 < 2 so that the second constraint in the problem
leads to valid configurations (a,b) for the policy. This is true
when

λ >
(1+ v)2

2πβ 2
T SPv

.

Numerical simulations suggest that this condition is also
sufficient for the existence of a solution to the optimization
problem in Theorem 4.10.

Theorem 4.12: (SNB policy upper bound) The expected
fraction c of targets serviced by the SNB policy as λ →+∞

satisfies
c≤ 1+ v

βT SP
√

2πλv
.

Remark 4.13: (Optimality of SNB policy) In the limit as
v→ 0+ and λ → ((1+ v)2 2πβ 2

T SPv)+, the capture fraction
of the SNB policy satisfies c≥ (1−v)3/(1+v). Since x∗ = 0
and ρ∗ = (1− v)2 for v→ 0+, the SNB policy is within a
constant factor (1− v)/(1+ v) of optimal in this regime.

V. NUMERICAL SIMULATIONS

We now present numerical simulations for the CNN and
SW policies. The CNN policy gives optimal performance
for λ ≤ λc based on numerical simulations. Its performance
at λ = 2 is examined. The actual simulation results, shown
in Fig. 4(a) comply with the performance bounds obtained
in Theorem 4.2 and 4.3. Performance of the SW policy in
numerical simulations is shown for λ = 10 in Fig 4(b).

Lastly, the lower bounds on the fraction of targets captured
for both the CNN and SW policies are compared for range of
parameters v and λ and the larger of the two values chosen,
shown in Fig. 5. For a particular target speed, the CNN
policy is suitable for lower arrival rates for the RET problem.
The SW policy shows a better performance for higher arrival
rates.

VI. CONCLUSION

We have introduced a dynamic vehicle routing problem
in which demands appear uniformly distributed on a disk
according to temporal Poisson process. We propose three
policies for a single vehicle to service the demands before
they escape the disk. The CNN policy is optimal for arrival
rate below a critical value for all target speeds v ∈ (0,1).
The performance of the SNB policy is close to optimal in
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Fig. 5. Lower bound on c from the CNN and SW policy is calculated
numerically. The maximum of the two is shown for RET(v,λ ).

the limiting regime of λ →+∞ and v→ 0+. The SW policy
is suitable for other regimes of the RET problem.

Extensions of the RET problem like for instance, when the
distribution of targets in the environment is not uniform, or
when the environment is an arbitrary closed curve are open
to exploration.
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