
On the Reflected Appraisals Dynamics of Influence Networks
with Stubborn Agents

Anahita Mirtabatabaei, Peng Jia, Noah E. Friedkin, Francesco Bullo

Abstract— This article focuses on the evolution of interper-
sonal influences in a group of stubborn individuals as they
discuss a sequence of issues. Each individual opinion about
a single issue is updated based upon the convex combination
of the individual’s current opinion, the neighbors’ current
opinion, and the individual’s initial opinion; the attachment
to the initial opinion characterizes how stubborn an individual
is. To model the evolution of the influence network, we employ
Friedkin’s “reflected appraisal” model: each individual’s self-
weight on a new issue is determined by the individual’s
average influence and relative control on other individuals
on prior issue outcomes. These modeling assumptions lead
to a dynamical system for the evolution of self-weights. We
establish the well-posedness and continuity of the proposed
dynamics and prove the existence and uniqueness of equilibria
for stubborn individuals. We then study the impact of network
topology on the individuals’ final self-weights. We prove the
convergence of all system trajectories for the special case
of doubly-stochastic networks and homogeneous stubbornness.
We characterize equilibrium self-weights for systems with
centralized networks and heterogeneous stubbornness. Finally,
our numerical simulations illustrate how existence, uniqueness
and attractivity of the equilibria holds true for general network
topologies and stubbornness values.

I. INTRODUCTION

In many real world complex systems ranging from biolog-
ical to social networks, one crucial aspect is discovering the
interrelationship between the evolution of network topology
and the dynamics of nodes, so called co-evolutionary or
adaptive networks. Much literature has focused on adaptive
networks whose evolution is based on the idea that “similar-
ity breeds connection” [17], that is, interactions are formed
in view of the similarity of nodes’ dynamics. Accordingly, in
models of opinion dynamics, neighboring relation is defined
based on bounded confidence [13], [4], [2] or influence [18],
which means that an individual only interacts with those
whose opinions are close enough to her own.

Recently, there has been a growing interest in the study
of influence networks and opinion formation in the field of
social psychology [7], [12], [5], [9]. A big challenge in this
field has been the investigation of influence change based on
social comparison. Following this trend, here we describe
the co-evolution of social influence networks and opinion
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formation in a group of individuals discussing a series of
issues via a reflected appraisal mechanism [8], [3], [11].
This mechanism is based on the psychological axiom that
“our self-concepts are formed as reflections of the responses
and evaluations of others in our environment” [22], and
is supported by empirical investigations [22], [8]. In this
context, (Friedkin, 2011) developed a model of influence net-
work evolution whose dynamics is described in two stages.
First, with regards to single-topics decision making, each
individual updates her opinion through a convex combination
of the individual’s current opinion, the neighbors’ current
opinion, and the individual’s initial opinion [9]. Second, with
regards to multi-topics decision making, the update mecha-
nism of reflected appraisal is adopted. More specifically, this
mechanism asserts that each individual’s self-weight on a
new issue is determined by her average influence and relative
control on other individuals on prior issue outcomes [8]. As
an individual’s self-weight varies, the relative weights that
she assigns to other individuals and thus the relative influence
network changes. A variation of Friedkin’s model has been
analyzed in [15], [14], where with regards to single-topics
decision making, the DeGroot’s first-order model of opinion
dynamics is considered [5]. This model “predicts that the
social power ranking among individuals is asymptotically
equal to their centrality ranking” [15] and characterizes
critical social network properties leading to the emergence
of single opinion leaders, clusters of leaders, or diffuse and
democratic power structures. Another alternative form of
Friedkin’s model has been explored where opinion evolution
is based on randomized gossip typologies [6].

In this article, we study another variation of Friedkin’s
model of influence network evolution on a group of stubborn
individuals, which comes closer to the original formulation.
In their work, (Friedkin and Johnsen, 1999) assumed that
each individual adheres to her initial opinion to a certain
degree and this stubbornness is equal to her self-weight, that
is, her social power, and thus topic-dependent. We investigate
stubbornness factors that are agent-dependent, independent
of issues and individuals’ self-weights. We investigate how
this stubbornness of exogenous opinions in single-topic
opinion dynamics effects the evolution of relative power
over a series of topics. In the literature [1], [19], stubborn
individuals have been recognized to play a role in shaping
opinion profiles by preventing consensus and leading to
limit behaviors which are more complex than an agreement
condition. In these studies, stubborn individuals typically
do not change their opinions despite social interactions.
However, we assume that all individuals are to some degree
stubborn against new ideas.



The contributions of this paper are five-fold. First, we
introduce a variation of Friedkin-Johnsen model where we
adopt real continuous variables to represent heterogeneous
agent-dependent stubbornness. We characterize the technical
conditions under which the model is well-posed. Second,
we demonstrate the continuity of the proposed dynamics
and the existence and uniqueness of equilibira for com-
paratively stubborn individuals. Third, we consider such a
model under the condition of homogeneous stubbornness and
doubly stochastic relative interaction network. We establish
that in the corresponding dynamical system: (i) the unique
equilibrium self-weights vector has uniform entries, a notion
of democracy, that is defined to be a situation where agents
have equal rights; and (ii) the system exponentially con-
verges to this equilibrium vector. Forth, we study the model
with heterogeneous stubbornness and centralized relative
interaction network. We establish that (i) the equilibrium
self-weights vector is unique if the central individual is
stubborn enough; (ii) for homogeneous stubbornness, the
center individual reaches highest self-weight, however, for
heterogeneous stubbornness, it is possible for a non-central
individual to obtain the highest self-weight. Finally, our
numerical simulations illustrate how existence, uniqueness
and attractivity of the equilibria, that are independent of
initial conditions, holds true for general network topologies
and stubbornness values.
Notation. In the Euclidean space Rn, we define 1n =
(1, . . . , 1)T and 0n = (0, . . . , 0)T . Moreover, for i ∈
{1, . . . , n}, we let ei be the vector with all entries equal to 0
except for the ith entry equal to 1. Given (x1, . . . , xn) ∈ Rn,
let diag(x) denote the diagonal n×n matrix whose diagonal
entries are x1, . . . , xn. We also recall the definition of the
n-simplex ∆n = {x ∈ Rn | x ≥ 0, 1Tnx = 1}.

II. THE MATHEMATICAL MODEL

In the mathematical modeling of the opinion evolution in
a group of decision makers discussing a sequence of issues,
two separate dynamics are considered: (i) opinion evolution
on one issue while the influence network is fixed; and (ii)
the evolution of influence network based on individuals’
reflected appraisals. We consider a group of n ≥ 2 indi-
viduals discussing a sequence of issues s ∈ N. We aim to
discover the dynamics of individuals’ relative measures of
self-weight x(s) ∈ ∆n as the issue under discussion changes.
Specifically, the model is defined as follows.

A. Opinion dynamics on single issue

Discussing any issue s ∈ N, as time t ∈ R≥0 progresses,
each individual i ∈ {1, . . . , n} updates her opinion yi(s, t) ∈
R about that issue by considering her initial opinion, her
current opinion, and the current opinions of peers.

yi(t+ 1, s) = (1− θi)yi(0, s) + θixi(s)yi(t, s)

+ θi
(
1− xi(s)

) n∑
j=1

cijyj(t, s),

where θi ∈ [0, 1] denotes i’s susceptibility to influence
by peers (i.e., 1 − θi represents i’s stubbornness) and the

coefficients cij are the fixed relative interpersonal weights
that i accords to other individuals, that is, the n× n matrix
C is the relative interaction matrix that is row-stochastic
with zero diagonal [9]. Note that self-weights xi(s) ∈ [0, 1]
are fixed over each topic s, while Θ = diag(θ) and C are
independent of topic and time. Then, the vector of opinions
about any issue s is a trajectory t 7→ y(s, t) ∈ Rn that
evolves as follows:

y(t+ 1, s) = ΘW (s)y(t, s) + (In −Θ)y(0, s), (1)

where, following [8], the n×n weight matrix W (s) is row-
stochastic with diagonal entries wii(s) = xi(s),

W (s) = diag(x(s)) + (In − diag(x(s)))C. (2)

The dynamical system (1) implies that each individual i
updates her opinion considering her initial opinion scaled
by her stubbornness 1−θi and the current opinion of herself
and peers scaled by her susceptibility θi. Moreover, i scales
her own current opinion by her self-weight xi(s) and peers’
current opinions by her lack of self-confidence 1− xi(s).

Before proceeding, we introduce an assumption that is
employed in the description of self-weights dynamics across
issues. First, let us quote a few relevant definitions from
graph theory. A node of a digraph with out-degree zero is
named a sink. A maximal subgraph of a digraph that is
strongly connected forms a strongly connected component
(SCC). For any digraph G, if each of its strongly connected
components is contracted to a single vertex, then the result
is an acyclic digraph that is condensation digraph of G.
Therefore, any condensation digraph contains at least one
sink. We define sink components of G to be the sinks
of G’s condensation directed graph. Moreover, we denote
the digraph associated with the weights matrix W (s) by
G(W (s)), that is, W (s) is the adjacency matrix of G(W (s)).

Assumption II.1 (Stubborn sinks). Any sink component of
G(W (1)) contains at least one node i such that θi < 1.

Intuitively speaking, this assumption implies that a group
of individuals who do not let other groups influence their
opinions (i.e., a sink component of weights graph) can not be
highly flexible toward new ideas (i.e., all θi’s equal to one).
Assumption II.1 also implies that Θ 6= In. If we adopt Θ =
In for the introduced dynamical system in this paper, then
the resulting system is equivalent to the so called DeGroot-
Friedkin system and is studied in [14].

B. Dynamics of self-weights across a sequence of issues

For the evolution of individuals’ self-weights as they dis-
cuss a sequence of issues, we consider the reflected appraisal
mechanism, where each individual’s self-weight on one issue
is set equal to the relative power that the individual exerted
over the prior issue outcome [8].

The reflected appraisal mechanism updates the self-
weights vector via x(s + 1) = V (s)T1n/n, where V (s),
if it exists, is determined by limt→∞ y(s, t) = V (s)y(s, 0).
The dynamical system (1) for any s ∈ N and all t ≥ 1 is



equivalent to[
y(s, t)
y(s, 0)

]
=

[
ΘW (s) In −Θ

0 In

] [
y(s, t− 1)
y(s, 0)

]
=

[ (
ΘW (s)

)t ∑t
τ=0

(
ΘW (s)

)τ
(In −Θ)

0 In

] [
y(s, 0)
y(s, 0)

]
.

Hence, individuals’ eventual influence on each other equals

V (s) = lim
t→∞

((
ΘW (s)

)t
+

t∑
τ=0

(
ΘW (s)

)τ
(In −Θ)

)
.

In Lemma III.1, we show that under Assumption II.1,
ΘW (s) is strictly row-substochastic for all s ∈ N. A square
matrix A is strictly row-substochastic, if its entries are non-
negative, every row adds up to at most one, and for any SCC
of G(A), its associated adjacency matrix contains at least one
row whose sum is strictly less than one. The spectral radius
of a strictly row-substochastic matrix is strictly less than
one. Then, limt→∞

(
ΘW (s)

)t
= 0n and, according to [10,

Section 5.6], limt→∞
∑t
τ=0

(
ΘW (s)

)τ
=
(
In−ΘW (s)

)−1
.

Thus, under Assumption II.1, V (s) exists and is equal to

V (s) =
(
In −ΘW (s)

)−1
(In −Θ). (3)

We refer to the set of dynamical system (3) together with
x(s + 1) = V (s)T1n/n, that determine self-weights evolu-
tion over a sequence of issues with individuals’ constant sus-
ceptibility to exogenous opinions, as the constant Friedkin-
Johnsen (cFJ) system.

III. DYNAMICAL PROPERTIES OF THE SYSTEM

In this section, we first determine sufficient conditions
that validate the dynamics of the self-weight vector in cFJ
systems. Next, we present an equivalent expression for the
evolution of self-weights, which is employed in the analysis
of system equilibria. Finally, we demonstrate existence and
uniqueness of system equilibria given bounded susceptibili-
ties for a general relative interaction network.

Lemma III.1. If a cFJ system for the first issue satisfies
Assumption II.1, then, for all s ∈ N, ΘW (s) is strictly row-
substochastic.

Proof. First, we show that for any matrix W (s) such that
each sink component of G(W (s)) contains at least one
node i ∈ {1, . . . , n} with θi < 1, ΘW (s) is strictly row-
substochastic. The digraphs G(ΘW (s)) and G(W (s)) have
the same topology unless θi = 0 for some i ∈ {1, . . . , n},
then the ith row of ΘW (s) will be equal to zero. Hence,
the SCC that contains the ith node in G(W (s)) decom-
poses into a sink with zero out-degree and an SCC that
assigns weight to this sink in G(ΘW (s)). Therefore, the
adjacency matrix associated with each sink component of
G(ΘW (s)) is either equal to zero or contains at least one
line whose row-sum is strictly less than one. The adjacency
matrices associated with the SCCs of G(ΘW (s)) that are not
sink components are strictly row-substochastic owing to the
weight these components assign to sink components. Hence,
the adjacency matrices associated with all the SCCs of
G(ΘW (s)) are strictly row-substochastic and hence ΘW (s)

is strictly row-substochastic, which guarantees the existence
of (In −ΘW (s))−1.

Second, we show that under Assumption II.1, each sink
component of G(W (s)) contains at least one node i ∈
{1, . . . , n} with θi < 1 for all s ∈ N. For any x(s) ∈ ∆n \
{e1, . . . , en}, equation (2) implies that the digraphs G(C)
and G(W (s)), excluding self-loops, have equal topology,
and thus the same set of SCCs. However, if x(s) = ei for
any i ∈ {1, . . . , n}, then the SCC of G(C) that contains
node i decomposes into a sink node i and an SCC that
assigns weight to this sink in G(W (s)). Thus, the set of
G(C)’s SCCs is a subset of G(W (s))’s SCCs, and hence
each sink component of G(C) contains at least one node
i ∈ {1, . . . , n} with θi < 1. Moreover, from x(s + 1) =
V (s)T1n/n, for all s > 1 and any j ∈ {1, . . . , n} such that
θj = 1, xj(s) = 0. Therefore, if x(s) = ei for any i and any
s > 1, then θi < 1, which establishes our claim.

As discussed in the proof of Lemma III.1, if θi = 1 for
any i ∈ {1, . . . , n}, then xi(s) = 0 for all s > 1. In other
words, in the presence of partially stubborn individuals, those
with full susceptibility toward new ideas (θi = 1) lose their
self-confidence. Consequently, for the simplicity of analysis
from here on, we assume that θi < 1 for all i ∈ {1, . . . , n}.

Theorem III.2 (Evolution of cFJ system). For n ≥ 2, if
θi < 1 for all i ∈ {1, . . . , n}, then for all s ∈ N,

(i) xi(s+ 1) > (1− θi)/n; and
(ii) the cFJ system is equivalent to x(s + 1) = F (x(s)),

where the continuous map F : ∆n → ∆n is the
dominant positive left eigenvector of

U(x) =
1n1Tn
n
− (In−Θ)−1Θ(In−X)(In−C). (4)

Proof. Throughout this paper, we drop the s argument and
denote diag(x(s)) by X in the proofs for brevity. Since
θi < 1 for all i ∈ {1, . . . , n}, (In−Θ)−1 exists and Assump-
tion II.1 holds. Hence, according to Lemma III.1, ΘW (s) is
strictly row-substochastic for all s ∈ N. Consequently, V (s)
exists and is defined by equation (3),

V (s) =
(
In −ΘX −Θ(In −X)C

)−1
(In −Θ).

According to the cFJ system,

x(s+1)T (In−Θ)−1
(
In−ΘX−Θ(In−X)C

)
=

1Tn
n
. (5)

Regarding statement (i), equation (5) results in

x(s+ 1)T (In −Θ)−1 − 1Tn
n

= x(s+ 1)T (In −Θ)−1
(
ΘX + Θ(In −X)C

)
.

If statement (ii) holds, then x(s + 1) ∈ interior ∆n, and
hence all entries in the right hand side of above equation are
strictly positive, which proves our claim. Next we show that
statement (ii) holds independent of statement (i), and thus
both statements hold true.

Regarding statement (ii), equation (5) results in

x(s+ 1)T
(
In + (In −Θ)−1Θ(In −X)(In − C)

)
=

1Tn
n
.



Since x(s+ 1) belongs to the n-simplex, x(s+ 1)T1n1Tn =
1Tn . Therefore, above equation leads to x(s + 1)T = x(s +
1)TU(x(s)), where U(x(s)) is defined by equation (4).
Now, we show that U(x(s)) has one simple eigenvalue
equal to one whose corresponding left eigenvector u(x(s))
has strictly positive entries. According to the Gershgorin
circle theorem, all eigenvalues of U(x(s)) are inside the
disks centered at 1/n − θi(1 − xi)/(1 − θi) with radius
(n − 1)/n + θi(1 − xi)/(1 − θi) for some i ∈ {1, . . . , n}.
As all these Gershgorin discs lie on the left side of the
line Re(λ) = 1 in the complex plane, the real parts of all
eigenvalues of U(x(s)) are then less than or equal to one for
any i ∈ {1, . . . , n}. Since U(x(s))’s row sum is equal to one,
it has at least one eigenvalue equal to 1. Furthermore, matrix
U(x(s)) is a Metzler matrix, in which all the off-diagonal
components are non-negative, in our case these entries are
strictly positive. Therefore, there exists τ > 0 such that all
entries of U(x(s)) + τIn are strictly positive, and hence,
according to the Perron-Frobenius theorem, the spectral
radius of U(x(s)) + τIn, denoted by ρ(U(x(s)) + τIn), is a
positive real simple eigenvalue. Moreover, there exists a left
eigenvector associated with ρ(U(x(s)) + τIn) whose entries
are strictly positive. Consequently, U(x(s)) has a real simple
eigenvalue equal to ρ(U(x(s)) + τIn)− τ , which according
to the previous discussion is equal to 1, with a unique left
eigenvector u(x(s)) that belongs to the interior of ∆n.

Remark 1. Theorem III.2 states that if θi < 1 for all
i ∈ {1, . . . , n}, then for any issue s > 1 all individuals’
self-weights are strictly positive independent of the topology
of G(W (s)). For an irreducible W (s), an SCC that is not
a sink component in G(W (s)) have no influence on the
final opinions of the sink components. However, the eventual
influence of non-sink SCCs on the issue outcome is non-zero
owing to their positive stubbornness (1− θi).
Remark 2. According to Theorem III.2 part (i), the smaller
individuals susceptibility (θi’s), the faster system tends to
democracy, that is, equal self-weights. Moreover, since in-
dividuals’ stubbornness values on one issue have a direct
relation with their self-confidence on the next, a group with
stubborn individuals never reaches autocracy. Autocracy is
defined to be a system where one person has full authority
and her decisions are not subject to any external factor.

Lemma III.3 (Existence and uniqueness of equilibria).
Consider a cFJ system with n ≥ 2 such that θi < 1
for all i ∈ {1, . . . , n}. Then, the equilibrium self-weight
vector exists and belongs to the interior of ∆n. Moreover, if
θi ≤ 1/3, then this equilibrium is unique.

Proof. According to Theorem III.2, the dynamics of the cFJ
system can be represented by function F which maps any
self-weight vector x ∈ ∆n to the unique positive dominant
left eigenvector of U(x), equation (4). Therefore, if there
exists an equilibrium self-weight vector x∗, where x∗ =
F (x∗), then x∗ interior ∆n. It is shown in [16] that if the
entries of a square matrix A(t) are real analytic functions of
parameter t and λ(t) is a simple eigenvalue at t = τ with
a corresponding unit eigenvector ν(t), then for all t near τ
there is a corresponding eigenvalue and unique (normalized)

eigenvector whose entries are also real analytic functions
of t. The entries of matrix U(x) are linear functions of
x’s entries, and thus F (x) is a real analytic function of x.
Furthermore, according to Brouwer fixed-point theorem, any
continuous function that maps a convex compact subset of a
Euclidean space to itself has a fixed point on that subset.
Therefore, F (x) contains at least one equilibrium vector
x ∈ interior ∆n:

xT
(
In + (In −Θ)−1Θ(In −X)(In − C)

)
=

1Tn
n
. (6)

Now by contradiction assume there exist two equilibrium
vectors x, z ∈ interior ∆n. Subtracting equation (6) for the
two vectors results in

(xT−zT )
(
In+(In−X−Z)(In−Θ)−1Θ(In−C)

)
= 0, (7)

where owing to the commutative property of diagonal matri-
ces and xTZ = zTX , we have xTX−zTZ = (xT−zT )(X+
Z). Eigenvalues of In − C are non-negative and their real
parts belong to the interval [0, 2]. Hence, the eigenvalues of
matrix N := In + (In − X − Z)(In − Θ)−1Θ(In − C)
satisfy the following for a negative 1 − xi − zi, eig(N) ≥
1+2θi(1−xi−zi)/(1−θi). Since 1−xi−zi > −1 (note that
if xi = zi = 1, then x = z = ei) and assumption θi ≤ 1/3
implies that θi/(1 − θi) ≤ 1/2, above equation results in
eig(N) > 0. Therefore, the matrix N is non-singular and it
follows from equation (7) that xT − zT = 0.

Conjecture III.1 (General convergence of cFJ systems).
The numerical simulations of cFJ systems illustrate that for
several values of susceptibilities (θi ∈ [0, 1)) and network
topologies, all trajectories converge. Moreover, the attractive
equilibrium self-weights vector only depends on individuals’
susceptibility and relative interpersonal weights.

IV. DOUBLY-STOCHASTIC RELATIVE INTERACTIONS

A doubly-stochastic relative interaction matrix in a group
of decision makers indicates a fair system where the total
attention that each member receives from all members is
uniform and unbiased. For such interaction matrices, [14]
established that the DeGroot-Friedkin system (with no stub-
bornness) converges to the unique final state of equal self-
weights, a notion of democracy. In this paper, considering
heterogeneous susceptibilities for decision makers can pre-
vent reaching a democracy in general. We prove that, in
a special case, if individuals are equally stubborn toward
their initial opinions the system converges to a democratic
state. Intuitively speaking, if a uniform and unbiased group
of decision makers with different initial self-weight start
discussing various topics, then they eventually attain identical
self-weights.

Lemma IV.1 (Equilibria wtih doubly-stochastic topology).
Consider a cFJ system with n ≥ 3 such that θi =: θ for
any θ ∈ (0, 1) and all i ∈ {1, . . . , n}. Then, the equilibrium
self-weight vector is unique and equals 1n/n.

Proof. It can be easily verified that 1Tn/n satisfies equa-
tion (7) by employing 1Tn (In − C) = 0n, which is due
to double stochasticity of C. Regarding uniqueness of this



equilibrium, by contradiction assume that x ∈ ∆n is an
equilibrium vector of the system and unequal to 1Tn/n. First,
assume that xi < (n − 1)/n for all i ∈ {1, . . . , n}. Define
y := x − 1n/n and denote θ/(1 − θ) by α. We have the
following statement for a doubly-stochastic C:

yT
(
In + α(In −X)(In − C)

)
=

1Tn
n
− 1Tn

n

(
In + α(In −X)(In − C)

)
=
α

n
xT (In − C) =

α

n
yT (In − C),

which is equivalent to yT = yT
(
α((n− 1)In/n−X)(C −

In)
)
. As (n − 1)/n − xi > 0, α > 0, and all eigenvalues

of (C − In) have non-positive real parts, the matrix α((n−
1)In/n −X)(C − In) can not own an eigenvalue equal to
1. This implies that y = 0 and x = 1n/n is the unique
equilibrium. Second, if there exists one xi such that xi ≥
(n − 1)/n, then

∑n
j=1,j 6=i xj ≤ 1/n. Then, equation (6)

results in

xi − 1/n = −α
(
xi(1− xi)−

∑
j 6=i

cjixj(1− xj)
)
. (8)

It is noted that
∑
j 6=i cji = 1 and since xi ≥ (n − 1)/n,

xi(1 − xi) > maxj xj(1 − xj). Therefore, the right hand
side of equation (8) is negative, which implies that xi ≤ 1/n,
which is a contradiction for n ≥ 3.

Theorem IV.2 (Convergence with doubly-stochastic topol-
ogy). Consider a cFJ system with n ≥ 3 such that θi =: θ
for any θ ∈ (0, 1) and all i ∈ {1, . . . , n}. Then, the system
exponentially converges to its unique equilibrium self-weight
vector 1n/n.

Proof. For any s ∈ N, let us denote xT (s) − 1Tn/n by
∆(s), diag(x(s)) by X(s), and θ/(1− θ) by α. Then, from
equation (5)

∆(s+ 1) = αxT (s+ 1)(In −X(s))(C − In)

= α∆(s+1)(In−X(s))(C−In)+α
1Tn
n

(In−X(s))(C−In)

⇒ ∆(s+ 1)
(
In + α(In − C)

)
= α∆(s)(In − C)/n+ α∆(s+ 1)∆(s)(In − C)

= α∆(s)
(
In/n+ diag(∆(s+ 1))

)
(In − C).

Knowing that In−C’s eigenvalues are non-negative, In/α+
In−C is invertible, and In/n+diag(∆(s+1)) = X(s+1),
∆(s+1) = ∆(s)X(s+1)(In−C)

(
In/α+In−C

)−1
. Here,

we establish that ‖∆(s)‖2 is a strictly decreasing function
of s. Denoting 1/α+ 1 by β we have

A := (In − C)
(In
α

+ In − C
)−1

= (βIn − C + (1− β)In)(βIn − C)−1

= In + (1− β)(βIn − C)−1 =: B.

Since eig(C) ∈ [−1, 1], eig
(
(βIn − C)−1

)
∈ [ 1

β+1 ,
1
β −

1], and thus eigB ∈ [0, 2/(β + 1)]. Owing to 2
β+1 < 1,

‖A‖2 < 2/(β + 1), hence, ‖∆(s+ 1)‖2 < ‖∆(s)‖2‖X(s+

1)‖2 < 2
β+1‖∆(s)‖2. Since 2

β+1 is issue independent, this
convergence is exponential.

Remark 3. The uniform self-weights vector 1Tn/n is an
equilibrium vector of a cFJ system if and only if the relative
interaction matrix is doubly stochastic.

V. CENTRALIZED RELATIVE INTERACTIONS

A relative interaction network with star topology in a
group of decision makers indicates a system where all
members trust only a center member besides themselves.
This scenario represents centralized social system structuring
with rigid hierarchy, which gives rise to inherent mistrust
of non-center individuals in their own potentials and loss
of self-weight [20]. In a star topology, all nodes assign
weight to only one node, the center node (without loss of
generality, node 1), and the center node assigns weights
(s2, . . . , sn) ∈ ∆n−1 to others. It is established that when
individuals are fully susceptible to interpersonal influence
(Θ = In), the relative interaction matrix with star topology
leads to autocracy, that is, the self-weights vector converges
to e1 [14]. In [21], it is claimed that “individuals high in self-
weight have been found to believe they are superior to others
in many domains, to be self-confident in their viewpoints
and actions, and, thus, to be willing to voice their opinion.”
However, individuals’ stubbornness in cFJ systems prevents
reaching autocracy, see Figure 1. First, for a cFJ system with
heterogeneous stubbornness, we establish that if the center
individual is stubborn enough, then the equilibrium self-
weights vector is unique and all the non-central individuals
obtain self-weights less than half. Next, for a cFJ system
with homogeneous stubbornness, we prove that the center
individual obtains the highest self-weight independent of how
susceptible she is toward her peers.

Proposition V.1 (Equilibria for star shaped interactions).
Consider a cFJ system whose relative interaction matrix has
star topology with center node 1, n ≥ 3, and θ1 ≤ 2/5. Then,
the equilibrium self-weight vector x ∈ interior ∆n exists, is
unique, and xi < 1/2 for all i ∈ {2, · · · , n}.

Proof. From Lemma III.3, we know that this system con-
tains at least one equilibrium vector in the interior of ∆n.
Here, we prove uniqueness. Since node 1 is the center
node, the first row of C matrix is

[
0 s2 . . . sn

]
,

where (s2, . . . , sn) ∈ ∆n−1, and all other rows are[
1 0 . . . 0

]
. Let us denote θi/(1 − θi) by αi. From

equation (6), the equilibrium vector x ∈ interior ∆n for all
i ∈ {2, . . . , n} satisfies xi+αixi(1−xi)−α1six1(1−x1) =
1/n. Equivalently, for some p ∈ (0, α1/4],

α1x1(1− x1) = p and xi + αixi(1− xi) =
1

n
+ sip. (9)

Hence, xT
(
(In −X)Θ(In −Θ)−1 + diag([0, 1, · · · , 1])

)
=

p[1, s2, · · · , sn] + [0, 1, · · · , 1]/n. Moreover, according to
equation (9) for any i 6= 1, xi < 1/n + siα1x1(1 − x1) ≤
1/n+ α1/4 ≤ 1/3 + α1/4, and since θ1 < 2/5, xi < 1/2.

Regarding uniqueness of equilibrium vector by contradic-
tion assume that there exist two equilibrium vectors x, z ∈



interior ∆n that satisfy equation (9), then

(xT−zT )
(
(In−X−Z)Θ(In−Θ)−1+diag([0, 1, · · · , 1])

)
= (p− q)[1, s2, · · · , sn],

where q := α1z1(1−z1) for some q ∈ (0, α1/4] and without
loss of generality p ≥ q.

First, we show that p 6= q for unequal x and z. By
contradiction, if p = q, then x1(1−x1) = z1(1−z1) and for
any i ∈ {2, · · · , n}, xi(1 − θixi) = zi(1 − θizi). For each
equation two solutions exists, x1 = z1 or x1 = 1 − z1 and
xi = zi or xi = 1/θi − zi. Since x and z are unequal
normalized vectors, there exits at least two nodes i, j ∈
{1, . . . , n} such that xi 6= zi and xj 6= zj . If x1 = 1 − z1,
then there exists i ∈ {2, · · · , n} such that xi = 1/θi − zi.
Hence, x1 + xi = 1− z1 + 1/θi − zi > 1, which contradicts
x ∈ ∆n. A similar approach can be employed for any two
i, j ∈ {2, · · · , n}.

Second, we establish that p > q contradicts the existence
of two non-equal equilibria x and z. Note that if xi+zi ≤ 1
for all i ∈ {1, . . . , n}, then since (p−q)si ≥ 0, xi ≥ zi for all
i ∈ {1, . . . , n}, which owing to x, z ∈ ∆n results in x = z,
that contradicts the assumption of p 6= q. Therefore, there
exists at least and at most (since x, z ∈ ∆n) one individual
m with xm + zm > 1 and xm < zm. For such m, two
cases exists: (i) If m 6= 1, then sm > 0 and xm − zm < 0
requires αm(1−xm−zm)+1 < 0. However, as proved above,
xm, zm < 1/2, and thus 1−xm−zm is a positive term, which
is a contradiction. (ii) If i = 1, then equation (6) results in
(x1 − z1)(1 + α1(1− x1 − z1)) =

∑n
2 (xi − zi)(1 + αi(1−

xi− zi)). As discussed above, for all i 6= 1, xi + zi < 1 and
xi ≥ zi, hence the right hand side is non-negative. Knowing
that x1 < z1, above equation requires 1+α1(1−x1−z1) ≤ 0.
The assumption of θ1 ≤ 2/5 < 1/2 implies that α1 < 1,
and thus x1 + z1 ≥ 2, which is a contradiction since x, z ∈
interior ∆n.

Lemma V.2 (Star shaped with homogenous susceptibilities).
Consider a cFJ system whose relative interaction matrix has
star topology, n ≥ 3, and θi = θ for any θ ∈ (0, 1) and all
i ∈ {1, . . . , n}. Then, for any equilibrium self-weight vector,
the center node acquires the highest self-weight.

For brevity, we skip the proof to Lemma V.2.

VI. CONCLUSION AND FUTURE WORK

In this paper, we modeled the evolution of the influence
network in a group of decision makers via Friedkin’s re-
flected appraisal mechanism and developed a well-posed
dynamical system for the evolution of self-weights (social
powers). The main challenging future direction for this
work is demonstrating our conjecture which leads to the
characterization of individuals final self-weights and their
dependence on system’s parameters.
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