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Abstract—We propose algorithms to automatically de-
ploy a group of mobile robots and provide coverage of a
non-convex environment with communication limitations.
In settings such as hilly terrain or for underwater ocean
gliders, peer-to-peer communication can be impossible
and frequent communication to a central base station
may be impractical. This paper instead explores how
to perform coverage control when each robot has only
asynchronous and sporadic communication with a base
station. The proposed algorithms rely upon overlapping
territories, monotonically minimize suitable cost functions,
and provably converge to a centroidal Voronoi partition.
We also describe how the use of overlapping territories
allows our algorithms to smoothly handle dynamic changes
to the robot team.

I. INTRODUCTION

In applications such as environmental monitoring [1]
or warehouse logistics [2] a team of robots is asked
to perform tasks over a large space. The distributed
environment partitioning problem consists of designing
control and communication laws for individual robots
such that the team divides a space into regions in order
to optimize the quality of service provided. Coverage
control additionally optimizes the positioning of robots
inside of a region. Coverage control and territory par-
titioning have applications in many fields. In cyber-
physical systems, applications include automated envi-
ronmental monitoring [1], fetching and delivery [2], and
other vehicle routing scenarios [3].

A broad discussion of partitioning and coverage con-
trol is presented in [4] which builds on the classic work
of Lloyd [5] on algorithms for optimal quantizer design
through “centering and partitioning.” The Lloyd-type ap-
proach was first adapted for distributed coverage control
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in [6] and has since seen many variations, including non-
convex environments [7], [8] and self-triggered coverage
algorithms [9].

Many existing coverage control algorithms assume
that robots can communicate peer-to-peer [6], but in
some environments this is impractical. For example,
underwater acoustic communication between ocean glid-
ers is very low bandwidth and hilly or urban terrain
can block radio communication. Instead, we present a
coverage control algorithm for a team of robots which
collectively maintain complete coverage of the environ-
ment and individually have only occasional contact with
a central base station. This one-to-base-station commu-
nication model can represent ocean gliders surfacing to
communicate with a tower [10], UAV data mules that
periodically visit ground robots [11], or cost-mindful
use of satellite or cellular communication. Our algorithm
optimizes the response time of the team to service
requests in a non-convex environment represented by
a graph, with optimality defined by relevant “multi-
center” cost functions for overlapping territories. Early
work in coverage control of discrete non-convex domains
(represented by graphs) is presented in [12]. Discrete
coverage problems are closely related to the literature on
data clustering and k-means [13], as well as the facility
location or k-center problem [14].

There are several specific contributions of this paper.
First, we present the first coverage control algorithm
for an asynchronous one-to-base-station communication
model. This model is realistic and relevant for a variety
of application domains. We handle the time delay be-
tween when robots communicate with the base station
using overlapping regions instead of a partition. The
algorithm can be adapted for various cost-functions and
also allows for heterogeneity among agents. Second,
we prove that the algorithm converges to a centroidal
Voronoi partition in finite time for two relevant cost-
functions. Our Lyapunov argument is based on an adap-
tation of the standard partition-based coverage cost func-
tion. Third, we introduce the notion of Pareto-optimal
partitions and provide a cost-function to achieve such
a partition using our algorithm. Finally, we describe
how the algorithm can seamlessly handle changes in the
environment as well as unscheduled arrival, departure or



change in functionality of robots from the team. This
feature leverages overlapping regions, and also eases
integration of coverage control with task servicing.

A preliminary version of this article has appeared at
the 2011 IEEE Conference on Decision Control and Eu-
ropean Control Conference as [15]. This article contains
various results not found in [15]. First, we introduce a
more general algorithm to achieve centroidal Voronoi
partitions with one-to-base station communication ar-
chitecture; we accomplish this by revising how updates
occur in the algorithm. Second, we extend the framework
of [15] by allowing for heterogeneous agents using
weighted Voronoi partitions. Third, we introduce the
notion of Pareto-optimal partitions and provide a method
to converge to such a partition. Finally, simulation results
have been extended and updated to demonstrate the
performance of the new policies not present in [15].

II. PRELIMINARIES: COVERINGS OF GRAPHS AND
COST FUNCTIONS

The one-to-base-station communication model studied
in this paper requires that, in the design of coverage
algorithms, we adopt overlapping coverings instead of
partitions. In this Section we translate concepts used in
partitioning of continuous environments [4] to coverings
on graphs. In our notation, R>0, R≥0, and Z≥0 respec-
tively denote the sets of positive, nonnegative and non-
negative integer numbers. Given a set A, |A| denotes
the number of elements in A. Given sets A,B, their
union and intersections are denoted as A∪B and A∩B,
respectively, and their difference is A\B = {a ∈ A | a /∈
B}.

A. Graphs and Distances

Let the finite set Q be a set of points in a continuous
environment. These points can represent locations or
small areas of interest. They are assumed to be the nodes
of an (undirected) weighted graph G(Q) = (Q,E, l)
with edge set E ⊂ Q×Q and weight map l : E → R>0;
we let le > 0 be the weight of edge e. We assume that
G(Q) is connected and think of the edge weights as
travel distances between nearby nodes.

In any weighted graph G(Q) there is a standard notion
of distance between vertices defined as follows. A path
in G is an ordered sequence of vertices such that any
consecutive pair of vertices is an edge of G. The weight
of a path is the sum of the weights of the edges in the
path. Given vertices h and k in G, the distance between
h and k, denoted dG(h, k), is the weight of the lowest
weight path between them, or +∞ if there is no path.
If G is connected, then the distance between any two
vertices is finite. By convention, dG(h, k) = 0 if h = k.
Note that dG(h, k) = dG(k, h), for any h, k ∈ Q.

B. Coverings of Graphs

We will be covering Q with n subsets or regions which
will each be owned by an individual agent.

Definition 1 (n-Covering). Given the graph G(Q) =
(Q,E, l), we define a n−covering of Q as a collection
P = {Pi}ni=1 of subsets of Q such that:

(i)
⋃n

i=1 Pi = Q;
(ii) Pi 6= ∅ for all i ∈ {1, . . . , n};

Let Covn(Q) to be the set of n−coverings of Q.

Note that a vertex in Q may belong to multiple subsets
in P , i.e., a vertex may be covered by multiple agents.
The above definition is an important change from prior
work [12].

We also have use for the concept of a partition of Q.

Definition 2 (n-Partition). A n-partition is a n-covering
with the additional property that:
(iii) if i 6= j, then Pi ∩Pj = ∅.
Let Partn(Q) to be the set of n−partitions of Q.

Among the ways of covering Q, there is one which
is worth special attention. Before we state the partition,
let us define the vector of weights w := {w1, . . . , wn},
such that wi > 0 and

∑n
j=1 wi = 1. For brevity, we

denote W = {w ∈ Rn
>0 |

∑n
i=1 wi = 1}. Then given

w ∈ W and a vector of distinct points c ∈ Qn, the
partition P ∈ Partn(Q) is said to be a multiplicatively
weighted Voronoi partition of Q generated by c and
weighted by w if, for each Pi and all k ∈ Pi, we have
ci ∈ Pi and 1

wi
dG(k, ci) ≤ 1

wj
dG(k, cj), for j 6= i. The

elements of c are said to be the generators of the Voronoi
partition multiplicatively weighted by w. Note that the
multiplicatively-weighted Voronoi partition generated by
c and w is not unique since how to assign tied vertices is
unspecified. Multiplicatively-weighted Voronoi partition
allow us to accommodate heterogeneous agents. For
example, if agent i is faster than another agent j (i.e.,
wi > wj), it would make sense that agent i should
control more territory than agent j. Note that the vector
of multiplicative weights, w, are not the same as the
graph edge weights, l, defined in Section II-A. From
this point forward we refer to multiplicatively-weighted
Voronoi partitions simply as Voronoi partitions and the
vector of weights w is given and fixed (unless we say
otherwise). Given that weights are fixed, for the rest of
the paper we refer to a Voronoi partition generated by c
and w simply as a Voronoi partition generated by c.

C. Cost Functions

Let weight function φ : Q → R>0 be a bounded
positive function which assigns a relative weight to each
element of Q. The one-center function H1 gives the cost
for a robot to cover a subset A ⊂ Q from a vertex h ∈ A



Fig. 1: The left image shows a grid environment whose
corresponding graph representation is shown in the right image.
Each cell in the grid represents a node in the graph and if two
cells are adjacent, then there is an unit-weight edge between
those nodes. The black nodes in the graph denote the set of
generalized centroids for the corresponding grid environment.

with relative prioritization given by φ:

H1(h;A) =
∑
k∈A

dG(h, k)φ(k).

A technical assumption is needed to define the gener-
alized centroid of a subset. We assume from now on that
a total order relation, <, is defined on Q: hence, we can
denote Q = {1, . . . , |Q|}. With this assumption we can
deterministically pick a centroid in Pi which minimizes
H1 as follows.

Definition 3 (Centroid). Let Q be a totally ordered set,
and let A ⊂ Q. We define the set of generalized centroids
of A as the set of vertices in A which minimize H1, i.e.,

C(A) := argmin
h∈A

H1(h;A).

In what follows, we drop the word “generalized” for
brevity. Note that the centroid of a set always belongs
to the set. Figure 1 shows an illustrative example of the
set C(A) for a simple environment.

With these notions, we are ready to define the follow-
ing useful cost functions. We can define the multi-center
function H : Qn×Covn(Q)→ R≥0 to measure the cost
for n robots to cover a n-covering P from the vertices
c ∈ Qn with weights w ∈ W by

H(c, P ) =

n∑
i=1

∑
k∈Pi

1

wi
dG(ci, k)φ(k).

Note that if wi = wj for all i, j, then the multi-
center cost function above is the same as in [12]. We
define the minimum cost-to-cover mapping Hmin : Qn×
Covn(Q)→ R≥0 by

Hmin(c, P ) =
∑
k∈Q

min
i

{
1

wi
dG(ci, k) | k ∈ Pi

}
φ(k).

We aim to minimize these performance functions with
respect to both the covering P and the vertices c. In
the motivational scenario we are considering, each robot
will periodically be asked to perform a task somewhere
in its region with tasks located according to distribution
φ. When idle, the robots would position themselves at the
vertices c. By minimizing the coverage cost, the robot

team minimizes the expected distance between a task
and the furthest robot which can service the task.

We are almost ready to introduce a notion of optimal
partition, the centroidal Voronoi partition. Our discussion
begins with the following two results. The first one is a
direct consequence of how we define a Voronoi partition
and a centroid.

Proposition 4 (Properties of Multicenter Function). Let
P ∈ Partn(Q), c ∈ Qn and w ∈ W . If P ′ is a Voronoi
partition generated by c, and c′ ∈ Qn satisfies c′i ∈
C(Pi) for all i, then

H(c, P ′) ≤ H(c, P ), and H(c′, P ) ≤ H(c, P ),

where the second inequality is strict if any ci /∈ C(Pi).

Proposition 5 (Properties of Hmin). Let P ′ ∈ Partn(Q)
be a Voronoi partition generated by c ∈ Qn (weighted
by w ∈ W) and let P ∈ Covn(Q) be any covering such
that P ′i ⊆ Pi for all i. Let P ∈ Partn(Q) any partition
satisfying P i ∩P ′i 3 ci for all i. If c′ ∈ Qn satisfies
c′i ∈ C(P ′i ) for all i, then

Hmin(c, P ′) = Hmin(c, P ), and

Hmin(c, P ′) ≤ Hmin(c, P ), and
Hmin(c′, P ′) ≤ Hmin(c, P ′),

where the third inequality is strict if any ci /∈ C(Pi).

Proof: Given that P ′ ⊆ P is a Voronoi partition
generated by c, then given how a Voronoi partition and
Hmin are defined, the first statement holds. The second
and third statements follow from Proposition 4 given that
if P , P ′ are partitions then Hmin(c, P ) = H(c, P ) and
Hmin(c, P ′) = H(c, P ′), respectively.

Propositions 4 and 5 imply that if P ∈ Partn(Q) and
(c, P ) minimizes H and Hmin, then ci ∈ C(Pi) for all i
and P must be a Voronoi partition generated by c. This
motivates the following definition.

Definition 6 (Centroidal Voronoi Partition). Given w ∈
W , P ∈ Partn(Q) is a centroidal Voronoi partition of
Q if there exists a c ∈ Qn such that P is a Voronoi
partition generated by c and ci ∈ C(Pi) for all i.

For a given environment Q, a pair made of a centroidal
Voronoi partition and the corresponding vector of cen-
troids is locally optimal in the following sense: The cost
functions H and Hmin cannot be reduced by changing
either P or c independently. Figure 2 demonstrates the
difference between a Voronoi and centroidal Voronoi
partition.

III. MODEL, PROBLEM, AND PROPOSED SOLUTION

A. One-to-Base-Station Robotic Network Model
Given a team of n robotic agents and a central base

station, each agent i ∈ {1, . . . , n} is required to have the
following basic computation capabilities:



Fig. 2: The figure shows two environments with two agents.
Each cell denotes a node in a graph and if two cells are
adjacent, then there is an unit-weight edge between those
nodes. The left image shows a Voronoi partition generated by
the two agents. Note that the blue agent is not at its region’s
centroid. The right image is instead a centroidal Voronoi
partition.

(C1) agent i can identify itself to the base station; and
(C2) agent i has a processor with the ability to store a

region Si ⊂ G(Q) and a center si ∈ Si.
Each i ∈ {1, . . . , n} is assumed to communicate with
the base station according to the asynchronous one-to-
base-station communication model described as follows:
(C3) there exists a finite upper bound ∆ on the time

between communications between i and the base
station. For simplicity, we assume no two agents
communicate with the base station at the same time.

The base station must have the following capabilities:
(C4) it can store an arbitrary n-covering of Q, P =

{Pi}ni=1, a list of centroids c ∈ Qn and weights
w ∈ W;

(C5) it can perform computations on subgraphs of G(Q);
and

(C6) it can store and operate on multiple n-coverings of
Q, P = {Pi}ni=1 and a list of centroids c ∈ Qn.

B. Problem Statement
Given weights w ∈ W assume that, for all t ∈ R≥0,

each agent i ∈ {1, . . . , n} maintains in memory a subset
Si(t) of environment Q and a vertex si(t) ∈ Si(t). Our
goal is to iteratively update the covering S(t) = {Si}ni=1

and the centers s(t) = {si}ni=1 while solving the
optimization problem:

min
s∈Qn

min
S∈Covn(Q)

U(s, S), (1)

for some cost function U(s, S) subject to the constraint
that every node in the environment Q maintains coverage
from some agent, and subject to the constraint imposed
by the robot network model with asynchronous one-to-
base-station communication.

C. The One-to-Base Coverage Algorithm
Given the cost function defined by U(s, S) and the

One-to-Base Network model described by (C1)–(C6), we
introduce the One-to-Base Coverage Algorithm to solve
the optimization problem (1).

One-to-Base Coverage Algorithm

The base station maintains in memory an n-covering
P = {Pi}ni=1, vector of locations c = (ci)

n
i=1 and

normalized weights w = (wi)
n
i=1, while each robot i

maintains in memory a set Si and a vertex si. The base
station maintains in temporary memory an n-coverings
P = {P i}ni=1 and P = {P i}ni=1, along with vectors
c = (ci)

n
i=1 and c = (ci)

n
i=1 for computational purposes.

At t = 0, let P (0) ∈ Covn(Q), S(0) = P (0),
and let all ci(0)’s be distinct. Assume that at time
t ∈ R>0, robot i communicates with the base station.
Let P+, c+, S+

i , and s+i be the values after commu-
nication. Then the base station executes the following
actions:

1: update P := P , c := c, P := P , c := c,
2: compute sets

Pi,+ :=

{
x ∈ Q

∣∣∣∣ 1
wi
dG(x, ci) <

min
{

1
wj
dG(x, cj)

∣∣ x ∈ Pj , j 6= i
}}

Pi,− :=

{
x ∈ Pi ∩

(
∪i 6=j Pj

) ∣∣∣∣ 1
wi
dG(x, ci) ≥

min
{

1
wj
dG(x, cj)

∣∣ x ∈ Pj , j 6= i
}}

3: update P i := (Pi\Pi,−)∪Pi,+

4: for k ∈ Pi\c do
5: compute sets

Pi,+ :=

{
x ∈ Q

∣∣∣∣ 1
wi
dG(x, k) <

min
{

1
wj
dG(x, cj)

∣∣ x ∈ Pj , j 6= i
}}

Pi,− :=

{
x ∈ Pi ∩

(
∪i 6=j Pj

) ∣∣∣∣ 1
wi
dG(x, k) ≥

min
{

1
wj
dG(x, cj)

∣∣ x ∈ Pj , j 6= i
}}

6: update P i := (Pi\Pi,−)∪Pi,+

7: update ci := k

8: if U
(
c, P

)
< U

(
c, P

)
then

9: update P i := P i

10: update ci := ci
11: P+

i := P i

12: c+i := ci
13: tell agent i to set S+

i := P+
i and s+i = c+i

Remark 7 (Constant cost). Given the constant cost
function U(c, P ) = α for α ∈ R, for a set of initial
conditions (c, P ), the One-to-Base Coverage Algorithm
produces a Voronoi partition generated by c.

Remark 8 (Full coverage). Notice that the set Pi,+

adds points to an agents environment from other agent’s
territory that are closer to it. Also, notice that Pi,− only
removes points from agent i’s territory if another agent
is covering that territory. Defining the sets in this way



ensures that every point in the environment will always
have coverage by some agent.

We have the following main result on the limit behav-
ior of the algorithm.

Theorem 9 (Convergence of One-to-Base Coverage
Algorithm (Hmin)). Consider a network consisting of n
robots endowed with the computation capacities (C1),
(C2) and communication capacity (C3), and a base
station with capacities (C4), (C5) and (C6). Assume
the network implements the One-to-Base Coverage Al-
gorithm with U(c, P ) = Hmin(c, P ). Then the resulting
evolution

(s, S) : R≥0 → Qn × Covn(Q)

converges in finite time to a pair (s∗, S∗) composed of
a centroidal Voronoi partition S∗ generated by s∗.

D. Pareto-Optimal Partitions
Using the algorithms described thus far, ties along

partitions’ boundaries are not handled in any optimal
way and can often be improved. The major source of
sub-optimal boundary allocation is due to the discrete
nature of how centroids of a region are selected. Often
times when an agent has more than one “center” location,
the overall partition can become better balanced if the
agent takes an alternate center value as its centroid. The
following definition and proposition make this notion
more precise.

Definition 10 (Pareto-Optimal Partition). Given a vector
of positions c = {c1, . . . , cn} and a vector of weights
w = {w1, . . . , wn}, the (weighted) Voronoi partition
P generated by c is Pareto-optimal if for all c =
{c1, . . . , ci, . . . , cn} for i ∈ {1, . . . , n} such that ci 6= ci
and ci ∈ Pi, the Voronoi partition P generated by (w, c)
satisfies H(c, P ) ≤ H(c, P ).

As an immediate consequence of the definition of a
Pareto-optimal partition and of Proposition 4 we can
conclude that every Pareto-optimal partition is also a
centroidal Voronoi partition. However, the reverse impli-
cation does not hold, as shown in the following example.

Example 1 (One Dimensional Pareto-optimal Partition).
Consider the three environments in Figure 3, each with
two agents denoted by the colored circles. Assume that
each cell denotes a node in the graph and that unit-
weight edges connect any adjacent cells. Assume φ is
constant. If the environment is partitioned according to
leftmost image of Figure 3, then each agent is at the
centroid of its region, and the graph is a centroidal
Voronoi partition whose multi-center function cost-to-
cover is H = 4. This partition is clearly not well
balanced, and unless ties are broken in some non-trivial
way, this is a valid (worst-case) partition that the system
can reach. If however, the blue agent moves to its other

centroid, as shown in the middle image, then the worst
case partition must be a variant of the partition shown in
the rightmost image whose cost-to-cover isH = 3. There
exists no partition with smaller cost-to-cover (w.r.t. H)
by moving any single agent, and hence the partition in
the rightmost image is Pareto-optimal.

Fig. 3: The figure shows three environments with two agents.
Each cell denotes a node in a graph, and if two cells are
adjacent then there is an unit-weight edge between those nodes.

The above results give that Pareto-optimal partitions
are a subset of centroidal Voronoi partitions. We can
define the cost function, U(c, P ), in the One-to-Base
Coverage Algorithm such that the algorithm converges
to a Pareto-optimal partition. We define the new cost
function

Hinf(c) =
∑
k∈Q

min
i

{ 1

wi
dG(ci, k) | k ∈ Q

}
φ(k). (2)

Notice that this function is different from Hmin in that
it looks for the absolute minimum distance to a point,
k. The function Hinf allows the case when k /∈ Pi,
but 1

wi
dG(ci, k) < 1

wj
dG(cj , k), for all j 6= i. The

Hinf function is linked to the multicenter function in
the following sense.

Proposition 11 (Properties of Hinf ). Given c ∈ Qn and
w ∈ W , let P be a Voronoi partition generated by c,
then

H(c, P ) = Hinf(c).

Proof: Voronoi partitions are optimal in the sense
that H(c, P ) = Hinf(c) by definition of Hinf .

We are now ready to state the main result of this
subsection. Given the One-to-Base Coverage Algorithm
with U(s, S) = Hinf(c) we have the following result.

Theorem 12 (Convergence of One-to-Base Coverage
Algorithm (Hinf )). Consider a network consisting of n
robots endowed with the computation capacities (C1),
(C2) and communication capacity (C3), and a base
station with capacities (C4), (C5) and (C6). Assume
the network implements the One-to-Base Coverage Al-
gorithm with U(c, P ) = Hinf(c). Then the resulting
evolution

(s, S) : R≥0 → Qn × Covn(Q)



converges in finite time to a pair (s∗, S∗) composed of
a Pareto-optimal partition S∗ generated by s∗.

Some remarks are in order. First, it is possible for the
One-to-base Algorithm with U = Hmin to converge to
a Pareto-optimal partition, however, it is not guaranteed
as in the case with U = Hinf . Second, if a partition is
not Pareto-optimal then the cost to cover a region, in
the context of the multi-center function, can be further
decreased by making it Pareto-optimal. This point is
clarified in Proposition 11, which relates the multi-
center function to Hinf . Finally, we emphasize that the
difference in the cost-to-cover a region for a Pareto-
optimal partition versus a centroidal Voronoi partition
decreases as the map defining a region becomes less
coarse. This is because the notion of a centroidal Voronoi
partition not being Pareto-optimal only exists when a
region has more than one centroid, a property of discrete
spaces but not of continuous ones. Therefore, as the grid
approximating a region becomes less coarse, the more
likely it is that a centroidal Voronoi partition is also
Pareto-optimal.

E. Combining Hmin and Hinf

Although the One-to-Base Coverage Algorithm with
U = Hinf is guaranteed to converge to a Pareto-optimal
partition whereas the algorithm with U = Hmin is
not, the algorithm with U = Hmin is still of practical
importance. Computing Hinf requires that for each node
in the graph, all agents compare their relative distances to
that node regardless of whether that node exists in the
agent’s territory or not. The Hmin function, however,
only requires a comparison if the node belongs in the
agent’s territory. Given the computational capabilities
of the base station being used, one method may be
preferred over the other. A user can take advantage of
both algorithm properties by running the algorithm with
U = Hmin until it converges to get an initial partition,
and then run the algorithm with U = Hinf to reach a
Pareto-optimal solution, if the solution system has not
already reached it during the U = Hmin portion of the
algorithm. With a slight abuse of notation we will refer
to this combined algorithm as the One-to-Base Coverage
algorithm with U = Hmin,inf .

IV. IMPLEMENTATION AND SIMULATIONS

In order to efficiently implement the One-to-Base
Coverage Algorithm and under the assumption of using
Hmin orHinf as cost functions, we provide the following
revised version, which can be easily seen to be equivalent
to that in Section III-C.

One-to-Base Coverage Algorithm – revised
The base station maintains in memory an n-covering
P = {Pi}ni=1, vector of locations c = (ci)

n
i=1 and

normalized weights w = (wi)
n
i=1, while each robot i

maintains in memory a set Si and a vertex si. The base
station maintains in temporary memory an n-covering
P = {P i}ni=1 and vectors c = (ci)

n
i=1 and c = (ci)

n
i=1

for computational purposes. At t = 0, let P (0) ∈
Covn(Q), S(0) = P (0), and let all ci(0)’s be distinct.
Assume that at time t ∈ R>0, robot i communicates with
the base station. Let P+, c+, S+

i , and s+i be the values
after communication. Then the base station executes the
following actions:

1: update P := P , c := c, c := c, P i = Q
2: for k ∈ Pi\c do
3: update ci := k
4: if U

(
c, P

)
< U

(
c, P

)
then

5: update ci := k
6: compute sets

Pi,+ :=

{
x ∈ Q

∣∣∣∣ 1
wi
dG(x, ci) <

min
{

1
wj
dG(x, cj)

∣∣ x ∈ Pj , j 6= i
}}

Pi,− :=

{
x ∈ Pi ∩

(
∪i 6=j Pj

) ∣∣∣∣ 1
wi
dG(x, ci) ≥

min
{

1
wj
dG(x, cj)

∣∣ x ∈ Pj , j 6= i
}}

7: P+
i := (Pi\Pi,−)∪Pi,+

8: c+i := ci
9: tell agent i to set S+

i := P+
i and s+i = c+i

This revised version of the algorithm takes advantage
of how the cost functions Hmin and Hinf , and sets
Pi,+ and Pi,− are defined. Indeed, setting P i = Q
in line 1 avoids having to calculate Pi,+ and Pi,− for
every k ∈ Pi\ci, as was done in Section III-C, because
Hmin and Hinf already distribute costs to nodes that
are closer to one agent as opposed to another. Hence
this implementation produces the same evolutions but
requires less memory, as we no longer need the set P ,
and less computation time, as the sets Pi,+ and Pi,− are
calculated only once.

We are now ready to proceed with our simulation re-
sults, which are obtained by running the revised version
of the algorithm. To demonstrate the utility of the One-
to-Base Coverage Algorithm for various values of cost
function U , we implemented it using the open-source
Player/Stage robot control system and the Boost Graph
Library (BGL). All results presented here are generated
using Player 2.1.1, Stage 2.1.1, and BGL 1.34.1. A non-
convex environment (borrowed from [12]) is specified
with three robots. The free space is modeled using
an occupancy grid with 0.6m resolution, producing a
lattice-like graph with all edge weights equal to 0.6m.
The 0.6m resolution is chosen so that each robot can fit
in a grid cell.

One example with U = Hmin,inf is shown in Fig-
ure 4. In the simulation, the robots have uniform weight
assignment defined by wi = 1

3 for i ∈ {1, . . . , 3}. We
start with each robot owning the entire environment and



stationed at its unique centroid as shown in the first
panel, and then proceed by choosing a random robot
to communicate with the base station at each iteration.
The second panel shows an intermediate covering of the
environment before convergence to a centroidal Voronoi
partition. The third panel shows convergence of the
U = Hmin portion of the U = Hmin,inf algorithm. The
fourth panel shows the Pareto-optimal partition which
is achieved after convergence of the U = Hinf portion
of the U = Hmin,inf algorithm. As can be seen, the
movement of the robot relative to the third panel is
marginal, but the partition appears to be more balanced
and is still centroidal Voronoi. The cost to cover in terms
of the multi-center function, H, decreases from H = 729
toH = 728. Although the final partition and the decrease
in cost-to-cover change only marginally in this example,
the change can be much more noticeable as is explained
in the following.

Another example with U = Hmin,inf is shown in
Figure 5. As before, the robot’s have uniform weight
assignment defined by wi = 1

3 for i ∈ {1, . . . , 3}.
The example starts with each agent owning the entire
territory, the agents being stationed at their unique
centroid, and the simulation continuing with the agents
being selected at random to communicate with the base
station. The second panel shows the convergence of
the U = Hmin portion of the algorithm, which leads
to a final multi-center cost of H = 804. The third
panel shows the update after the first iteration of the
U = Hinf portion of the algorithm with the green
agent. The update shows that the lower portion of the
environment is getting less than optimal coverage and is
improved by moving an agent closer to that region. The
fourth panel shows the Pareto-optimal partition which is
achieved after convergence of the U = Hinf portion of
the U = Hmin,inf algorithm. Notice that in this example,
the final partition is quite different from the partition
achieved at the end of the U = Hmin portion of the
algorithm. The final multi-center function cost of this
partition is H = 753, which is a noticeable improvement
in coverage.

Thus far we have looked at two representative ex-
amples of using the algorithm with U = Hmin,inf .
These examples illustrate that, like centroidal Voronoi
partitions, Pareto-optimal partitions are not necessarily
unique, and that the evolution under the One-to-base
station algorithm is only guaranteed to converge to
a locally optimal solution. To see how the algorithm
compares in general and for different choices of U , we
simulate the algorithm with the same initial setup as
shown in both Figure 4 and Figure 5. The One-to-Base
Coverage Algorithm with U = Hmin, U = Hinf , and
U = Hmin,inf is run 100 times for each choice of U .
Table I summarizes the final cost-of-coverage for each
choice of U . We observe that the One-to-Base Coverage
Algorithm with U = Hmin converges to partitions that

have the same minimum cost as those attained with
the algorithm using U = Hinf or U = Hmin,inf .
On the other hand, the maximum cost-to-cover with
U = Hmin can be much larger than with the other two
choices of U . Of the three algorithms, the algorithm
with U = Hinf converges consistently to partitions
with the lowest coverage costs, however, as discussed
earlier it is computationally the most expensive. Finally,
the algorithm with U = Hmin,inf behaves as expected,
converging on average to partitions with values similar
to that of the algorithm with U = Hinf although with a
slightly larger deviation.

Algorithm Min Mean Max StdDev
Hmin 728 746.02 804 27.74
Hinf 728 730.26 732 1.92

Hmin,inf 728 730.38 753 4.91

TABLE I: Multi-center function cost-to-cover statistics for each
algorithm from 100 simulation runs.

A. Handling Dynamic Changes

Evolving overlapping coverings in the One-to-Base
Coverage Algorithm enables simple handling of environ-
mental changes along with dynamic arrivals, departures,
and even the disappearance of robots. Changes in the
environment along with robot departures or disappear-
ances can increase coverage cost, but those increases are
only a transients and, with the appropriate algorithmic
additions, the system will converge in finite steps after
such an event. The One-to-Base Coverage Algorithm
also has the added advantage that it can account for
changes in robot performance due to changes in capa-
bility caused by potential damage to the hardware. The
following algorithmic additions address how to handle
the events described.

a) Environment Changes: Each region in the envi-
ronment is initially assigned an importance according
to the weight function φ(x). As robots explore the
environment, they may determine that certain regions are
more/less important than what was originally assigned.
Robots can communicate this to the base station at which
point the base station can update φ(x).

b) Arrival: When a new robot i communicates
with the base station, it can be assigned any initial Pi

desired. Possibilities include adding all vertices within a
set distance of its initial position or assigning it just the
single vertex which has the highest coverage cost in Q.

c) Departure & Disappearance: A robot i might
announce to the base station that it is departing, perhaps
to recharge its batteries or to perform some other task. In
this situation, the base station can simply add Pi to the
territory of the next robot it talks to before executing
the normal steps of the algorithm. The disappearance
or failure of a robot i can be detected if it does not



Fig. 4: Simulation of three robots partitioning an environment with black obstacles using the Hmin,inf One-to-base station
algorithm. The free space of the environment is modeled using the indicated occupancy grid where each cell is a vertex in the
resulting graph. The robots’ optimal coverage position is marked by an X and the boundary of each robot’s territory drawn in
its color. Some cells are on the boundary of multiple territories and for these we draw superimposed robot colors.

Fig. 5: Simulation of three robots partitioning an environment with black obstacles using the Hmin,inf One-to-base station
algorithm. The initial conditions are equivalent to that of Figure 4(d), however, note that the evolution of the algorithm is
different.

communicate with the base station for longer than ∆. If
this occurs, then the departure procedure above can be
triggered. Should i reappear later, it can be handled as
a new arrival or given its old territory.

d) Performance: Malfunction of a robot i can be
detected by the agent via self diagnosis and communi-
cated to the base station. If this malfunction causes the
robot to survey less territory, then wi will have changed,
so the base station can simply re-normalize the vector
of weights w.

V. CONCLUSION

We have described a coverage algorithm, with cor-
responding cost-functions, which uses the One-to-Base
station communication architecture that drive territory
ownership among a team of robots in a non-convex
environment to a centroidal Voronoi partition in finite
time. We have also defined the notion of Pareto-optimal
partition and have provided a provably correct method
to reach such a partition using the One-to-Base Cov-
erage Algorithm. Finally, we have demonstrated the
effectiveness of the algorithm through simulation, and
have outlined various ways the algorithm can be adapted
to allow for dynamic changes in the system. We have

focused on dividing territory in this work, but the algo-
rithm can easily be combined with methods to provide
a service over Q, as in [16]. This work leaves various
extensions open for further research. First, it would be
worthwhile to adapt the algorithm to allow for area-
constrained partitions similar to the work done in [17],
[18]. Second, we would like to extend the One-to-base
Coverage Algorithm to other communication settings
(e.g., directional or pair-wise gossip) to take advantage
of the notion of Pareto-optimal partitions.

APPENDIX

In this appendix we prove Theorems 9 and 12. Any
mention to the One-to-Base Coverage Algorithm in this
appendix will refer to the version presented in Sec-
tion III-C. Their proof is based on the following con-
vergence result for set-valued algorithms on finite state
spaces, which can be recovered as a direct consequence
of [19, Theorem 4.3].

Given a set X , a set-valued map T : X ⇒ X is a map
which associates to an element x ∈ X a subset Z ⊂ X .
A set-valued map is non-empty if T (x) 6= 0 for all x ∈
X . Given a non-empty set-valued map T , an evolution
of the dynamical system associated to T is a sequence



{xn}n∈Z≥0
⊂ X with the property xn+1 ∈ T (xn) for

all n ∈ Z≥0.

Lemma 13 (Convergence under persistent switches). Let
(X, d) be a finite metric space. Given a collection of
maps T1, . . . , Tm : X → X , define the set-valued map
T : X ⇒ X by T (x) = {T1(x), . . . , Tm(x)} and let
{xn}n∈Z≥0

be an evolution of T . Assume that:
1) there exists a function U : X → R such that

U(x′) < U(x), for all x ∈ X and x′ ∈ T (x)\{x};
and

2) for all i ∈ {1, . . . ,m}, there exists an increasing
sequence of times {nk | k ∈ Z≥0} such that
xnk+1 = Ti(xnk

) and (nk+1 − nk) is bounded.
Let Fi = {x ∈ X | Ti(x) = x} be the set of fixed points
of Ti. Then, for all x0 ∈ X there exist N ∈ N and
x̄ ∈ (F1 ∩ · · · ∩Fm) such that xn = x̄ for all n ≥ N .

Note that the existence of a common fixed point for
the collection of maps Ti is guaranteed by this result.
We now apply Lemma 13 to the evolution of One-to-

base Coverage Algorithm with U(c, P ) = Hmin(c, P )
and U(c, P ) = Hinf(c), respectively. To do so, for
each function given by U(c, P ), we must describe the
algorithm as a set-valued map and find a corresponding
Lyapunov function. The first step is possible because the
One-to-Base Coverage Algorithm is well-posed in the
sense of the following immediate result.

Proposition 14 (Well-posedness). Let P ∈ Covn(Q)
and c ∈ Qn such that ci ∈ Pi and ci 6= cj for all i and
all j 6= i. Then, P+ and c+ produced by the One-to-Base
Coverage Algorithm meet the same criteria.

Given this result, the One-to-Base Coverage Algo-
rithm can be written as a set valued map. For any i ∈
{1, . . . , n}, we define the map TU,i : Qn ×Covn(Q)→
Qn × Covn(Q) by

TU,i(c, P ) =
{
{c1, . . . , c+i , . . . , cN},
{P1, . . . , P

+
i , . . . , Pn}

}
,

where c+i and P+
i are defined per the algorithm when

i is the communicating robot, and U is dependent on
the cost function we are referring to (i.e., U = Hmin

or U = Hinf ). Then we can define the set-valued map
TU : Qn × Covn(Q) 7→ Qn × Covn(Q) by

TU (c, P ) = {TU,1(c, P ), . . . , TU,N (c, P )}.

Thus, the dynamical system defined by the application
of the algorithm is described by {c+, P+} ∈ TU (c, P ).

For our Lyapunov arguments we will need to define
M(P ) as the set of vertices which are owned by multiple
agents. We now proceed by stating two useful proposi-
tions, which allow us to conclude Theorem 9.

Proposition 15 (Decaying Hmin cost function). After
each iteration of the one-to-base station algorithm if
(c+, P+) 6= (c, P ) then one of the following holds:

(i) Hmin(c+, P+) < Hmin(c, P ); or
(ii) Hmin(c+, P+) = Hmin(c, P ), and
|M(P+)| < |M(P )|.

Proof: If c+ = c then Hmin(c+, P+) ≤
Hmin(c, P ). This is a direct consequence of how the sets
Pi,+ and Pi,− are defined. Points are added to Pi if and
only if they are strictly closer to ci than any other center
cj and hence the cost of Hmin must decrease by the
addition of these points. Points are removed if and only if
they are strictly farther away or tied points and so Hmin

must decrease or stay the same. If c+ 6= c then by lines
8-10 of the algorithm Hmin(c+, P+) < Hmin(c, P ).
For the case Hmin(c+, P+) = Hmin(c, P ) then for
every x ∈ Pj\Pi, for all j 6= i, there exists no point
that is strictly closer to the center ci than any other
center cj , j 6= i. Therefore, no points can be added
to P+

i , and so if P+ 6= P it must be the case that
|M(P+)| < |M(P )|.

Proposition 16 (Convergence of THmin ). The evolution
of the One-to-Base Coverage Algorithm (c(t), P (t)) gen-
erated by the map THmin

converges in finite time to the
intersection of the equilibria of the maps THmin,i, that is,
to a pair (c, P ) where P is a centroidal Voronoi partition
generated by c.

Proof: The proof continues with the application of
Lemma 13 to (c(t), P (t)). The algorithm is defined as
the mapping THmin

: Qn × Covn(Q) 7→ Qn × Covn(Q)
defined above, which is well-posed. We can form a
Lyapunov function using Proposition 15 as follows.
Since Q is a finite set, there exists only a finite number
of possible values for Hmin and |M |. Let εm be the
magnitude of the smallest possible non-zero difference
between two values of Hmin. Let αM be larger than
twice the maximum possible value of |M |. Consider the
following function V : Qn × Covn(Q)→ R≥0:

V (c, P ) = Hmin(c, P ) +
εm
αM
|M(P )|.

With this scaling of |M(P )| if Hmin decreases V nec-
essarily decreases. Thus invoking Proposition 15, we
conclude that if (c′, P ′) ∈ THmin

(c, P ), then either
V (c′, P ′) < V (c, P ) or (c′, P ′) = (c, P ). Thus, V (c, P )
fulfills assumption (ii). Finally the communication model
(C3) assures that assumption (iii) is met. Then applying
lemma 13, we are assured the dynamics converge to a
fixed point (c∗, P ∗). It remains to show that (c∗, P ∗) is a
centroidal Voronoi partition generated by (w, c∗). If P ∗

is not a partition, then Pi,− 6= ∅ and if the partition is
not Voronoi then Pi,+ 6= ∅. If P ∗ is a Voronoi partition,
generated by (w, c∗) but c∗i /∈ C(P ∗i ) for any i, then
from Proposition 5 and lines 8-10 of the algorithm, the
cost to cover P ∗i can be improved so (c∗, P ∗) cannot be
a fixed point of THmin(c, P ). Therefore, the fixed point
is a centroidal Voronoi Partition.



Since updates to agent i in base-station memory
also occur on the physical agent, we can conclude the
convergence proof of Theorem 9.

Finally, we state two propositions which allow us to
conclude Theorem 12.

Proposition 17 (Decaying Hinf cost function). After
each iteration of the one-to-base station algorithm if
(c+, P+) 6= (c, P ) using Hinf as the cost function then
one of the following holds:
(i) Hinf(c

+) < Hinf(c); or
(ii) Hinf(c

+) = Hinf(c), and
Hmin(c+, P+) < Hmin(c, P ); or

(iii) Hinf(c
+) = Hinf(c), Hmin(c+, P+) = Hmin(c, P )

and |M(P+)| < |M(P )|

Proof: If c+ = c then Hmin(c+, P+) ≤ Hmin(c, P )
and Hinf(c

+) = Hinf(c). This is a direct consequence
of how we define Hinf and the sets Pi,+ and Pi,−.
Points are added to Pi if and only if they are strictly
closer to ci than any other center cj and hence the
cost of Hmin must decrease by the addition of these
points. Points are removed if and only if they are strictly
farther away or tied points and so Hmin must decrease
or stay the same. If c+ 6= c then by the lines 8-10
of the algorithm Hinf(c

+) < Hinf(c). For the case
Hmin(c+, P+) = Hmin(c, P ) then for every x ∈ Pj\Pi,
for all j 6= i, there exist no point that is strictly closer to
the center ci than any other center cj , j 6= i. Therefore,
no points can be added to P+

i , and so if P+ 6= P it
must be the case that |M(P+)| < |M(P )|.

Proposition 18 (Convergence of THinf
). The evolution

of the One-to-Base Coverage Algorithm (c(t), P (t)) gen-
erated by the map THinf

converges in finite time to the
intersection of the equilibria of the maps THinf ,i, that is,
to a pair (c, P ) where P is a Pareto-optimal partition
generated by c.

Proof: The proof follows the lines of the proof of
Proposition 16, with the important modification of using
a different Lyapunov function, defined as follows. Let εi
and εm be the magnitude of the smallest possible non-
zero difference between two values of Hinf and Hmin,
respectively. Let αm and αM be larger than twice the
maximum possible value of Hmin and |M |, respectively.
If we define the function V as

V (c, P ) = Hinf(c) +
εi
αm
Hmin(c, P ) +

εiεm
αmαM

|M(P )|

and we invoke Proposition 17 and Lemma 13, we
conclude that the dynamics converge to a fixed point
(c∗, P ∗).

It remains to show that (c∗, P ∗) is a Pareto-optimal
partition generated by c∗. If P ∗ is not a partition, then
Pi,− 6= 0 and if the partition is not Voronoi then
Pi,+ 6= 0. Continuing by contradiction, assume that c∗

form a Voronoi partition which is not Pareto-optimal.

This implies that there exists a c′ ∈ P where for at least
one agent c′i 6= c∗i and a partition P ′ generated by c′

such that H(c′, P ′) < H(c∗, P ∗). By the definition of
the algorithm and Proposition 11 this is not possible.
Therefore the fixed point partition is Pareto-optimal.
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