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On Dynamic Vehicle Routing with Time Constraints

Shaunak D. Bopardikar Stephen L. Smith Francesco Bullo

Abstract—We consider the problem of dynamic vehicle routing under
exact time constraints on servicing demands. Demands for service are
generated in an environment as follows: uniformly randomly in space and
Poisson in time. Every demand needs to be serviced exactly after a fixed,
finite interval of time after it is generated. We design routing policies
for a service vehicle with simple kinematics to maximize the fraction of
demands serviced at steady-state. The main contributions are as follows.
First, we demonstrate that this problem is described by an appropriate
directed acyclic graph structure which leads to a computationally-efficient
routing algorithm based on a longest-path computation. Second, we
provide two analytic lower bounds on the service fraction of the longest
path policy. The first bound is relative to an optimal, non-causal version
of the policy, i.e., a policy based on knowledge of all future demand
requests. The second bound is an explicit function of demand generation
rate, and therefore, useful as a design tool. We also present numerical
results to support the analytic bounds and to shed light on parameter
regimes where the analytic bounds are not conclusive.

I. INTRODUCTION

Dynamic Vehicle Routing (DVR) refers to a class of path planning
problems for one (or many) vehicle(s) to efficiently service demand
requests that appear sequentially in a given environment as per
a spatio-temporal process. These problems find application in the
areas of surveillance/reconnaissance, where the goal is to track
mobile targets [1]; in environmental monitoring, where a dynamically
evolving map on a region needs to be estimated [2]; as well as in
industrial automation, wherein robotic arms need to perform efficient
pick-and-place operations [3].

Early results on DVR problems comprised of policies that achieved
the minimum (for arrival rates tending to zero), or were within a
constant factor of optimality (for arrival rates tending to infinity)
with respect to the expected time spent by each demand before being
served [4], [5]. A single policy was proposed in [6] which is optimal
for the case of low arrival rate and performs within a constant factor
of the best known policy for the case of high arrival rate. Due to a
recent surge of activity in the area of motion planning for autonomous
robots, there have been a lot of variants of DVR being addressed over
the last decade. We refer the reader to [7] for a comprehensive survey
on this topic.

Pertaining to the variant of DVR problems with time windows, the
problem traces its origin to the classic static vehicle routing problem
with time windows [8], which is known to be NP-hard. A dynamic
version of this problem was considered in [9], which also accounted
for demands stochastically disappearing with a known distribution.
The work in [10] considers a related problem where demands appear
and disappear via known time distributions and take place at fixed
points of interest in a region. Related problems in which the goal
is to efficiently plan collision-free paths through environments with
obstacles have been considered more recently in [11] and in [12].
Both of these two references deal with a problem which is essentially
a dual of the one we consider in the sense that our goal is to reach
certain points in a region.
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This paper considers a DVR problem in which demands appear
uniformly randomly in a compact planar environment, assumed to
be a square of length W for ease of presentation, and via a Poisson
process in time with parameter λ. Each demand needs to be serviced
exactly after a time duration of T after its generation. These scenarios
arise in several robotic applications such as event monitoring in
surveillance, or in transportation networks, when service is required
at exact time instants. A demand is missed if it is not serviced at the
specified time instant. A demand gets serviced by a vehicle, modeled
as a first-order integrator with maximum speed u, when the vehicle
reaches the demand location at the exact instant of time when it is
to be serviced. Our goal is to design routing policies, i.e., the order
in which the demands should be serviced, so as to maximize the
fraction of demands serviced at steady state.

Our main contributions are as follows. First, we demonstrate that
this problem is described by an appropriate directed acyclic graph
structure in the space-time environment. This structure leads to a
computationally-efficient routing algorithm based on a longest-path
computation. Second, we provide two novel analytic lower bounds
on the service fraction of the longest path policy. The first bound is
a function of W,u and T and is defined relative to an optimal, non-
causal version of the policy, i.e., a policy based on knowledge of all
future demand requests. Such comparison with non-causal policies
have been studied in literature under the terminology of competitive
ratio, e.g., see [13] on characterizing this ratio for the k-server
problem. Through this bound, we establish asymptotic optimality of
the longest path policy in the parameter regimes for which the term
W/(Tu) → 0+. However, this bound is not amenable for use as a
design tool primarily because the non-causal version of the policy
is not physically realizable. For the case when T ≥

√
2W/u, we

derive a second bound, which is an explicit function of W,u and λ,
and therefore, useful as a design tool. Finally, we present numerical
results to support the analytic bounds as well as to shed light on
parameter regimes where the analytic bounds are not conclusive.

A preliminary version of this work was addressed in [14], in
which we considered the case of mobile (translating) demands being
generated on a line segment, and which need to be serviced before
they reached a finish line. While the present work borrows the main
concepts, such as identifying the directed acyclic graph structure, the
novelty of this paper lies in formulating the problem in space-time
environment, and in the derivation of the two analytic lower bounds.

This paper is organized as follows. The problem formulation along
with background results are presented in Section II. The service
policies are described in Section III. The analytic lower bounds
are presented in Section IV. Simulation results are presented in
Section V. Finally, conclusions and directions for future work are
presented in Section VI.

II. PROBLEM STATEMENT AND BACKGROUND

In this section, we present the problem statement and background
results useful to establish the main results of this paper.

A. Problem Formulation

Consider a square environment E := [0,W ]2 ⊂ R2. The environ-
ment contains a single vehicle with position p(t) = [X(t), Y (t)]T ∈
E , modeled as a first-order integrator with maximum speed equal to
u. Demands for service are generated in the environment via a spatio-
temporal process. We assume that the process generating the demands
is uniform in space and Poisson in time with parameter λ. Specifically,
we assume that if a tagged demand i,∀i ∈ N, is generated at time
trel,i, then it is required to be serviced at the exact time instant given
by trel,i + T , for a given T > 0. The demand is served when the
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vehicle reaches exactly the spatial location of the demand at the time
instant trel,i + T .

Remark II.1 (Finite service time windows) The algorithms in this
paper and the analysis also extend to the case when a tagged demand
i, for all i ∈ N, is generated at time trel,i, needs to be serviced at
any time in the interval [trel,i, trel,i+T ]. However, the analysis would
become conservative for the case, especially when the generation rate
λ is not very high.

Let Q(t) ⊂ E denote the set of positions of all released but
unserviced demands at time t. If the ith demand is served, then it
is removed from Q and placed in the set Qsrv, whose cardinality we
denote msrv. If the ith demand is missed, then it is removed from Q
and placed in Qmiss with cardinality mmiss.

Online and Offline Algorithms: An online algorithm [15] (or
policy) for the vehicle is a map P : E × F(E) → R2, where F(E)
is the set of finite subsets of E , assigning a commanded velocity to
the service vehicle as a function of the current state of the system:
ṗ(t) = P(p(t),Q(t)). Thus, in an online algorithm the vehicle at a
time t has access to demand information, only for the demands that
have been generated until time t. By contrast, in an offline algorithm,
the vehicle has access to the generation time and the location of all
demands throughout its entire execution. Thus, the vehicle trajectory
t 7→ p(t) can be computed at the problem outset. In particular, if Q̄
denotes the set of positions of all demands that will be released in
the execution, then an offline algorithm can be analogously described
by the form ṗ(t) = P(p(t), Q̄).

Problem Statement: The goal in this paper is to find online
algorithms P that maximize the fraction of demands that are serviced
Fcap(P ), termed as the service fraction. Formally, for a policy P , we
define the steady state average service fraction as

Fcap(P ) := lim sup
t→+∞

E
[

msrv(t)
msrv(t)+mmiss(t)

]
,

where the expectation is with respect to the stochastic process that
generates the demands.

B. Background Results

We now review the distribution of demands in an unserviced region
and the longest path problem.

1) Demand distribution: Suppose that mobile demands are gener-
ated uniformly randomly in the region E and by a Poisson process
in time with rate λ. Upon generation, each demand moves in the
+z direction with unit speed, i.e., all demands translate in the +z
direction. Then, the following result characterizes the distribution of
demands within any region contained in E × [0, t].

Lemma II.2 (Distribution of outstanding demands, [16])
Suppose the generation of demands commences at time 0 and no
demands are serviced in the interval [0, t]. Let Q denote the set
of all demands in E × [0, t] at time t. Then, given a measurable
compact region R of volume V contained in E × [0, t],

P[|R ∩ Q| = n] =
e−λV/W

2

(λV/W 2)n

n!
.

As a consequence, conditioned on the number of demands within such
a region R, the demands are distributed uniformly randomly in R.

The proof of this result is identical to the proof of [16][Lemma V.1]
in which we substitute the demand speed v = 1, and therefore, we
omit the proof for the sake of brevity.

2) Longest Paths in Directed Acyclic Graphs: A directed graph
G = (V,E) consists of a set of vertices V and a set of directed
edges E ⊂ V ×V . An edge (v, w) ∈ E is directed from vertex v to
vertex w. A path in G is a sequence of vertices such that from each
vertex in the sequence, there is an edge in E directed to the next
vertex in the sequence. A path is simple if it contains no repeated
vertices. A cycle is a path in which the first and last vertices in the
sequence are the same. A graph G is acyclic if it contains no cycles.
The longest path problem is to find a simple path of maximum length
(i.e., a path that visits a maximum number of vertices). In general
this problem is NP-hard as its solution would imply a solution to the
well known Hamiltonian path problem [17]. However, if the graph
is a Directed Acyclic Graph (DAG), then the longest path problem
has an efficient dynamic programming solution [18] with complexity
O(|V |+ |E|), that relies on topologically sorting [19] the vertices.

III. SERVICE POLICIES

In this section, we begin by introducing a notion of reachability
graph, and then proceed to define service policies based on the
computation of longest paths over the reachability graph.

A. Characterization of reachable demands

Without loss of generality, we assume that the demands are labelled
sequentially as per their generation time. When the ith demand is
active, we can attach a third-coordinate to the position of the demand,
given by

trel,i + T − t,

where trel,i is the generation time of the demand, and t is the current
time. Therefore, we define the space-time environment as EST :=
E × R≥0.

Consider demand i with generation time trel,i and position qi =
(xi, yi) ∈ E . Suppose that the service vehicle is located at p(t) =
(X(t), Y (t)), at a time instant t satisfying trel,i ≤ t ≤ trel,i+T . The
demand i can be serviced if and only if

‖p(t)− qi‖
u

≤ trel,i + T − t.

The left hand side is the time it takes for the vehicle to reach qi from
its current position p(t) moving at full speed toward the demand
location, while the right hand side is the remaining time until the
demand’s service constraint. From this description, we can define the
set of reachable demands from any location in EST.

Definition III.1 (Reachable set from a point) The reachable set
RT (y, t) from a position y ∈ E at time t ≥ 0 is defined as

RT (y, t) := {(z, τ) ∈ E × [t, T ] | ‖y − z‖
u

≤ τ − t}.

Next, consider the set of demands in RT (p(t̄), t̄), and suppose
the vehicle chooses to service demand i, with position (qi, t) =
(xi, yi, t) ∈ RT (p(t̄), t̄). Upon service at time ti = trel,i + T , the
service vehicle can recompute the reachable set RT (p(ti), ti), and
select a demand that lies within. Since all demands translate together
along the time axis, every demand that is reachable from (qi, ti),
is reachable from (qi, t̄). Thus, the service vehicle can “look ahead
in time with a horizon of T ” and compute the demands that will
be reachable from each serviced demand position in EST. This idea
motivates the concept of a reachability graph in EST.

Definition III.2 (Reachability graph) The reachability graph of a
set of points {(q1, t1), . . . , (qn, tn)} ∈ EST, is a directed acyclic
graph with vertex set V := {1, . . . , n}, and edge set E, where for
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i, j ∈ V , the edge (i, j) is in E if and only if (qj , tj) ∈ RT (qi, ti)
and j 6= i.

Given a set Q of n outstanding demands, and a vehicle position
(p, t), we can compute the corresponding reachability graph (see
Fig. 1). In addition, by Section II-B2, we can compute the longest

Fig. 1. The construction of the reachability graph. The top-left figure shows
the set of reachable demand locations in the space-time environment EST from
the vehicle positioned at a location in the environment E . The top-right and
bottom-left figures show the reachable set RT from the applicable demand
locations in EST. The bottom-right figure shows the reachability graph in EST.

path in a reachability graph in O(n2) computation time.

B. The Longest Path Policy

We now introduce the Longest Path policy. In the LP policy, the
fraction η is a design parameter. The lower η is chosen, the better the
performance of the policy, but this comes at the expense of increased
computation.

Algorithm 1: The Longest Path (LP) policy
1 Compute the reachability graph of the vehicle position and all

unserviced demands in Q(0).
2 Compute a longest path in this graph, starting at the service

vehicle location.
3 if longest path is empty then
4 Move to the center of E and recompute reachability graph

whenever a new demand is released, and return to step 2.
5 else
6 Service demands in the order they appear on the path.
7 Once a fraction η ∈ ]0, 1] of the demands on the path have

been serviced, recompute the reachability graph of all
outstanding demands and return to step 2.

C. A Non-causal Longest Path Policy

For the sake of characterizing the performance of the Longest Path
policy, we will consider a non-causal policy. In the online algorithms
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Fig. 2. A snapshot in the evolution of the Non-causal Longest Path policy as
shown in the EST viewed along the +y direction. The vehicle has planned the
solid red path through all demands, including those that have not yet arrived.
In comparison, a dashed causal longest path is shown, which only considers
demands that have arrived.

literature, such a policy is referred to as an offline algorithm [15].
Fig. 2 shows an example of a path generated by the Non-causal
Longest Path policy. Note that the service vehicle will serve each
demand by moving to its location in E , and thus the path depicts
which demands will be served, and in what order.

Algorithm 2: Non-causal Longest Path (NCLP) policy
Assumes: Release times for all demands are known a priori.

1 Compute the reachability graph of the vehicle position and all
demands in Q(0) ∪ Q̄(0).

2 Compute a longest path in this graph, starting at the service
vehicle location.

3 Serve demands in the order they appear on the path.

While this policy is not physically realizable, it will serve as a
baseline to evaluate the performance of a causal, longest path policy
as described in the next section.

IV. ANALYSIS OF THE LONGEST PATH POLICY

In this section, we present analytic results characterizing bounds
on the performance of the Longest Path Policy, defined in Section III.
The LP policy is difficult to analyze directly. This is due to the fact
that the position of the vehicle at time t depends on the positions of
all outstanding demands in Q(t). Therefore, in this section, we will
present two approaches to analyze the policy; the first is to derive
a factor of optimality with respect to the Non-causal Longest Path
policy, and the second is to lower bound the performance of the LP
policy by comparing it with a simpler, greedy policy.

A. Comparison with Non-causal Longest Path

The first approach is summarized by the following theorem in
which we relate the Longest Path policy to its non-causal relative.
Such a bound is referred to as a competitive ratio in the online
algorithms literature [15].

Theorem IV.1 (Optimality of Longest Path policy) The service
fraction for the Longest Path Policy satisfies

Fcap(LP) ≥
(

1−
√

2W

Tu

)
Fcap(NCLP),
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scenario (b)

q1
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Fig. 3. Scenario (a) and (b) for the proof of Theorem IV.1, as viewed along
the +y direction. Path (a) visits five demands and thus La = 5. Path (b) visits
four demands, yielding m = 4. The demand q2 is the highest on path (b)
that can be serviced from pa(t1). Thus, n = 1, and 5 = La > m− n = 3.

so that the Longest Path policy is optimal as W/Tu→ 0+.

Proof: Suppose that the generation of demands begins at t = 0
and let us consider two scenarios; (a) the vehicle uses the Longest
Path policy, and (b) the vehicle uses the Non-causal Longest Path
policy. Then, at any instant in time t1 > 0 we can compare the
number of demands serviced in scenario (a) to the number serviced
in scenario (b) (refer to Fig. 3).

Let us consider a time instant t1 where in scenario (a), the vehicle is
recomputing the longest path through all outstanding demands Q(t1).
Let pa(t1) and pb(t1) denote the vehicle position in scenario (a) and
scenario (b), respectively, at time t1. In scenario (b), let the path that
the vehicle will take through Q(t1) be given by (q1,q2, . . . ,qm) ∈
Q(t1). The demand q1 is reachable from pb(t1), but it may not be
reachable from pa(t1). However, a lower bound on the length of the
longest path in scenario (a) is: (qn+1,qn+2, . . . ,qm), where qn+1,
n ∈ {0, . . . ,m − 1}, is the demand with the smallest release time
that can be reached from pa(t1), see Fig. 3. Thus, the length of the
longest path in scenario (a), La, is at least

La ≥ m− n, (1)

where m is the length of the path in scenario (b).
Now, since the environment has diameter

√
2W , the vehicle in

scenario (a) can service any demand (qi, trel,i) with trel,i + T −
t1 ≥

√
2W/u. Thus, the demands q1, . . . ,qn must all have their

release times in ]t1 − T, t1 +
√

2W/u− T ], since they are active
at time t1. Let the total number of active outstanding demands at
time t1 be Ntot. Then, conditioned on Ntot, by Lemma II.2, the
expected number of active demands contained in [0,W ]× [0,W ]×
]t1 − T, t1 +

√
2W/u− T ] is Ntot

√
2W/(Tu). Hence,

E [n|Ntot] = Ntot

√
2W

Tu
Fcap(NCLP). (2)

Similarly, for the length of the path through Q(t1) in scenario (b),
we have

E [m|Ntot] = NtotFcap(NCLP). (3)

Combining equations (2) and (3) with equation (1) we obtain

E [La|Ntot] ≥ Ntot

(
1−
√

2W

Tu

)
Fcap(NCLP),

E
[
La
Ntot
|Ntot

]
≥
(

1−
√

2W

Tu

)
Fcap(NCLP).

But La/Ntot is the fraction of outstanding demands in Q(t1) that
will be serviced in scenario (a), and it does not depend on the value

of Ntot. By the law of total expectation

E
[
La
Ntot

]
= E

[
E
[
La
Ntot
|Ntot

]]
≥
(

1−
√

2W

Tu

)
Fcap(NCLP).

At each epoch when the longest path is recomputed, the path in
scenario (a) will service at least this fraction of demands. Thus, we
have Fcap(LP) ≥ E [La/Ntot] and have proved the result.

Note that in this approach, the performance has been compared
to the optimal non-causal version. Theorem IV.1 does not provide
a bound on the performance of the LP policy in an absolute sense,
e.g., as a function of the environment dimensions or the demand
generation rate. Such a bound requires a different analysis, presented
in the following subsection.

B. Lower bound using a Greedy policy

The second approach to characterize the LP policy performance is
to lower bound the service fraction of the LP policy with a greedy
policy. We first define the notion of an inner reachability set, which
essentially serves as an inner approximation to the reachability set
from a location.

Definition IV.2 (Inner Reachability Set) Given a vehicle location
p(t) = (X(t), Y (t)), the inner reachability set Rin, T(p, t) is a subset
of the reachability set RT (p, t) such that

Rin, T =
⋃

τ∈[0,T ]

[X − u(T − τ)√
2

, X +
u(T − τ)√

2
]×

[Y − u(T − τ)√
2

, Y +
u(T − τ)√

2
]× {t+ T − τ}.

In other words, this set is a pyramid whose base is the square
region [X − uT/

√
2, X + uT/

√
2] × [Y − uT/

√
2, Y + uT/

√
2].

Since this set is contained inside RT (X,Y, t), any demand inside
Rin, T can be served by the vehicle. We will now define a Greedy
Path policy.

Algorithm 3: The Greedy Path (GP) policy
Assumes: Vehicle is located at (X(t), Y (t))

1 Compute the inner reachability set Rin, T(X,Y, t).
2 Service the demand in Rin, T(X,Y, t) with the highest time

coordinate.
3 If no demands exist, move toward the center of the environment.
4 Repeat.

Given a set of outstanding demands Q(t) at time t, the vehicle
position is independent of all outstanding demands, except the
demand currently being serviced. At any time instant, let `, g ∈ E
denote the positions of the vehicle when following the Longest path
and the Greedy path policies from the initial instant, respectively.
The capture fraction Fcap can be viewed as a function of Q and the
vehicle position along with the choice of policy P . Since both ` and
g are independent of Q,

Fcap(LP,Q, `) = Fcap(LP,Q, g).

But conditioned on a position ` (or g),

Fcap(LP,Q) ≥ Fcap(G,Q),

since the Greedy Path policy generates a suboptimal longest path
through Q(t). Combining these two relations, we conclude that

Fcap(LP,Q) ≥ Fcap(G,Q),
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Fig. 4. The setup for the proof of Theorem IV.3. The service vehicle is
located at (0, 0, t). The worst case for the region Rin, T, z is indicated by the
green dashed line. As per the Greedy policy, any demand in the red region,
which is outside of the dashed green region is left unserviced.

which implies that the Greedy Path policy provides a lower bound
on the performance of the Longest path policy.

We are now able to establish the following result.

Theorem IV.3 (Lower Bound for Longest Path policy) If T ≥√
2W/u, then for the Longest Path policy

Fcap(LP) ≥ Fcap(GP) ≥ 1/g(λ, u,W ),

where the function

g(λ, u,W ) := e−
√

2λW
3u +

λ

3

(6W 2

λu2

) 1
3
(

Γ(
1

3
, 0)− Γ(

1

3
,

√
2λW

3u
)
)
,

and the function

Γ(a, z) :=

∫ +∞

z

ta−1e−tdt

is the incomplete Gamma function.

Proof: We begin by looking at the expression for the service
fraction. Notice that if msrv(t) > 0 for some t > 0, then

lim sup
t→+∞

E
[

msrv(t)
nsrv(t)+nmiss(t)

]
= lim sup

t→+∞
E
[

1

1+
mmiss(t)
msrv(t)

]
≥
(

1 + lim sup
t→+∞

E
[
mmiss(t)
msrv(t)

])−1

,

(4)

where the last step comes from an application of Jensen’s inequal-
ity [20]. Thus, we can determine a lower bound on the service fraction
by studying the number of demands that escape per serviced demand.

Let us study the time instant t at which the service vehicle services
its ith demand, and determine an upper bound on the number of
demands that escape before the service vehicle services its (i+ 1)th
demand. Since we seek a lower bound on the service fraction of
the LP policy, we may consider the path generated by the Greedy
Path policy. In addition, we consider the worst-case service vehicle
position in EST; namely, the position (0, 0, t) (or equivalently, any of
the top four corners in Fig. 4).

From any position of the vehicle, the reachable set RT is a cone
whose axis is oriented in the negative z direction, and the half-angle
of this cone is numerically equal to arctan(u). Let Rin, T, z denote
the inner reachability set intersected with [0,W ]× [0,W ]× [t+T −
z, t+T ], where z ∈ [0, T ], and let |Rin, T, z| denote its volume. Then,

|Rin, T, z| =

{
u2z3

6
, if z ≤

√
2W/u,

√
2W3

3u
+W 2(z −

√
2W
u

), if z >
√

2W/u,

An illustration of the set Rin, T, z is shown in Fig. 4. Let zd be the

z-distance to the reachable demand with the highest z-coordinate.
That is,

zd := min
(x,y,z)∈Q(t)∩RT (0,0,t)

{T − z},

where Q(t) is the set of outstanding demands at time t. By
Lemma II.2, the probability that a subset B ⊂ E with volume |B|
contains zero demands is given by

P[|B ∩ Q(t)| = 0] = e−λ|B|/W
2

,

where |B ∩ Q(t)| denotes the cardinality of the finite set B ∩ Q(t).
Thus,

P[zd > z] = P[|Rin, T, z ∩Q(t)| = 0] = e−λ|Rin, T, z |/W2

.

The probability density function of zd for z ≤
√

2W/u, which is
obtained from the expression

f(z) =
d

dz
(1− P[zd > z]) = − d

dz
e−λ|Rin, T, z |/W2

,

satisfies

f(z) =
λu2

2W 2
z2e−λu

2z3/(6W2).

Now, given zd, all demands residing in the region misszd :=
([0,W ]× [0,W ]× [T − zd, T ])\Rin,T,zd will be lost unserviced (see
Fig. 4). Using the expressions for |Rin, T, z|, the volume of misszd is
given by

|misszd | =

{
zdW

2 − u2z3d
6
, if zd ≤

√
2W/u,

2
√

2W 3/(3u), if zd ≥
√

2W/u.

From Lemma II.2, the expected number of outstanding demands in
an unserviced region of volume V is λV/W 2. Thus, given that the
vehicle is located at (0, 0, t) ∈ EST, the expected number of demands
that will be missed while the service vehicle is serving its (i+ 1)th
demand is given by

E [mmiss,i] =
λ

W 2
E [|misszd |]

=
λ

W 2

[ ∫ √2W/u

0

(
zW 2 − u2z3

6

)
f(z)dz

+
2
√

2W 3

3u
P[zd >

√
2W/u]

]
.

Applying the probability density function and cumulative distribution
function of zd we obtain

E [mmiss,i] =
λ2u2

2W 4

∫ √2W/u

0

(
W 2z3 − u2z5

6

)
e−λu

2z3/(6W2)dz

+
2
√

2λW

3u
e−
√
2λW/(3u). (5)

The integral can be evaluated using Mathematica1 which gives

E [mmiss,i] =
(

1− 2
√

2λW

3u

)
e−

√
2λW
3u +

2
√

2λW

3u
e−

√
2λW
3u

+
λ

3

(6W 2

λu2

) 1
3
(

Γ(
1

3
, 0)− Γ(

1

3
,

√
2λW

3u
)
)
− 1.

Since E [mmiss,i] is computed for the worst-case vehicle position
(0, 0, t) in EST, and since this expression holds at every demand
service, we have that

lim sup
t→+∞

E
[
mmiss(t)
msrv(t)

]
≤ e−

√
2λW
3u

+
λ

3

(6W 2

λu2

) 1
3
(

Γ(
1

3
, 0)− Γ(

1

3
,

√
2λW

3u
)
)
− 1,

1Using the online integrator at http://integrals.wolfram.com
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and thus by equation (4) we obtain the desired result.

Remark IV.4 (Asymptotic performance and conservativeness)
Both analytic bounds lead to asymptotic optimality in the regimes
when W/(Tu) → 0+ for the first bound, or when λ → 0+

or W/u → 0+ in the second bound. One of the sources of
conservativeness in the analysis is the use of the inner reachability
set Rin, T to define the Greedy path policy. Instead, one could use
the reachability set RT to define the Greedy path policy. However,
to the best of our knowledge, that complicates the integration in (5).

V. SIMULATIONS

We now present results from numerical experiments. Through these
experiments, we compare the Longest Path policy with η = 1 to the
Non-causal Longest Path policy and to the theoretical lower bound
in Theorem IV.3, in order to verify the analytic claims.

To simulate the LP and the NCLP policies, we perform 20 runs of
the policy, where each run consists of 500 demands. A comparison of
the service fractions for the two policies is presented in Fig. 5. When
T >

√
2W/u, we observe that the service fraction of the LP policy

is nearly identical to that of the NCLP policy, as shown in Fig. 5(a).
We also confirm the analytic results, i.e., the bound relative to the
non-causal Longest path policy from Theorem IV.1, and the explicit
lower bound from Theorem IV.3.

In Fig. 5(b), where T <
√

2W/u, the service fraction of the
LP policy is observed to be within 2% of the NCLP policy. These
numerical results suggest that the Longest Path policy is essentially
optimal over a larger range of parameter values than what our
theoretical analysis can characterize.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper considered a dynamic version of the classic vehicle
routing problem in which service needed to be provided exactly
at a specified instant of time after every demand generation. The
main contribution was the identification of a directed acyclic graph
structure on the problem which leads to a novel policy based on
repeated computation of longest paths through the available set of
demands. A performance analysis in terms of the expected fraction
of demands serviced was presented, for which we provided two novel
lower bounds. The first bound was relative to a non-causal version
of the longest path policy, and the second was an explicit bound as a
function of the problem parameters. Numerical results verifying the
analytic claims were presented.

In future, it would be of interest to analyze the parameter regimes
in which the bounds are not currently known to hold. Other related
directions are the inclusion of dynamics in the motion of the vehicle,
limited sensing range for the vehicle and multi-vehicle versions of
this problem.
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