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The Coevolution of Appraisal and Influence
Networks leads to Structural Balance

Peng Jia, Noah E. Friedkin, Francesco Bullo

Abstract—In sociology, an appraisal structure, represented by a signed matrix or a signed network, describes an evaluative
cognitive configuration among individuals. In this article we argue that interpersonal influences originate from positive interper-
sonal appraisals and, in turn, adjust individuals’ appraisals of others. This mechanism amounts to a coevolution process of
interpersonal appraisals and influences. We provide a mathematical formulation of the coevolutionary dynamics, characterize
the invariant appraisal structures, and establish the convergence properties for all possible initial appraisals. Moreover, we
characterize the implications of our model to the study of signed social networks. Specifically, our model predicts the convergence
of the interpersonal appraisal network to a structure composed of multiple factions with multiple followers. A faction is a group
of individuals with positive-complete interpersonal appraisals among them. We discuss how this factions-with-followers is a
balanced structure with respect to an appropriate generalized model of balance theory.

Index Terms—appraisal evolution, macro-structural models, structural balance theory, mathematical sociology
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1 INTRODUCTION

Structural balance, a social psychological theory about
the network structure of interpersonal appraisals, has
attracted attention recently [1], [2], [3] in the studies of
political party networks, large-scale online social net-
works, and cooperation evolution in social networks.
Interpersonal appraisal is a ubiquitous natural rela-
tion of evaluative (positive or negative) cognitive ori-
entation of one individual toward another. Cartwright
and Harary’s seminal work [4] on the signed digraph
formalization of Heider’s analysis [5], [6] of balanced
cognitive configurations is now referred to as the clas-
sical model of structural balance. This model posits the
existence of tensions corresponding to configurations
of appraisals among three individuals.

Based on empirical observations, a generalized model
of structural balance is introduced by Davis and Lein-
hardt [7] and studied by Johnsen [8]: the tension as-
sumptions are relaxed and more complex realizations
of structural balance are allowed. While structural
balance theory typically focuses on the static appraisal
networks, recent research [9], [1], [3] has concentrated
on dynamical models of structural evolution. In what
follows, we first review some relevant literature and
later state our problem of interest.

Static Structural Balance Theory: In structural
balance theory, a complete signed matrix X ∈
{−1,+1}N×N , which we call the appraisal matrix, rep-
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resents the interpersonal ties in a group of N indi-
viduals, where xij , i, j ∈ {1, . . . , N}, equals to +1 if
individual i has a positive appraisal of individual j,
and xij equals to −1 if i has a negative appraisal of
individual j. The matrix X is used to describe the
interpersonal appraisal structure of the group. Any
dyad {i, j} in the group associated with X has three
possible types: mutual (M), asymmetric (A), or null
(N). A dyad {i, j} is M-related if xij = xji = 1; it
is N-related if xij = xji = −1; and it is A-related
otherwise (i.e., xij×xji = −1). Consequently, there are
16 different types of triads for an appraisal structure.

The classical model of structural balance posits
that an appraisal structure is balanced if the follow-
ing four statements by Heider [6] are satisfied: “my
friend’s friend is my friend,” “my friend’s enemy is
my enemy,” “my enemy’s enemy is my friend,” and
“my enemy’s friend is my enemy.” Mathematically, a
signed digraph is balanced under these conditions if
the value of all cycles (i.e., closed paths beginning and
ending with the same node) are positive with respect
to the product of all edges of the cycle. A remarkable
implication of the classical theory of structural balance
is that an appraisal network is tension-free (balanced)
if and only if it is positive-complete or partitioned
into two positive-complete subgraphs. A positive-
complete subgraph, also referred to as a faction, is
a social subgroup in which each individual has a
positive appraisal of each individual in the faction and
a non-positive appraisal of any other individual.

The generalized model of structural balance is pro-
posed by Davis and Leinhardt [7] and Johnsen [10],
[8]. In this theory, a micro-model specifies which subset
of the 16 triad types is permitted and, therefore, which
resulting structural networks (signed digraphs con-
taining only permitted triad types) are admissible. The
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resulting structural networks are referred to as macro-
structural models. In contrast with the classical model,
the generalized model of structural balance (in many
of its micro-model realizations) allows for arbitrary
numbers of factions and directed acyclic graphical
structures among them. We review this theory in
Section 2 and refer to [8] for a detailed treatment.

Dynamical Models for Social Balance: Classical
structural balance theory and its generalizations do
not specify the mechanisms that transform unbal-
anced appraisal networks into balanced networks.
However, as Marvel et al. [1] noted “. . . its underlying
motivation is dynamic, based on how unbalanced
triangles ought to resolve to balanced ones. This situ-
ation has led naturally to a search for a full dynamic
theory of structural balance.”

In Kułakowski’s work [9] a continuous-time model
of structural balance was presented: given an ap-
praisal matrix X ∈ RN×N , the dynamical system

dX/dt = X2 (1)

governs the evolution of the appraisal structure over
time. Here, the entry xij denotes the appraisal of indi-
vidual j held by individual i. Numerical simulations
showed that, for almost all initial X(0), the system
reaches the structural balance postulated by the clas-
sical model in finite time. Kułakowski proved the
convergence to this structural balance for an N = 3
network. Marvel et al. [1] proved that for a random
initial symmetric matrix X(0), the classical structural
balance is obtained by the dynamical system (1) in
finite time with a probability converging to 1 as
the population size goes to infinity. Traag et al. [3]
extended the convergence results to normal initial
matrices (X is normal if XTX = XXT ). However, for
generic initial appraisal matrices, the convergence to
structural balance is not necessarily observed [3] in the
dynamical system (1). Another interesting continuous-
time dynamical model presented by Traag et al. is

dX/dt = XXT . (2)

For this model, there exists [3] a dense set of initial
conditions X(0) ∈ RN×N , such that a balanced struc-
ture is achieved generically in finite time. In the first
model (1), the appraisal of the individual j held by
the individual i is adjusted based on the appraisals
of j held by all other individuals. In the second
model (2), the appraisal of the individual j held by
the individual i is adjusted based on the appraisal of
all individuals held by j. In other words, the second
model features a cooperative behavior in the appraisal
evolution: each individual tends to befriend other
individuals who think alike.

The literature on social structural balance also
includes a research stream on social energy land-
scape [4], [11], [12], [2]. These works are motivated
by studies which suggest that certain triad types are

more stable than others. In these works, an energy
landscape is defined to describe structural balance.
Numerical experiments show that energy landscapes
often feature local minima called jammed states [11],
[12]. Antal et al. [11] consider a discrete-time dynami-
cal model, where the signs of the edges of an appraisal
network are optimally adjusted under the constraint
of a monotonic increase of balanced triads. It is shown
that the assumption of an optimal monotonic increase
of balanced triads does not suffice to generate the
structural balance of the classical model.

In summary, we argue that it is of considerable in-
terest to postulate social psychological mechanisms of
appraisal dynamics and to characterize the conditions
under which they present outcomes consistent with
structural balance theory.

The Coevolution of Interpersonal Appraisals
and Influences: We propose a novel sociological
model for the evolution of interpersonal appraisals
towards generalized structural balance. Our approach
treats the evolution of interpersonal appraisals as a
special case of opinion dynamics: the evolving opin-
ions are the individuals’ bundles of signed cognitive
appraisals towards the other individuals. In other
words, we ground dynamic structural balance the-
ory in the theory of opinion dynamics and influ-
ence networks. As opinion and appraisal evolution
mechanism, we adopt the widely-established DeGroot
averaging model [13]. Notably, our dynamical model
predicts general numbers of factions and rich struc-
ture among faction and is consistent with a particular
micro-model from generalized balance theory. Our
work is also motivated by the coevolution process [14]
in which an influence network is associated with
an appraisal network, interpersonal influences adjust
individuals’ appraisals, and these adjusted appraisals
lead to an adjusted influence network.

With this background motivation, we consider a
discrete-time dynamical model of structural balance,
where the dynamics combine both appraisal and in-
fluence structure evolution. For a group of N ≥ 2
individuals with initial appraisals X(0) ∈ RN×N , the
evolution of the appraisal matrix X(t) is determined
by a discrete-time DeGroot averaging model:

X(t+ 1) =W (X(t))X(t), t = 0, 1, 2 . . . . (3)

Here, the row-stochastic influence matrix W (X(t)) de-
pends on the state X(t) as follows: interpersonal
influences for each individual are proportional to the
positive appraisals accorded to the individual by all
other individuals. In other words, the entry wij(X),
i 6= j, is proportional to xij if xij is positive and zero
otherwise. We provide a detailed mathematical defini-
tion in the modeling section below. As the dynamical
processes of interpersonal appraisals and influences
are interdependent, we refer to (3) as the coevolution
model of interpersonal appraisal and influence.
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Our setup features several differences with the ex-
isting dynamical models on structural balance (e.g.,
the models (1) and (2)). First, our model (3) considers
both appraisal and influence evolution and a novel
process to generate and adjust the interpersonal influ-
ence network. Note that the appraisal structure plays
the role of the influence structure in the previous
work [9], [1], [3]. Second, in our model appraisals
are modified over time as convex combination of
existing appraisals; this guarantees that the appraisals
never diverge (by comparison, divergence occurs in
the models of (1) and (2)). Third, while positive
and negative appraisals with heterogeneous strengths
are allowed in our model, our basic assumption is
that only positive interpersonal appraisals translate
into interpersonal influences. Accordingly, we expect
the evolutions of the proposed coevolution model to
asymptotically satisfy two statements in the classic
balance model: “my friend’s enemy is my enemy” and
“my friend’s friend is my friend.” (On the contrary,
there are a priori no reasons why the other two
structural balance theory statements, “my enemy’s
enemy is my friend” and “my enemy’s friend is my
enemy,” should be satisfied by the evolutions of our
model.) By comparison, the models (1) and (2) satisfy
all four statements in the classic balance model and
predict only one or two factions of structural bal-
ance given certain initial conditions. In other words,
the classical model and the models in equations (1)
and (2) are therefore not predictive of the situations,
empirically observed in [7], in which more than two
factions are often observed. Moreover, for generic
initial conditions, the solution of the model (1) con-
verges to a rank-1 matrix which is, in general, not
structurally balanced, even in the language of the
generalized structural balance. Finally, it is noted that
our model (3) is a discrete-time dynamical model,
while the equations (1) and (2) are in continuous time.

Contributions: We propose and analyze the
novel coevolution model of interpersonal appraisal
and influence given in equation (3). As a first step,
we provide an explicit and concise mathematical for-
mulation for this discrete-time nonlinear system. As
the main set of contributions, we study the asymptotic
convergence and equilibrium properties of this non-
linear coevolution system. We provide a mathematical
analysis on the structural position properties of the
individuals; we predict the equilibrium appraisals for
individuals in a sink, intermediate or source strongly
connected component (SCC). We claim that (1) all
individuals in a sink SCC of the equilibrium pos-
itive digraph will reach an appraisal consensus on
each individual, (2) all intermediate SCCs vanish in
the dynamical equilibrium, (3) each source SCC is a
singleton and the appraisal of individuals in source
SCCs are determined by the appraisals held by the
individuals from the sinks, and (4) all equilibrium ap-
praisal networks have a factions-followers-outsiders

structure. Here, a faction is a sink SCC with posi-
tive appraisals within the component; a follower is
a singleton source SCC; and an outsider is an isolated
singleton sink SCC with a non-positive self-appraisal.

As the second set of contributions, we demon-
strate that all invariant macro-structures are the spe-
cial cases of the factions-followers-outsiders structure.
This finding is related to the concept of core-periphery
structure, a prevalent notion in world systems [15],
economics [16], and social networks [17], [18]. In
other words, the factions-followers-outsiders struc-
ture exhibits the properties of a multi-core-periphery
structure: dense, cohesive cores (factions) and sparse,
unconnected peripheries (followers or outsiders). Fur-
thermore, all equilibrium appraisal structures via the
coevolution are discussed and the exclusive set of
macro-structural models are predicted to be struc-
turally balanced under our model.

Lastly, we illustrate our results by numerical simu-
lations. In particular, we inspect the different conver-
gence and equilibria performances for different self-
influence parameters.

These findings are of sociological interest in their
advancement of the dynamical foundations of struc-
tural balance in social groups. Our rigorous results
for the coevolution model of interpersonal appraisal
and influence suggest that interpersonal appraisal
networks evolve toward a set of structural equivalent
bundles and predict the stable macro-structures under
the coevolution model. These findings contribute to
the rapidly-growing research on coevolutionary net-
works [19], [20], to the literature on social network
formation and coordination games [21], [22] and, more
broadly, to the study of complex networks and evo-
lutionary rules [23], [24].

Finally, we note that the interesting attractor topolo-
gies admitted by the generalized balance theory in
this paper have important practical implications on
the capacity of interpersonal influence systems to
resolve social conflicts and disseminate innovations.
The hierarchical topological attractors we characterize
provide a basis of population consensus generation
and diffusion of innovations. The theory suggests that
a small set of influential factions, and the chains of
positive appraisals that link other followers to them,
determine the beliefs, opinions, and behaviors of large
numbers of individuals on a variety of issues.

Organization: The rest of the paper is organized
as follows. Section 2 introduces some notation and
preliminary concepts. Section 3 describes the coevo-
lution model. Sections 4, 5 and 6 discuss, respectively,
the topological, asymptotic and structural balance
properties of our model. Section 7 contains our con-
clusions. All technical proofs are in the Appendices.

2 PRELIMINARY CONCEPTS
For a vector x ∈ Rn, we let x ≥ 0 and x > 0 denote
component-wise inequalities. We adopt the abbrevia-
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tions 1n = [1, . . . , 1]T and 0n = [0, . . . , 0]T . Given a col-
umn vector [x1, . . . , xn]

T ∈ Rn, we let diag(x) denote
the diagonal n× n matrix whose diagonal entries are
x1, . . . , xn. For signed matrix pattern analysis, we let
“−” represent a block matrix with non-positive entries
and let “+” represent a block matrix with positive en-
tries for the simplicity of presentation. If two matrices
A,B ∈ RN×M have the same positive/non-positive
entry pattern, we denote A ∼ B. For example, one
matrix A with all positive entries or all non-positive
entries is denoted by A ∼ [+] or A ∼ [−], respectively.
For x ∈ R and A = [aij ] ∈ RN×M , we write x+ =
max{x, 0} ∈ R≥0 and A+ := [max{aij , 0}] ∈ RN×M≥0 .

Elements of graph theory: An undirected graph
(in short, graph) is an ordered pair G = (V,E), where
V is a set of nodes and E is a set of unordered
pairs of nodes. A directed graph (in short, digraph)
G = (V,E) consists of a node set V and a set E of
ordered pairs of nodes, i.e., E ⊂ V × V . For i, j ∈ V ,
the ordered pair (i, j) denotes a directed edge from
i to j, where i is called an in-neighbor of j, and j
is called an out-neighbor of i. The in-degree and out-
degree of j are the numbers of in-neighbors and out-
neighbors of j, respectively. Every node of in-degree
(resp. out-degree) 0 is called a source (resp. sink). A
node with both non-zero in-degree and out-degree is
an intermediate node and a node with both 0 in-degree
and out-degree is an isolated node.

A directed path in a digraph G is an ordered se-
quence of nodes such that any pair of consecutive
nodes in the sequence is a directed edge. A directed
path is simple if no node appears more than once in
it, except possibly for the initial and final node. G is
strongly connected if there exists a directed path from
any node to any other nodes. A node of G is globally
reachable if it can be reached from any other node by
traversing a directed path. A cycle in G is a simple
directed path that starts and ends at the same node.
A directed acyclic graph (DAG in short) is a digraph that
has no cycles. G is aperiodic if there exists no integer
k > 1 dividing the length of each cycle in G. Given a
digraph G = (V,E), a linear ordering of nodes is an
inverse topological sorting if, for any edge (i, j) ∈ E, j
precedes i in the ordering. Any DAG has one inverse
topological sorting, which may not be unique [25].

A digraph (V ′, E′) is a subgraph of (V,E) if V ′ ⊂ V
and E′ ⊂ E. A subgraph H is a strongly connected com-
ponent (SCC in short) of G if H is strongly connected
and any other subgraph of G strictly containing H is
not strongly connected. The condensation digraph of G,
denoted C(G), is a digraph whose nodes are the SCCs
of G and in which there exists a directed edge from
the SCC H1 to the SCC H2 if and only if there exists
a directed edge in G from a node of H1 to a node of
H2. Each C(G) is a DAG and has at least one sink and
one source. We say that H1 is directly connected to H2

in G if there exists a directed edge in C(G) from H1

to H2.

Elements of matrix theory: A non-negative ma-
trix is row-stochastic if all its row sums are equal
to 1. Given a square non-negative matrix M =
{mij}i,j∈{1,...,n}, its associated digraph G(M) is the
digraph with node set {1, . . . , n} and with edge set
defined as follows: (i, j) is a directed edge if and
only if mij > 0. M is irreducible if G(M) is strongly
connected; M is reducible if it is not irreducible. M is
aperiodic if G(M) is aperiodic. M is primitive if there
exists k ∈ N such that Mk is a positive matrix. It
is known (e.g., see Example 1.2 in [26]) that M is
primitive if and only if M is irreducible and aperiodic.

Generalized models of structural balance:
Micro-models and macro-structural models were in-
troduced in Johnsen [8] (see also [27, Section 8.3])
to generalize the structural balance models studied
in [4], [6]. A micro-model is defined to be a subset
of the 16 possible triad types. Associated with a
particular micro-model, a macro-structural model (or a
macro-structure in short) is defined to be the set of
networks containing only the triad types in the micro-
model. We call such a pair of the macro-structure and
the micro-model consistent and, equivalently, we say
that a set of macro-structure networks is structurally
balanced with respect to a specified micro-model.

We rephrase and generalize the dyad types of in-
terpersonal appraisals (the classical version of which
was introduced in [4] and briefly presented in the
introduction) as follows: dyad {i, j} are M-related if
xij > 0 and xji > 0; they are N-related if xij ≤ 0
and xji ≤ 0; and they are A-related otherwise (i.e.,
one of {xij , xji} is strictly positive and the other is
non-positive). The triad types are then generalized by
the rephrased dyad types such that the values of the
appraisal relations are not constrained to −1 or 1. An
M-clique is a set of individuals who are completely
connected by M-links (i.e., links with M-relations).

3 MODEL OF APPRAISAL AND INFLUENCE
COEVOLUTION

In this section, we present a dynamical model which
investigates how an influence network may emerge
from interpersonal appraisals in a social network and
how the appraisal relations may be modified by inter-
personal influences. We adopt the term “structure” for
the non-positive/positive (or zero/non-zero, respec-
tively) pattern of the appraisal (or influence, respec-
tively) relations among the network irrespective of
their values. We adopt the term “matrix” to describe
the exact quantification of the interpersonal appraisals
(or influence weights, respectively). In other words, an
appraisal structure is a set of appraisal matrices with
a certain sign pattern.

We consider a group of N ≥ 2 individuals with
interpersonal appraisals represented by a signed ma-
trix X ∈ RN×N . Each entry xij , i, j ∈ {1, . . . , N},
of the appraisal matrix X represents individual i’s
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interpersonal appraisal of individual j. Additionally, we
allow the entries of X equal to 0: xij = 0 implies
that individual i has neither positive nor negative
appraisal of individual j, or that i does not know j.
Thus, we relax the complete digraph or weakly con-
nected digraph assumption on appraisal structures,
which was widely adopted in the previous work (e.g.,
see [4], [1], [3]).

Individuals’ appraisals, i.e., signed evaluative ori-
entations of particular strengths, are often automat-
ically generated without conscious effort [28], [29],
and these appraisals are important antecedents of
displayed cognitive and behavioral orientations to-
ward objects [30]. The available empirical evidence
is also consistent with the assumption that individ-
uals update their appraisals as convex combinations
of their own and others’ displayed appraisals. This
convex combination is based on weights that are auto-
matically generated by individuals in their responses
to the displayed appraisals held by other individu-
als. This specification appeared in the literature on
opinion dynamics in the early works by French [31],
Harary [32], and DeGroot [13]. Especially, in Ander-
son’s seminal information integration theory [33], the
convex combination mechanism was regarded as a
fundamental “cognitive algebra” of the mind’s syn-
thesis of heterogeneous information. Therefore, in this
article, we formulate individuals’ appraisals about
others by a trajectory t 7→ X(t) that is determined
by the seminal DeGroot averaging model:

X(t+ 1) =W (t)X(t), t ≥ 0, (4)

with initial appraisals X(0) ∈ RN×N , and with a
sequence of influence matrices {W (t)}t≥0. Here, each
influence matrix W (t) is assumed to be non-negative
and its entry wij(t), i, j ∈ {1, . . . , N}, represents
the interpersonal influence weights that the individual
i accords to individual j at time t.

Our analysis of appraisal evolution (4) depends
only on the influence matrices {W (t)}t≥0. The key
feature of the proposed model is that W (t) is deter-
mined by the appraisal matrix X(t) at each time t.
Motivated by Friedkin and Johnsen’s work [14], we
associate an influence matrix to an appraisal matrix as
follows: (i) the interpersonal influence wij(t) is strictly
positive precisely when the corresponding appraisal
xij(t) is strictly positive, (ii) non-positive appraisals
lead to zero interpersonal influence weights, and (iii)
each individual has a positive self-weight in the influ-
ence network. Specifically, given a small self-appraisal
constant ε > 0, individuals’ interpersonal influences
are determined as functions of the interpersonal ap-
praisals X by

wε,ij(X) =


1∑n

j=1 x
+
ij + ε

(x+ij + ε), if j = i,

1∑n
j=1 x

+
ij + ε

x+ij , if j 6= i.
(5)

An equivalent definition of Wε(X) = [wε,ij ] is:

Wε(X) = diag
(
(X+ + εIN )1N

)−1(
X+ + εIN

)
. (6)

By continuity, we also define W0(X) =
limε→0+ Wε(X). Note that, if each entry of the i-
th row of X is negative or zero, then wε,ii(X) = 1.
This equality implies that the i-th individual assigns
zero weight to all other individuals and that his
appraisals are therefore unchanged after one step of
the evolution.

Definition 3.1 (Appraisal and influence coevolution
model). Given a group of N ≥ 2 individuals, let X(t) ∈
RN×N be the appraisal matrix and W (t) ∈ [0, 1]N×N

be the influence matrix at time t ≥ 0. For t ∈ Z≥0,
the interpersonal appraisal and influence coevolution
system is defined by:

(i) Appraisal evolution:

X(t+ 1) =W (t)X(t),

(ii) Influence evolution:

W (t) =Wε(X(t)).

For simplicity of presentation, the model assumes
the positive parameter ε to be homogeneous among
the individuals. Nevertheless, this assumption is not
necessary and is relaxed in Section 5. Fig. 1 illustrates
our proposed coevolution model as in Definition 3.1.

Lemma 3.1 (Properties of influence matrices). For any
ε ≥ 0 and any appraisal matrix X ∈ RN×N , the influence
matrix Wε(X) is row-stochastic and, if ε > 0, aperiodic.

4 TOPOLOGICAL PROPERTIES OF THE CO-
EVOLUTIONARY DYNAMICS

In this section we study the topological properties
of the coevolution model of interpersonal appraisal
and influence (4)-(5), and focus on the long-term
connectivity properties of the graphs describing in-
terpersonal influences.

We call the digraph G(W ) associated to the in-
fluence matrix W the influence digraph, and call the
digraph G+(X) associated to X the positive (appraisal)
digraph for which a directed edge (i, j) exists if and
only if xij > 0. It is clear that the adjacency matrix X+

of G+(X) has the same positive/non-positive entry
pattern as W (X) except possibly for the diagonal
entries. Consequently, the two digraphs G+(X) and
G(W ) have the identical set of nodes and the identical
set of edges except possibly for self-loops. In what
follows we analyze the evolution of G+(X(t)) along
the trajectory X(t) of the dynamical system (4)-(5).

Since C(G) is a DAG, by relabelling its nodes from
an inverse topological sorting, the adjacency matrix of
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Appraisal evolution: Influence evolution: 

X(0) X(1) X(2) X(3) 

W(0) W(1) W(2) W(3) 

W (t) = W✏(X(t))X(t + 1) = W (t)X(t)

Fig. 1. Coevolution of appraisal and influence: the colormaps correspond to the signed appraisal matrices and
influence matrices. In these colormaps and what follows red colors are negative appraisals and blue colors are
positive appraisals or influences. The various color depths represent different appraisal or influence values.

C(G) is a block lower triangular non-negative matrix
as follows

A =


D1 0 . . . 0
S21 D2 . . . 0

...
...

. . .
...

Sn1 Sn2 . . . Dn

, (7)

where n nodes {Hi}i∈{1,...,n} exist for the condensa-
tion digraph C(G). The matrix A can also be regarded
as an adjacency matrix of G if we look at Di and
Sij as block matrices and {Hi}i∈{1,...,n} represent the
SCCs of G. The ordering of nodes within an SCC Hi

is inessential.
As the topology of positive appraisal digraph or

influence digraph may vary along the coevolution,
we denote the nodes of C(G+(X(t))) or the SCCs of
G+(X(t)) as {Hi(t)}i∈{1,...,n(t)}, where n(t) denotes
the numbers of SCCs associated with the positive
digraphs. With a slight abuse of notation, we refer
to Hi(t) as both a SCC of G+(X(t)) at time t and the
subset of nodes of G+(X(t)) belonging to that SCC.
That is, Hi(t) may represent the same subset of nodes
in the digraph G+(X(t + 1)) as those in the digraph
G+(X(t)) forming the SCC Hi(t) even though Hi(t)
may not be an SCC of G+(X(t+ 1)) any more.

Theorem 4.1 (Finite-time stability of the SCCs of posi-
tive digraphs). Let X(t) be a trajectory of the coevolution
system (4)-(5) with ε ≥ 0. Pick a time t ∈ Z≥0 and perform
an inverse topological sorting of the condensation digraph
C(G+(X(t))). For any two nodes Hi(t) and Hj(t) with
labels i < j in C(G+(X(t))),

(i) no directed edge can appear from a node of Hi(t) to a
node of Hj(t) in G+(X(t+ 1)); and

(ii) if C(G+(X(t))) contains no directed path from Hj(t)
to Hi(t) with length 1 or 2, then no directed edge can
appear from a node of Hj(t) to a node of Hi(t) in
G+(X(t+ 1)).

Therefore,
(iii) no two SCCs of G+(X(t)) can merge at time t + 1

(whereas an SCC of G+(X(t)) may split into multiple
SCCs at time t+ 1);

(iv) the number n(t) of SCCs of G+(X(t)) is non-
decreasing; and

(v) there exists a finite time τ such that the SCCs of
G+(X(t)) remain unchanged for all subsequent times
t ≥ τ .

As {Hi(t)} and n(t) remain unchanged for all t ≥ τ ,
we denote Hi = Hi(τ) and n = n(τ) for simplicity in
the following discussions. It is noted that the blocks
below the diagonal in (7) are varying via the coevolu-
tion system (4)-(5) even after time τ , and therefore, the
directed edges from the node Hi to the node Hj for
all i > j do not necessarily remain unchanged in the
condensation digraphs C(G+(X(t))) for t ≥ τ . That
is, the topology evolution of the positive digraphs
may not stabilize at τ . Moreover, due to the discon-
tinuity of G+(X(t)), although the SCCs of G+(X(t))
are unchanged after some finite time τ , they are not
necessarily equal to the SCCs of G+(limt→∞X(t)).

Fig. 2 illustrates one example showing the appraisal
digraph evolution and the edge evolution as de-
scribed in Theorem 4.1. We may verify the claims
of the theorem by this example: Given N = 3 and
ε = 0.5, we observe that (1) the positive appraisal
digraph G+(X(0)) has only one SCC but this SCC
splits into three SCCs at time t = 1, i.e., singleton SCC
nodes H1(1), H2(1), H3(1); (2) no directed edge can
appear between the two SCCs H2(t) and H3(t), and no
edge can appear from H2(t) or H3(t) to H1(t) for t ≥ 1;
(3) the three SCCs H1(t), H2(t), H3(t) never merge
for all t ≥ 1 and the number of the SCCs are non-
decreasing. By simple calculation, we know that the
stability time for both the SCC evolution and topology
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evolution of the positive digraphs considered in Fig. 2
is τ = 1 and the number of the stable SCCs is n(τ) = 3.

5 ASYMPTOTIC PROPERTIES OF THE CO-
EVOLUTIONARY DYNAMICS

In this section we study the asymptotic convergence
properties of the coevolution model of interpersonal
appraisal and influence (4)-(5). Both analytic and nu-
merical results are presented.

5.1 Theoretical results
We start with arbitrary initial conditions and subject
to a non-zero assumption on ε and we show that
each trajectory converges asymptotically to an equilib-
rium matrix and we characterize the structure of the
equilibrium matrices. Second, we discuss sufficient
and necessary conditions such that certain appraisal
structures observed in finite time remain unchanged
in infinite-time limit.

Definition 5.1 (Factions-followers-outsiders struc-
ture). An appraisal matrix X has a factions-followers-
outsiders structure if each strongly-connected component
of G+(X) is either

(i) a sink in C(G+(X)), called a faction, composed of an
arbitrary number of nodes, all of which are completely
connected and have positive self-loops in G+(X); or

(ii) a source in C(G+(X)), called a follower, composed
of a single node with directed edges pointing to each
node in one or more factions and without self-loop in
G+(X); or

(iii) an isolated node in C(G+(X)), called an outsider,
composed of a single node in G+(X) with zero in-
degree, zero out-degree and no self-loop.

The node in a follower component with directed
edges towards one or more factions is called a follower
of that or those factions. If there are only factions and
followers associated with G+(X), it is called a factions-
followers structure. This definition is illustrated in Fig-
ure 3: note that a faction can have one or multiple
nodes and can have zero, one or more followers.
A faction-follower-outsiders structure may includes
one or multiple copies of the set or a subset of the
structures shown in figure.

Theorem 5.1 (Asymptotic appraisal matrices). For the
coevolution system (4)-(5) with ε > 0, each trajectory X(t)
converges asymptotically to an equilibrium X∗ (function of
X(0) and ε). Moreover, each equilibrium matrix X∗ has the
following properties:

(i) X∗ has a factions-followers-outsiders structure;
(ii) for a faction of G+(X∗), the appraisals of each indi-

vidual in the network held by all individuals in the
faction are the same: this faction’s appraisal of one
individual is positive if the individual belongs to this
faction and is non-positive otherwise;

(iii) for a follower of G+(X∗), the appraisal of each indi-
vidual in the network held by the follower is a convex
combination of the appraisals of that individual held
by the factions the follower follows. In particular, if the
follower follows only one faction, then its appraisal of
each individual in the network is identical to that held
by the faction;

(iv) for an outsider of G+(X∗), the appraisal of each
individual in the network held by the outsider is non-
positive.

Theorem 5.1 says that, subject to the coevolution (4)-
(5), the factions-followers-outsiders structure is the
only possible equilibrium structure of the appraisal
matrix X∗. In particular, we know that: (i) the rows
of X∗, corresponding to all individuals’ appraisals in
a faction, are identical and are equal to 1Nsv

T for some
v = [vj ] ∈ RN , where Ns is the cardinality of the fac-
tion, vj > 0 if node j is in the faction and vj ≤ 0 other-
wise; (ii) all followers, i.e., source strongly-connected
components, are singletons and their appraisals are
determined by the appraisals held by the factions, of
which the followers hold positive-complete appraisals
in the equilibria; and (iii) all outsiders have non-
positive appraisals of each individual in the group.
The examples of the convergence in Theorem 5.1 are
presented in Fig. 4-6. The nodes of the right graphs are
M-cliques. M(1) in these figures is a special M-clique
with only one node. More discussions of M-clique are
referred to Section 6.

Next, we analyze when and what finite-time struc-
tures (i.e., strongly-connected components of the pos-
itive digraph) remain unchanged in the asymptotic
limit. For simple presentation, we denote the matrix
corresponding to interpersonal appraisals in a sink
SCC Hs by Xs ∈ RNs×Ns , where Ns is the node
cardinality of the SCC.

Theorem 5.2 (Finite-time properties determining
asymptotic structures). For the coevolution system (4)-
(5) with ε > 0, let the trajectory X(t) satisfy X∗ =
limt→∞X(t). Then

(i) a sink SCC Hs of G+(X(t)) exponentially converges
to a faction in X∗ if and only if there exists a time t1 ≥
t such that Xs(t1) has one column with all positive
entries;

(ii) G+(X∗) has a globally reachable node if and only if
there exists a time t such that X(t) has one column
with all positive entries;

(iii) if all entries of X(t) are non-negative and G+(X(t))
is irreducible, then G+(X∗) is one faction and all
individuals have the same appraisal of each individual
in the group; and

(iv) an outsider of G+(X(t)) remains an outsider for all
following times and in the limit G+(X∗).

The statement (ii) extends the statement (i) to an
appraisal structure of which the positive digraph is
at least weakly connected and has only one sink SCC.
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0.5 0.5
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0.34
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Fig. 2. Appraisal and influence coevolution in a triad: the digraphs formulated by solid directed edges correspond
to positive appraisal digraphs (on the top) and influence digraphs (on the bottom). The non-positive appraisals
are also shown by dotted lines. The numbers on the edges are the values of the appraisals and influence weights,
respectively. As stated in Theorem 4.1, regarding the positive appraisal digraphs, (1) the (positive) edges from
individual 1 to the individuals 2 and 3 disappear at time t = 1 and these edges will never appear again; (2) the
edges between the individuals 2 and 3 never appear. Hence, three SCCs remain unchanged after t = 1.

F

LL L

F F

LL LL

F

OO

F

Fig. 3. Faction-follower-outsiders structure: “F” com-
ponents are factions, “L” components are followers, “O”
components are outsiders. The small size components
are singletons and the large size components are
SCCs with two or more nodes. On the left: two factions
and two outsiders. In the middle: a factions-followers
structure with a single faction. On the right: a factions-
followers structure with multiple factions.

X(0) X⇤

M

MM

G+(X⇤)

Fig. 4. Convergence to three factions.

X(0) X⇤

M(1) M(1)M(1)

M

G+(X⇤)

Fig. 5. Convergence to a factions-followers structure
with a single faction.

X(0) X⇤ G+(X⇤)

M(1) M(1)M(1)

M

M(1) M(1)M(1)

M

M(1) M(1)M(1)

M

Fig. 6. Convergence to a factions-followers structure:
three disconnected factions-followers structures each
of which has a single faction.

The positive digraph could be either reducible or irre-
ducible. Moreover, in the equilibrium, such a structure
has only one faction, an arbitrary number of followers
and no outsider. Regarding the irreducibility assump-
tion of the third statement of Theorem 5.2, we can
show that if G+(X(0)) is irreducible, then G+(X(t))
is irreducible for all t ≥ 0 and G+(limt→∞X(t)) is
irreducible. This statement can be extended such that
a sink SCC (with at least two nodes) becomes a faction
in the equilibrium.

5.2 Numerical study on empirical networks
We now apply our results to empirical social network
examples. To minimize the impact of the self-appraisal
constant ε on the trajectory of the coevolution system,
we select small values of ε in the simulations. We re-
port trajectories computed for strictly-positive small ε,
but we comment that essentially identical trajectories
are generated by setting ε to zero.

In our first example, we consider the appraisal
evolution on a Krackhardt’s advice network [34]; this
network describes a manufacturing organization with
21 managers and 128 relationships in which a man-
ager sought advice from another manager. Because
the available data about this advice network does
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not include a complete set of interpersonal appraisals,
we set up an initial appraisal matrix based on two
ancillary assumptions: (1) each individual holds initial
interpersonal appraisals equal to 1 of the individuals
she seeks advice from and has non-positive appraisals
(uniformly randomly-selected from [−0.5, 0]) of all
other individuals; (2) the initial self-appraisals are
equal to the normalized in-degree of the individuals
in the advice network. Note that the ancillary assump-
tion 2) is grounded in the theory of reflected appraisal
as presented in [35]. Given ε = 0.1, the trajectory
of the appraisal evolution is shown in Fig. 7. The
equilibrium structure is a factions-followers structure
with a single faction. Appraisal consensus of each
individual in the network is observed. Note that this
convergence to an appraisal structure with a single
faction is robust with respect to the initial non-positive
appraisal assignment among [−0.5, 0]. Indeed, our ini-
tial appraisal assignment guarantees that at least two
(the 2nd and the 21st) columns of X(1) are positive.
Based on statement (ii) in Theorem 5.2, there always
exists a globally reachable node in the equilibrium
structure. That is to say, the equilibrium must have a
factions-followers structure with a single faction, with
or without followers. However, this claim is not true
for an arbitrary initial appraisal assignment.

initial condition iteration 1 iteration 2

iteration 3 iteration 4 . . . iteration 7

Fig. 7. Evolution of appraisal matrices on Krackhardt’s
advice network: the interpersonal appraisals converge
to a rank-1 matrix of the form 1NvT .

The second example considers the social interac-
tions among a group of monks in an isolated con-
temporary American monastery observed by Samp-
son [36]. Based on observations and experiments,
Sampson collected a variety of experimental informa-
tion on four types of relations: Affect, Esteem, Influ-
ence, and Sanctioning. Each of 18 respondent monks
ranked their three first choices on these relations,
where 3 indicates the highest or first choice and 1
the last choice in the presented interaction matrices.
Some subjects offered tied ranks for their top five

choices. Here we focus on the monastery appraisal
structures based on the ranking of the affection (“like”
and “dislike”) relations in Sampson’s empirical data.
Note that we apply data collected directly from orig-
inal PhD dissertation [36], where “like” and “dislike”
relations were both collected for three times, while
most Sampson’s “dislike” dataset available online are
incomplete.

Because the available data about this network does
not include a complete set of interpersonal appraisals,
we set up an initial appraisal matrix for our simula-
tion based on one ancillary assumption: the initial self-
appraisal of each individual is equal to the mean value
of the appraisals of this individual held by all other
group members. Given ε = 0.1, the trajectories of the
appraisal evolution on Sampson’s affection network
measured for the third time are shown in Fig. 8.
The equilibrium structure illustrated in Fig. 8 is still

initial condition iteration 1 iteration 2

iteration 3 iteration 4 . . . iteration 10

Fig. 8. Evolution of appraisal matrices on Sampson’s
monastery network: the appraisal matrix converges to
a rank-1 matrix of the form 1NvT .

a factions-followers structure with a single faction.
Appraisal consensus of each individual in the network
is also observed along the trajectories. Moreover, we
observe a quick consolidation to approximately two
clusters (two factions-followers structures) on a short
time-scale, but then on a long time-scale, the bridging
ties with positive appraisals and influences bring the
whole group together slowly, and eventually, one
faction with followers emerges in the equilibrium.

The third example considers Zachary’s karate club
network. The interactions among the members of a
university karate club were recorded for 2 years by
Zachary [37]. During observation, a conflict between
the administrator and the instructor of the club devel-
oped and eventually the club broke into two clubs.

Because the available data about this network does
not include a complete set of interpersonal appraisals,
we set up an initial appraisal matrix for our simu-
lation based on four ancillary assumptions: (1) each
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individual in the group has positive initial appraisals
of the individuals that she interacted with and the
appraisal values are proportional to the number of
contexts in which interaction took place between the
two individuals; (2) each individual has non-positive
appraisals of the remaining individuals and the ap-
praisal values are uniformly randomly-selected from
[−0.5, 0], while the administrator and the instructor
have −1 appraisal of each other; (3) the initial self-
appraisal of each individual is equal to the mean
value of the positive appraisals of this individual
held by the others; moreover, (4) the self-influence
parameter for the two intransigent individuals (i.e.,
the administrator and the instructor) is ε = 1, and
ε = 0 for the remaining individuals. The trajectory
of the appraisal evolution on Zachary’s karate club
network is shown in Fig. 9. Consistent with Zachary’s
analysis, we observe two factions-followers structures
emerged in the equilibrium and each structure has a
single faction consisting of either the instructor (node
1) or the administrator (node 34).

initial condition iteration 1 iteration 2

iteration 3 iteration 4 . . . iteration 27

Fig. 9. Evolution of appraisal matrices on Karate club
network: the equilibrium positive digraph includes two
factions-followers structures. Node 1 corresponds to
the instructor and Node 34 corresponds to the admin-
istrator. The appraisal submatrices associated with two
structures converge to two rank-1 matrices.

5.3 Theoretical and numerical analysis of the self-
influence parameter
To complete the analysis, we discuss the self-influence
parameter ε and show its impact on the appraisal and
influence coevolution. In particular, for ε = 0, if we
additionally assume that the influence (and equiva-
lently positive appraisal) submatrices associated with
the sink SCCs are aperiodic for all time, then all results
in Theorems 5.1 and 5.2 hold true. The proofs are
similar and skipped here. Moreover, even without
an aperiodicity assumption, given ε = 0, Xs(t) in
the statement (i) of Theorem 5.2 still exponentially

converges to a rank-1 positive matrix of the form
1Nsv

T , and consequentially the statement (ii) holds.
That is, aperiodicity is implicitly satisfied for these
two cases if there exists a positive column for the
considered appraisal submatrix Xs(t) or matrix X(t).
In addition, ε does not need to be homogeneous for
each individual and one may verify that all results
in this article hold for positive and heterogeneous
{εi}i∈{1,...,N}. Heterogeneous self-appraisal constants
are adopted in the simulation of Fig. 9.

By the following numerical simulations, we claim
that the equilibrium appraisal structure and the con-
vergence rate may vary for different ε. Consider a
coevolution system with 10 individuals. Given a con-
stant initial state, we show the dynamical trajectories
for three different ε. For ε = 0, the dynamical system
converges to an O(10−5)-neighborhood of the equi-
librium in 7 iterations, and the topology evolutions
of the positive appraisal digraphs and their conden-
sation digraphs are shown in Fig. 10. For ε = 0.5,
the system converges in 28 iterations to an O(10−5)-
neighborhood of the equilibrium as shown in Fig. 11.
For ε = 0.9, the topology evolutions of the digraphs
are referred to Fig. 12. It takes 41 iterations in this case
to reach an O(10−5)-neighborhood of the equilibrium.
The simulations illustrate that a larger ε essentially
corresponds to a slower convergence rate. It is easy to
understand as ε represents the self-influence parame-
ter of individuals, which measures the stubbornness
of each individual on its previous opinion. From
Figures 10–12, we also observe different trajectories
of the appraisal structure evolutions for different ε.

iteration 0 iteration 1 iteration 2 iteration 3 . . . iteration 7

Fig. 10. Topology evolution of an appraisal structure
with ε = 0: in this and following three figures, the
digraphs above (resp. below) correspond to the evolu-
tion of G+(X(t)) (resp. C(G+(X(t)))). The equilibrium
positive digraph includes one faction (consisting of 4
nodes) and six followers.

Moreover, the number of factions at equilibrium may
also vary for different ε. As illustrated in Fig. 13,
given a coevolution system with 10 individuals and a
constant initial state, the equilibrium appraisal struc-
ture has one factions-followers structure with a single
faction for ε = 0.1 and has two disconnected factions-
followers structures each of which has a single faction
for ε = 0.9.
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iteration 0 iteration 1 iteration 3 iteration 7 . . . iteration 28

Fig. 11. Topology evolution of an appraisal structure
with ε = 0.5. The equilibrium positive digraph has
two disconnected components. The component with
9 nodes has one faction and six followers. Another
disconnected component includes an outsider.

iteration 0 iteration 10 iteration 3 iteration 7 . . . iteration 41

Fig. 12. Topology evolution of an appraisal structure
with ε = 0.9. The equilibrium positive digraph has one
outsider and one factions-followers component. The
factions-followers component includes 9 nodes: one
faction (consisting of 5 nodes) and four followers.

6 STRUCTURAL BALANCE PROPERTIES OF
THE COEVOLUTIONARY DYNAMICS

In this section we study the structural balance prop-
erties of the coevolution model of interpersonal ap-
praisal and influence (4)-(5). In the previous two
sections we have illustrated the topology evolution
for the positive appraisal digraphs and the conver-
gence properties for the appraisal and influence co-
evolution. Now we are able to combine these re-
sults with macro-structural models: it is interesting to
study what macro-structural models the equilibrium
factions-followers-outsiders structure is related to and
which class of macro-structures are invariant under
the coevolution. In what follows the word macro-
structure is a synonym for an appraisal structure,
i.e., a set of all appraisal matrices with a certain
sign pattern. A macro-structure is invariant under
the coevolution if, given an initial appraisal matrix
belonging to the macro-structure, all trajectory matri-
ces via the coevolution system (4)-(5) remain in the
macro-structure.

Our coevolution model approach does not pre-
specify a particular micro-model. Instead, it pre-
specifies the conditions of interpersonal influence re-
lations and addresses the implications of the model.

iteration 0 iteration 15 iteration 0 iteration 57

ε = 0.1 ε = 0.9

Fig. 13. Topology evolutions of an appraisal structure
with ε = 0.1 and ε = 0.9, respectively. The equilibrium
positive digraph has one faction for ε = 0.1 but two
factions for ε = 0.9.

Recall that our coevolution model satisfies the two
statements in the classic balance model: “my friend’s
enemy is my enemy” and “my friend’s friend is
my friend”, whereas the other two statements: “my
enemy’s enemy is my friend” and “my enemy’s friend
is my enemy” are not intuitively necessary for the
coevolution of appraisal and influence. By examining
all 16 types of triads in an appraisal structure, the
deduced micro-model of permitted triad types by the
first two statements is {300, 120D, 102, 021U, 012, 003}
(see Fig. 14 and [8] and [27, Section 8.3] for the
detailed description of these triad types). Moreover,
as we allow the interpersonal appraisal relation to
be 0, the triad type 021D is also permitted in
our model if the two bottom nodes of the posi-
tive digraph of 021D in Fig. 14 have 0 appraisal
of each other. Overall, the micro-model associated
with the coevolution model (4)-(5) is Pco-evolv =
{300, 120D, 102, 021D, 021U, 012, 003}.

300 120D 102 021U

012 003 021D

Fig. 14. Permitted triads: the positive appraisal digraph
representations of the permitted triad types by the
coevolution model

Furthermore, we examine the equilibrium struc-
tures described in Theorem 5.1. It is clear that the
factions-followers-outsiders structure is the macro-
structure defined by the micro-model Pco-evolv, where
only triad types in Pco-evolv appear in the struc-
ture and all remaining triad types are forbidden. In
particular, triad type 300 is a one-faction structure,
120D is a one-faction-one-follower structure, 102 is
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a one-faction-one-outsider structure or a two-faction
structure (depending on the top individual’s self-
appraisal), 021D is a two-faction-one-follower struc-
ture (where the interpersonal appraisals between the
factions are 0), 021U is a one-faction-two-follower
structure, 012 is a one-faction-one-follower-one out-
sider/faction structure, and finally 003 includes three
factions or outsiders. Consequently, any appraisal
network including only triad types in Pco-evolv has a
factions-followers-outsiders structure.

Proposition 6.1. The factions-followers-outsiders struc-
ture, i.e., the equilibrium macro-structure of the coevolution
system (4)-(5), is consistent with the micro-model Pco-evolv.

In other words, the coevolution system bridges the
static micro-model and the dynamical convergence
of the macro-structure networks, and the factions-
followers-outsiders networks are then structurally
balanced with respect to the micro-model Pco-evolv.

6.1 Invariant macro-structures

We have studied the macro-structure associated with
the coevolution equilibrium appraisal networks. In
the following, we analyze the macro-structures which
are invariant in the coevolution system (4)-(5).

The implication of the classical model of structural
balance is a class of appraisal macro-structures where
either all individuals have strictly positive appraisal
relations, or there are at most two subgroups such that
individuals have strictly positive appraisal relations
in the same subgroup but strictly negative appraisal
relations between two subgroups. A classical bal-
ance structure has two possible block matrix patterns:

(1) [+] or (2)
[
D1 −
− D2

]
, where {Di}i∈{1,...,2} are M-

cliques. Moreover, Di ∼ [+] if there are Ni ≥ 2
individuals in this M-clique, and Di can be either “−”
or “ + ” for Ni = 1. It is noted that “M-clique” and
“faction” are two similar but different concepts in this
paper: the differences lie on (1) an outsider is a stand-
alone M-clique but not a faction, (2) there may exist
A-relations between two M-cliques but never between
two factions. The classical balance structure is a spe-
cial case of a factions-followers-outsiders structure,
which includes at most two factions, may include
outsiders, but does not include any followers. The
classical balance macro-structure has been intensively
studied, see e.g., in [1], [2]. We also consider other
two macro-structural models: clustering structure and
ranked clusters of M-clique structure in the following
analysis.

Lemma 6.2 (Invariance of classical balanced struc-
ture). The classical balanced structure is invariant under
the coevolution system (4)-(5).

Define a clustering structure as an appraisal structure

with a representative matrix

X ∼


D1 − . . . −
− D2 . . . −
...

...
. . .

...
− − . . . Dn

.
Here Di, i ∈ {1, . . . , n} are M-cliques (clusters), and all
“−” block submatrices represent complete N-relations
among these M-cliques. That is to say, the clustering
structure extends the classical balanced structure to
a structure with n > 2 M-cliques. This structure is
also a factions-followers-outsiders structure, with an
arbitrary number of factions.

Lemma 6.3 (Invariance of clustering structure). The
clustering structure is invariant under the coevolution
system (4)-(5).

A ranked clusters of M-clique structure is defined by a

block matrix form: X ∼


D1 − . . . −
S21 D2 . . . −

...
...

. . .
...

Sn1 Sn2 . . . Dn

, with n

M-cliques for n ≥ 2. Here, without loss of generality,
if i ≥ j, the rank of the i-th M-clique is higher
than or equal to the rank of the j-th M-clique. Sij is
strictly positive if and only if the i-th M-clique ranks
strictly higher than the j-th M-clique; otherwise, if
the i-th and the j-th M-cliques have the same rank,
then Sij is non-positive. One may check the ranked
clusters of M-clique structure is not invariant under
the coevolution system (4)-(5) in general. However, we
will show that a subset of this structure is invariant
under the coevolution.

Lemma 6.4 (Invariance of ranked clusters of M-clique
structure). A ranked clusters of M-clique structure is not
invariant under the coevolution system (4)-(5) in general.
But, if an appraisal matrix X has both a ranked clusters of
M-clique structure and a factions-followers structure with
only one faction, then the structure of X is invariant under
the coevolution.

One may check that X in Lemma 6.4 satisfies

X ∼


+ . . . + − . . . −
+ . . . + − . . . −
...

. . .
...

...
. . .

...
+ . . . + − . . . −

, (8)

that is, all entries in the same columns of X have
the same sign. It is noted that the structure of X
has totally two ranks: only one M-clique is with the
higher rank and it is a faction, and the remaining
n − 1 M-cliques have the same lower rank and they
are followers, as shown in Fig. 15.

Among all macro-structures introduced in [27, Sec-
tion 8.3], the three classes of macro-structures dis-
cussed in Lemmas 6.2–6.4 are all potentially stable
balanced structures under our coevolution. It is noted
that the equilibrium appraisal structure also includes
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M(1) M(1)M(1)

M

Fig. 15. Positive digraph of the invariant ranked clus-
ters of M-clique structure: The nodes of the graph are
M-cliques. The top M-clique is a faction and all M(1) are
followers. The structure is a factions-followers structure
with a single faction.

a ranked clusters of M-cliques structure specified as
in Fig. 16. Different from the structure in Fig. 15, the
structure in Fig. 16 has multiple factions and each fol-
lower may hold positive appraisals of more than one
faction. One simple example for the equilibrium ap-

praisal matrix in this case is that X =

[
1 0 0
0 1 0

1/2 1/2 0

]
for any ε ≥ 0. However, this structure is not invariant
under the coevolution system in general. Moreover,
such an equilibrium is less-frequently observed in
simulations with random initial conditions. In the
example above, if the appraisal of node 1 held by
the follower, node 3, increases for a sufficiently small
amount, then the trajectory of the coevolution system
leads to another equilibrium where node 3 is only
directly connected to node 1.

M M

M(1) M(1) M(1)

Fig. 16. Positive digraph of another equilibrium ranked
clusters of M-clique structure: each sink M-clique is
a faction; all source singleton M(1), are followers that
hold (complete) positive appraisals of one or multiple
factions. The structure is a factions-followers structure
with multiple factions.

6.2 Convergence of invariant macro-structures

Now we integrate the invariant structure results in
Lemmas 6.2–6.4 with the convergence results in Sec-
tion 5, which immediately implies the convergence
properties of the stable macro-structures as in Corol-
lary 6.1. In what follows we regard the classical
balanced structure with two M-cliques as a special
case of a clustering structure for the simplicity of
presentation.

Corollary 6.1 (Convergence of generalized balanced
structures). For the coevolution system (4)-(5) with ε ≥
0, each trajectory X(t) converges exponentially fast to an
equilibrium X∗ in the following three scenarios:

(i) (Convergence of a classical balanced structure
with one cluster) For a group of individuals with positive
initial appraisals, G+(X(t)) is a faction for all t ≥ 0 and
so is G+(X∗). Moreover, a positive appraisal consensus on
each individual is achieved for the whole group in X∗.

(ii) (Convergence of a clustering structure) For a
group of individuals with a clustering appraisal structure
initially, the factions and outsiders of G+(X(0)) remain
unchanged in G+(X(t)) for all t ≥ 0 and in G+(X∗).
An appraisal consensus of each individual of the group is
achieved within each faction of G+(X∗): it is positive if the
individual belongs to the faction and non-positive other-
wise. An outsider occurs if and only if one cluster includes
one individual and its self-appraisal is non-positive.

(iii) (Convergence of a ranked clusters of M-clique
structure with form (8)) For a group of individu-
als with an initial appraisal structure (8), the factions-
followers structure with one faction remains unchanged in
G+(X(t)) for all t ≥ 0 and in G+(X∗). The signs of all
appraisals never change along the trajectory X(t), t ≥ 0,
and an appraisal consensus on each individual is achieved
for the whole group in X∗.

Different from Theorem 5.2 (iii), the first statement
(i) of Corollary 6.1 assumes that all appraisals of the
initial state are strictly positive, which implies the
aperiodicity and irreducibility of all X(t) and W (t)
along the trajectory. Therefore, ε could be equal to 0.
Similarly, ε could be 0 for the second statement (ii).
The third statement (iii) is a special case of Theo-
rem 5.2 (ii), and therefore, the aperiodicity is satisfied
implicitly and the statement holds for ε = 0.

7 CONCLUSION

This article studies appraisal structure evolution
among a group of individuals. Motivated by recent
efforts on developing linkages between the major top-
ics in sociological social psychology, we believe that it
is interesting and meaningful to link social influence
network theory with structural balance theory. As ap-
praisals are subject to endogenous interpersonal influ-
ences, they may be influenced by others’ appraisals. A
network of such endogenous interpersonal influences
is often formed in social groups. However, to the best
of our knowledge, there are no dynamical models of
appraisal structure which are directly evolved with
the implications of such influence networks. It is not
theoretically clear how the fundamental appraisals
associated with persons’ social identities are modified
by the displayed influences of other group members,
or how endogenous interpersonal influences in a
group may generate equilibrium appraisals that are
quite different from the initial array of appraisals.

We have presented novel results on the modeling
and analysis of the coevolution of appraisal and in-
fluence networks. We derived a concise explicit dy-
namical model for the coevolution process and char-
acterized completely its convergence and equilibrium
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structure properties. Our analysis also leads to several
important implications to the study of signed social
networks and structural balance theory. Specifically,
our model shows that (i) for any initial appraisal
matrix, the set of strongly connected components
associated with the positive appraisal digraphs re-
mains constant after finite time; (ii) for any initial
appraisal matrix, the appraisal matrix trajectory con-
verges asymptotically to an equilibrium, which has a
factions-followers-outsiders structure: all individuals
in a faction reach an appraisal consensus on each
individual, all followers’ appraisals are determined
by the appraisals held by the individuals from the
directly connected factions, and all outsiders have
non-positive appraisals of each individual; and (iii)
the appraisal structures according to the equilibria of
the coevolution are balanced in sense that the two
statements “my friend’s enemy is my enemy” and
“my friend’s friend is my friend” are always satisfied
in the associated social networks. The realizations of
all possible equilibria of the coevolution fall into four
distinct social structural classes. Meanwhile, three
macro structural models are proved to be always
stable subject to the proposed coevolution process.
Overall, our model predicts a tendency of social
appraisal structures to a set of structural equivalent
bundles, i.e., a set of components where individuals
have aligned interpersonal appraisals.

This paper presents only an introduction to ap-
praisal evolution and structural balance models with
implications of social influence networks, and much
work remains to be done in order to understand the
robustness of our formulation and its results. We as-
sume here that the influence weights accorded by each
individual are proportional to her positive appraisals
on individuals of the social group. However, a large
literature exists in social psychology on conditions
that may affect individuals’ influence network and its
evolution (e.g., see our recent work [20]). We believe
there are opportunities for a discussion on useful
alternative mechanisms that adjust the relation be-
tween interpersonal appraisals and influences. Future
research will be directed at validating our results with
empirical data and identifying the qualitative roles of
appraisal and influence coevolution mechanisms in
the dynamics of signed social networks.
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APPENDIX A
PROOF OF THEOREM 4.1
From the definition, any digraph associated to a non-
negative matrix X+(t) ≥ 0 has at least one SCC. As
some entries of X(t) may be negative, it is possible
for one SCC of G+(X(t)) to split into multiple SCCs
at time t+ 1. For example, given

X(t) =

[
a b
c d

]
, with a, b, c > 0 and d ≤ 0,

by simple calculation,

W (t) =

[
a+ε
a+ε+b

b
a+ε+b

c
c+ε

ε
c+ε

]
, and

X(t+ 1) ∼

[
+ b(a+ε)

a+ε+b +
bd

a+ε+b

+ bc
c+ε +

εd
c+ε

]
.

It is clear that there is only one SCC for X+(t) but
there are two SCCs for X+(t + 1) if |d| > a + ε. The
result can be extended to any dimension matrix X(t).

Regarding facts (i)-(ii), we first consider the case
where the positive digraph at time t includes two
SCCs. After performing an inverse topological sorting,
we have a block lower triangular representative of the
influence matrix as follows:

W (t) =

[
D1 0
S1 D2

]
, (9)

where the block submatrices D1 ∈ RN1×N1 , D2 ∈
R(N−N1)×(N−N1), correspond to the SCCs H1(t) and
H2(t) respectively, and D1, S1, D2 ≥ 0. By definition,
X(t) shall have the form

X(t) =

[
X11 X12

X21 X22

]
, with X12 ≤ 0.

Clearly,

X+(t) =

[
X+

11 0
X+

21 X+
22

]
,

and

X(t+ 1) =

[
D1X11 D1X12

S1X11 +D2X21 S1X12 +D2X22

]
,

where DX12 ≤ 0 for X12 ≤ 0. As a result,

X+(t+ 1) =[
(D1X11)

+ 0
(S1X11 +D2X21)

+ (S1X12 +D2X22)
+

]
. (10)

By comparing X+(t + 1) with X+(t), we have the
following conclusion: if no node of the SCC H1(t) has
an influence link toward a node of the SCC H2(t) or
equivalently no individual in H1(t) likes an individual
in H2(t) at time t, then no edge can appear from
H1(t) to H2(t) in the positive digraph G+(X(t + 1))
at time t+ 1. Moreover, the subset of nodes H1(t) (or
H2(t) respectively) either remains one SCC, or may
split into multiple SCCs, depending on the structure

of [D1X11]
+ (or [S1X12 + D2X22]

+ respectively) in
the digraph G+(X(t + 1)). It is impossible for the
cardinality of an SCC to increase.

These results can be extended to any higher dimen-
sion case. Consider a block lower triangular influence
matrix

W (t) =



D1(t)
...

. . .

Si1(t) . . . Di(t) 0
...

. . .
...

. . .
Sj1(t) . . . Sji(t) . . . Dj(t)

...
. . .

...
. . .

...
. . .


. (11)

The diagonal block matrices Di(t) and Dj(t) cor-
respond to the nodes Hi(t), Hj(t) of the associated
condensation digraph at time t respectively and i < j
in the inverse topological sorting. By the similar anal-
ysis above, we can show that all zero entries in the
upper triangular will remain zero for W (t + 1) and
X+(t + 1) via the coevolution system (4)-(5). That is,
no edge exists from the subset of nodes Hi(t) to the
subset of nodes Hj(t) at time t+ 1 and hence no two
SCCs can merge at time t+ 1. Moreover, if i < j and
if there does not exist a directed path from Hj(t) to
Hi(t) in C(G+(X(t))) with length 1 or 2, then we have
Sji(t) = 0 and Sjk(t)Ski(t) = 0 for all i < k < j. After
simple calculation, we can show Sji(t+1) = 0, that is,
no edge can appear from a node in the subset Hj(t) to
a node in the subset Hi(t) at time t+1 in the digraph
G+(X(t+ 1)). Overall, the claims (i)-(ii) hold true.

Regarding facts (iii)-(v), based on facts (i)-(ii) and
the analysis above, no two SCCs can merge, and
the number n(t) of SCCs associated to G+(X(t)) is
non-decreasing. Since the number of the group of
individuals is finite and equivalently the number of
all nodes of G+(X(t)) is finite, the number of SCCs of
the positive digraphs will remain constant after some
finite time τ . Consequently, the set of SCCs of the
positive digraphs also remains unchanged after τ .

APPENDIX B
SUPPORTING LEMMAS AND PROPOSITION
FOR THEOREM 5.1
Lemma B.1 (Products of primitive matrices with
positive diagonal). If A1, A2, . . . , An−1 are primitive
n × n matrices with positive diagonal entries, then
A1A2 · · ·An−1 > 0.

Proof: It suffices to show that any vector x0 ≥ 0,
x0 6= 0, satisfies An−1 · · ·A2A1x0 > 0. For t ∈
{1, . . . , n − 1}, let xt = Atxt−1 and let nt−1 be the
number of strictly positive entries in xt−1. If nt−1 < n,
then a suitable reordering of the entries leads to

xt−1 =

[
p
0

]
, where p ∈ Rnt−1 and p > 0.
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Because At is primitive with positive diagonal entries,
there exists ε > 0 such that At = εIn + B for an
appropriate primitive n× n matrix B. Hence,

xt = At

[
p
0

]
= ε

[
p
0

]
+

[
B11 B12

B21 B22

] [
p
0

]
.

Note that (i) the first nt−1 entries of xt are lower
bounded by εp > 0, and (ii) the other entries of xt
are B21p ≥ 0. Because B is irreducible, B21 cannot be
zero and, therefore, at least one entry of B21p is strictly
positive. In summary, we have established that either
nt−1 = n or nt > nt−1. This proves the statement.

Lemma B.2 (Convergence of appraisals in sinks). For
the coevolution system (4)-(5) with ε > 0, let X(t) be an
evolution with constant SCCs for time t ≥ τ . Let Hs be a
sink of the condensation digraph with Ns nodes at time τ .
If all positive appraisals held by individuals in Hs about
individuals in Hs are lower-bounded by a positive constant
βs for all t ≥ τ , then the corresponding Ns rows of X(t)
converge exponentially fast to 1Nsv

T for some v ∈ RN ,
where vj > 0 if node j belongs to Hs and vj ≤ 0 otherwise.

Proof: Denote the block influence matrix Ws(t)
and appraisal matrix Xs(t) corresponding to a sink
SCC Hs by Ws(t) ∈ RNs×Ns

≥0 , Xs(t) ∈ RNs×Ns , t ≥ τ .
Because all influences from the outside of the SCC are
zero, we only need to study the coevolution within
the SCC, i.e., Xs(t + 1) = Ws(t)Xs(t), for all t ≥ τ .
It is clear that Xs(t) =

∏t−τ
k=1Ws(t − k)Xs(τ) for all

t > τ . Additionally, the maximum of each column
of Xs(t) is always positive as G+(Xs(t)) is strongly
connected, and the maximum is non-increasing for all
t ≥ τ due to the convex combination mechanism in
the DeGroot model. Hence, from the definition (6),
all positive entries of Ws(t) are lower-bounded for all
t ≥ τ . Note that all matrices Ws(t), t ≥ τ , are row-
stochastic, irreducible and, aperiodic; moreover, they
have strictly positive diagonal entries and all their
positive entries are lower bounded. Therefore, a direct
application of Theorem 1 in [38] or, more specifically,
Corollary 9.1 in [39] establishes the exponential con-
vergence of

∏t−τ
k=1Ws(t − k) to a rank-1 matrix with

identical rows.
Next, we claim that Xs(t) > 0 for all sufficiently

large t. We prove this claim by contradiction: For any
sufficiently large t, there exists a t′ ≥ t such that one
entry xij(t′) of Xs(t

′) is equal to λ ≤ 0. Then, based on
the fact that

∏t−τ
k=1Ws(t − k) exponentially converges

to a rank-1 matrix with identical rows, there exists a
sufficiently small α > 0 such that the values of all
other entries in the j-th column of Xs(t

′) belong to
[λ−α, λ+α]. For λ < 0, we can choose t so large that
λ + α < 0 and, hence, all entries in the j-th column
of Xs(t

′) are negative. This fact implies that the j-th
node is reducible for all subsequent times, which is
a contradiction. For λ = 0, we can choose t so large
that the entries of the j-th of Xs(t

′) are sufficiently
close to 0 and such that α < βs: if all entries are

non-positive, then the j-th node is reducible which
is a contradiction; if any one of them is positive,
then it must be less than α and βs, which contradicts
the lower boundedness assumption on the positive
entries of Xs(t). As a result, there exists a finite time
t such that Xs(t) > 0 and hence Ws(t) > 0, which
implies Xs(t + k) > 0 for all k ∈ N. Overall, the
appraisal trajectory Xs(t) exponentially converges to
X∗s := limt→∞Xs(t), where X∗s > 0 is a rank-1
matrix with identical rows, by a direct application of
Corollary 9.1 in [39]. The positive digraph associated
with X∗s is then fully connected.

For the remaining individuals in the group that
do not belong to Hs at time τ , the influences from
them to the sink are zero and the appraisals of them
held by the sink nodes are non-positive. The Ns row
of
∏t−τ
k=1W (t − k), corresponding to the accumulated

influences accorded by the sink Hs, then exponentially
converges to 1Nsw

T for some vector w ∈ RNs
≥0, where

wj > 0 if j is in the sink and wj = 0 otherwise.
Correspondingly, the associated Ns rows of X(t) expo-
nentially converges to 1Nsv

T for some vector v ∈ RNs ,
where vj > 0 if j is in the sink and vj ≤ 0 otherwise.
Moreover, for a special case that X(0) ≥ 0, it is
straightforward to check v ≥ 0.

The lower-boundedness assumption in Lemma B.2
is a sufficient condition ensuring that the product of
the influence submatrices Ws(t) (associated with the
sink) converges to a rank-1 matrix. A weaker sufficient
assumption is that all truncated positive appraisal
submatrices (or equivalently, all truncated influence
submatrices) associated with the sink are irreducible.
Here, a truncated matrix is defined as follows: Given
a constant β ∈ R>0, x ∈ R, and A = [aij ] ∈ RN×M ,

we write xβ+ =

{
x, if x ≥ β,
0, otherwise,

and Aβ+ := [aβ+ij ].

The matrix Aβ+ is called the truncation of A by β.
The digraph associated with Aβ+ is called a truncated
digraph. The sequence of signed matrices {A(t)}t has
a uniformly-irreducible truncation if there exists a single
β > 0 such that all matrices Aβ+(t) are irreducible.

Proposition B.3 (Convergence of appraisals in uni-
formly-irreducible truncated sinks). For the coevolution
system (4)-(5) with ε > 0, let X(t) be an evolution with
constant SCCs for time t ≥ τ . Let Hs be a sink of
the condensation digraph with Ns nodes at time τ and
with Ns × Ns appraisal submatrix Xs(t). If there exists
a positive constant βs such that Xβ+

s (t) is irreducible for
all t ≥ τ , then the corresponding Ns rows of X(t) converge
exponentially fast to 1Nsv

T for some v ∈ RN , where vj > 0
if node j belongs to Hs and vj ≤ 0 otherwise.

Proof: Since Xβ+
s (t) is irreducible for all t ≥ τ ,

there exists a constant γ > 0 such that W γ+
s (t) is

irreducible and with positive diagonal entries for all
t ≥ τ . It is clear that Ws(t) ≥ W γ+

s (t) for all t.
Moreover, as W γ+

s (t) is primitive and with positive
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diagonal entries, we have
∏Ns−1
k=1 W γ+

s (t+Ns − 1− k)
is positive for all t ≥ τ by Lemma B.1. Hence,∏Ns−1
k=1 Ws(t+Ns−1−k) is positive and row-stochastic

for all t ≥ τ , which implies the exponential conver-
gence rate of the product of Ws(t) to a rank-1 positive
matrix by an application of Corollary 9.1 in [39]. The
remaining proof is identical to that of Lemma B.2.

As Xs(t) of the sink SCC described in Proposi-
tion B.3 converges to a rank-1 positive matrix, the
lower-bounded assumption on all positive entries of
the appraisal matrices Xs(t), t ≥ τ , hold naturally.

APPENDIX C
PROOF OF THEOREM 5.1
Consider the coevolution system (4) and (5) with
X(0) ∈ RN×N , a constant set of SCCs begin-
ning at time τ , and with 0 < ε < 1. It is use-
ful to introduce the following definition. Given an
SCC Hk(t) with the corresponding appraisal square
submatrix Xk(t), consider a positive appraisal in
Xk(t), i.e., a positive entry (Xk(t))ij . The normal-
ized positive appraisal corresponding to (Xk(t))ij is
(Xk(t))ij/maxh,`(Xk(t))h` and the normalized positive
appraisal submatrix is X+

k (t)/maxh,`(Xk(t))h`.
First, we make the following claims:
(A1): Consider a sink SCC Hs of G+(X(τ)). If the

sequence of corresponding appraisal submatrices has
a uniformly-irreducible truncation, then Hs converges
exponentially fast to a faction. Instead, if there does
not exist a single constant guaranteeing uniform ir-
reducibility, then, for all β > 0, Hs includes multiple
β-truncated (sink, intermediate or source) SCCs, each
of which converges to factions, followers, or outsiders
in G+(limt→∞X(t)).

(A2): Consider an intermediate (resp. source) SCC
Hi of G+(X(τ)). If the positive appraisals of at least
one sink SCC of G+(X(τ)) held by Hi are uniformly
lower-bounded by a positive constant for all t ≥ τ ,
and if the sequence of normalized positive appraisal
submatrices associated with Hi has a uniformly-
irreducible truncation, then Hi converges asymptot-
ically to the followers of the faction(s). Otherwise, the
intermediate (resp. source) SCC may become factions
or outsiders in G+(limt→∞X(t)).

Regarding (A1), the exponential convergence of a
sink SCC Hs, whose truncation is uniformly irre-
ducible, to a faction follows directly from Proposi-
tion B.3. If there does not exist a positive constant
such that all truncated positive appraisal submatrices
associated with the sink are irreducible, then the
following two cases may occur.

(A1.a) (truncated reducible case with globally reachable
nodes) Assume there exists β > 0 such that, for all t ≥
τ , the β-truncated appraisal digraphs of the sink Hs
have a non-empty maximal set of globally reachable
nodes (called truncated globally reachable nodes). Then,
by the arguments similar to the ones in the proof of

Proposition B.3, the rows of X(t) corresponding to the
appraisals held by the Ng truncated globally reachable
nodes in Hs exponentially converges to 1Ngv

T for
some vector v ∈ RN , where the j-th entry vj > 0
if node j in Hs is truncated globally reachable and
vj ≤ 0 otherwise. That is, the set of truncated globally
reachable nodes converges to a faction. Note that
the set of globally reachable nodes in the uniform
truncation remain globally reachable in the limit and
note that no other node in the sink Hs can become
globally reachable in the limit. The convergence of the
appraisals held by the other nodes of the sink Hs is
established in the proof of (A2).

(A1.b) (truncated reducible case with multiple sinks) As
the coevolution system (4) and (5) is continuous and
has the convex combination feature of the DeGroot
model, for any SCC H of G+(X(τ)) there exist a
minimum positive constant β and a time t1 ≥ τ such
that the β-truncated positive appraisal digraphs of
H contain a constant set of SCCs for all t ≥ t1. We
call these components of H the truncated SCCs. If the
truncated SCCs of a sink Hs contains K ≥ 2 sinks,
then the rows of X(t) corresponding to the appraisals
held by the Nk nodes in the truncated sink SCC Hk,
k ∈ {1, . . . ,K}, converges to 1Nk

vk
T , for some vector

vk ∈ RN . If Hk converges to a faction, then the j-th
entry of vk is greater than 0 for node j belonging to
Hk and non-positive otherwise. If Hk includes only
one node and her self-appraisal converges to 0 or
is non-positive, then Hk converges to an outsider.
The convergence of the truncated sinks to factions
are similar to that of the truncated globally reachable
nodes in the case (A1.a). (By comparison, (A1.a) is
the case that K = 1.) The convergence analysis of
the appraisals held by the remaining nodes in Hs is
postponed to the proof of (A2).

Regarding (A2), for the simplicity of analysis, we
relabel the nodes in such a way that the influence ma-
trix W (τ) is block lower triangular as in equation (7)
(recall that the influence matrix and the positive ap-
praisal matrix have the same positive/zero pattern
except the diagonal).

We start by considering an intermediate or source
SCC Hi of G+(X(τ)) which is only directly connected
to one sink SCC Hs for t ≥ τ . Assume Hs converges
to a faction. We aim to show that Hi converges to
singleton followers of the faction Hs subject to the
assumptions in (A2).

Denote the block matrix corresponding to the in-
fluences within Hi as Di(t) and the block matrix
corresponding to the influences of Hs to Hi as Sis(t),
(e.g., D2 in equation (7) with S21 6= 0). Note that Di(t)
is row-substochastic for all finite t ≥ τ , and all positive
entries of Sis(t) can be proved to be lower-bounded by
a constant γ1 > 0 for all t ≥ τ (by the lower-bounded
positive appraisal assumption and by the arguments
similar to the ones in the proof of Lemma B.2).
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For k ≥ 0, let Pi(k, t) :=
∏k
`=0Di(k − ` + t). Since

Di(t) is primitive (irreducible and aperiodic) with
positive diagonal entries for t ≥ τ , Lemma B.1 implies
that there exists a finite d ≥ 0 such that any product
Pi(d, t) > 0 for all t ≥ τ .

By assumption the normalized positive appraisals
of Di(t) are lower-bounded by a positive constant
for all t ≥ τ . Therefore, for each row of Di(t), each
positive entry divided by the row sum is lower-
bounded by a positive constant uniformly. Hence,
each positive entry of Di(t)/rmax(Di(t)) is lower-
bounded by a positive constant uniformly, where we
let rmax(A) > 0 denote the maximum row sum of a
non-negative matrix A. Similarly, we let rj(A) > 0
denote the j-th row sum of a non-negative matrix A.
Simple calculations show that

Pi(k, t)

rmax(Pi(k, t))
≥

∏k
`=0Di(k − `+ t)∏k

`=0 rmax(Di(k − `+ t))
.

In turn this implies that each entry of
Pi(d, t)/rmax(Pi(d, t)) is greater than a positive
constant γ2 uniformly (independent of t). Therefore,
as Pi(d, t) is row-substochastic, each row sum of
Pi(d+ 1, t) = Pi(d, t+ 1)Di(t) satisfies:

rj(Pi(d+ 1, t))

=

Ni∑
n=1

pjnrn(Di(t))

≤
Ni∑
n=1

pjn
rmax(Pi(d, t))

rn(Di(t))

≤
Ni∑

n=1,n6=k

pjn
rmax(Pi(d, t))

+
pjk

rmax(Pi(d, t))
rk(Di(t))

≤ 1− pjk
rmax(Pi(d, t))

+
pjk

rmax(Pi(d, t))
rk(Di(t))

≤ 1− γ1γ2, for all j ∈ {1, . . . , Ni},

where pjk denotes the (j, k)-th entry of Pi(d, t). Here
we used the fact that there always exists one row
of Di(t) (say, the k-th row) such that the row sum
rk(Di(t)) ≤ 1 − γ1 due to the lower boundedness of
the positive entries of Sis(t) and the row-stochasticity
of the matrix [Sis(t) Di(t)]. In other words, the
maximum row sum of Pi(d + 1, t) is strictly less
than 1 − γ1γ2 uniformly (independent of t), and
limk→∞ Pi(k, τ) = limk→∞Di(k + τ) · · ·Di(τ) = 0
exponentially. As Hs converges to a faction, there
exists a large time t1 such that all appraisals among
Hs at time t for all t ≥ t1 are positive and lower-
bounded, and each row sum of Sis(t) is positive
and lower-bounded. Consequently, there exists a time
t2 ≥ t1 such that all appraisals accorded to Hs by Hi

are positive for all t ≥ t2. Moreover, one can verify
that the i-th diagonal block matrix of the aggregate
influence

∏k
`=0W (k−`+ t) is equal to Pi(k, t) and the

corresponding block appraisal matrix is non-positive

when t→∞. This implies that, when t→∞, the SCC
Hi splits into Ni singleton SCCs. If each singleton SCC
in the limit is directly connected to only one sink SCC,
then it is straightforward to check the equilibrium
appraisals accorded by the singleton to all members of
the group in limt→∞X(t) is identical to the appraisals
accorded by any individual in the sink SCC Hs to the
group. The appraisals held by the singletons at t = τ
are inessential.

In the arguments above, we assumed that Hs is
a sink SCC and that it converges to a faction when
t → ∞. One can extend the convergence results of
Hi to the case in which Hs is a truncated sink SCC
converging to a faction when t → ∞. The analysis
is similar and will not be repeated here. We only
remark that the lower-boundedness assumption on
positive appraisals of the (truncated) sinks held by
Hi is necessary for the convergence.

Next, we analyze the appraisal evolution of the
intermediate or source SCCs which are not directly
connected to a (truncated) sink SCC at t = τ . We
aim to show that such an SCC converges to faction,
followers or outsiders.

Let Hi denote one of these intermediate or source
SCCs. We assume that there exists a β > 0 such that
all β-truncated normalized positive appraisal matrices
associated with Hi are irreducible for all t ≥ τ . As we
discuss in Section 4, the topology of G+(X(t)) may
not be stable after t ≥ τ and the corresponding in-
fluence links between SCCs may change. We consider
the following circumstances.

(A2.a) If Hi is only directly connected to a (trun-
cated) sink SCC Hs (which converges to a faction)
after a finite time t1 > τ , then the analysis for the
SCCs that are directly connected to a (truncated) sink
after time τ can be applied to Hi. That is to say, if
the positive appraisals of Hs held by Hi are lower-
bounded away from 0 uniformly for all t ≥ t1,
then the SCC Hi splits into followers when t → ∞.
The appraisals held by the followers are identical
to those held by the faction. On the other hand, if
the positive appraisals of Hs held by Hi converge
to 0, then Hi is disconnected from Hs in the limit:
Hi converges to either a faction or an outsider. The
convergence analysis of the appraisals held by Hi is
then similar to the convergence of a sink SCC to a
faction as discussed in (A1) except the possibility that
Hi converges to a singleton with a non-positive self-
appraisal, i.e., an outsider. Note that if one positive
appraisal of Hs held by Hi is lower-bounded away
from 0 uniformly for all t ≥ t1, then all positive
appraisals of Hs held by Hi shall be lower-bounded
away from 0 uniformly, subject to the irreducible
assumption on both the truncated normalized pos-
itive appraisal matrices associated with Hi and the
truncated positive appraisal matrices associated with
the (truncated) sink SCC Hs. Therefore, if the positive
appraisals of Hs held by Hi are not lower-bounded
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away from 0 uniformly, they must converge to 0 by
the continuity of the coevolution system.

(A2.b) If Hi is only directly connected to an interme-
diate SCC Hj and Hj is directly connected to another
(intermediate or sink) SCC Hk after a finite time t,
then two exclusive cases may occur. (1) If the accu-
mulated influences that Hi accord to Hj go to infinity,
then Hj holds positive-complete appraisals of Hi after
a certain time and those appraisals are lower-bounded
away from 0 uniformly. Consequently, the appraisals
of Hk held by Hi shall be positive after a finite time.
That is to say, Hj is directly connected to Hk after a
finite time, which contradicts our hypothesis. (2) If the
accumulated influences that Hi accord to Hj are finite,
then the influences that Hi accord to Hj converge to
0. That implies that Hi is disconnected from Hj in the
limit: Hi converges to either a faction or an outsider.
The convergence analysis of the appraisals held by
Hi is then similar to the convergence of a sink SCC
to a faction as discussed in (A1) with the exception
the possibility for Hi to converge to a singleton with
a non-positive self-appraisal.

(A2.c) We can extend the analysis to any interme-
diate or source SCC Hi at time τ . Two cases may
occur. (1) Hi is only directly connected to one (sink or
intermediate) SCC after a finite time t. This case has
been discussed in (A2.a) and (A2.b). (2) Hi is directly
connected to multiple (sink or intermediate or both)
SCCs for infinitely many times. In this case, Hi will
either converge to a faction (if all positive appraisals
of the directly connected SCCs held by Hi converge
to 0 and if Hi is not a singleton with non-positive self-
appraisals), or converges to an outsider (if all positive
appraisals of the directly connected SCCs held by
Hi converge to 0 and if Hi is a singleton with non-
positive self-appraisals), or split into followers (if the
positive appraisals of at least one directly connected
SCC held by Hi are lower-bounded away from 0
uniformly and this directly connected SCC converges
to a faction). If one directly connected SCC Hj of Hi

converges to followers or outsiders, then the positive
appraisals of Hj held by Hi converge to 0, which
implies that Hj and Hi are not directly connected in
G+(limt→∞X(t)). It is possible that Hi includes the
followers of multiple factions in the limit. If a follower
is connected to multiple factions, then, by the convex
combination feature of the coevolution model (4)-(5),
the appraisals held by the follower are the convex
combinations of the appraisals held by these different
factions.

Note that the arguments of (A2.c) can be extended
to the case (A1.b). That is, a sink SCC, which is trun-
cated reducible and with multiple truncated sinks as
described in (A1.b), converges to a factions-followers-
outsiders structure which may include multiple fac-
tions, singleton followers or outsiders. The analysis
is similar and will not be repeated here. Moreover,
the convergence results above can also be extended

to the case (A1.a). In particular, as the sink SCC Hs
described in (A1.a) has a set of truncated globally
reachable nodes for all t ≥ τ , Hs remains connected
in the limit. This implies that (1) the set of truncated
globally reachable nodes in Hs become a single faction
in the limit and (2) the other sink nodes of Hs, which
are not globally reachable in the uniform truncation,
become singleton followers of the faction in the limit.
The appraisals held by the followers are then identical
to those held by the faction.

Finally, for any intermediate or source SCC Hi,
if there does not exist β > 0 such that all β-
truncated normalized positive appraisal matrices as-
sociated with Hi are irreducible for all t ≥ τ , then the
SCC will split into multiple SCCs in G+(limt→∞X(t));
this split is similar to the one we analyzed for a
sink SCC in (A1.a)-(A1.b). Moreover, for each Hi, we
can find a finite set of truncated SCCs, such that
the truncated normalized positive appraisal matrices
associated with them are irreducible for all t ≥ τ . Then
we can treat each truncated SCC of Hi as an interme-
diate or source SCC we considered in (A2.a)-(A2.c)
due to the continuity of the coevolution system (4)-(5).
The truncated intermediate or source SCCs converge
in a way that is similar to the convergence properties
of intermediate or source SCCs in (A2.a)-(A2.c).

We conclude the proof by summarizing our find-
ings. Recall from Theorem 4.1 that, given any initial
appraisal matrix X(0), there exists a time τ such
that the SCCs of G+(X(t)) remain unchanged for
all t ≥ τ . From our previous analysis we know
the following facts. (1) All invariant SCCs or their
truncated SCCs converge asymptotically to either fac-
tions or followers or outsiders. (2) X(t) converges
asymptotically to an equilibrium X∗. (3) There may
exist multiple disconnected components in G+(X∗),
even if C(G+(X(τ))) is weakly connected. (4) G+(X∗)
may include sink SCCs (factions or outsiders) and
singleton source SCCs (followers), but neither inter-
mediate SCCs nor source SCCs with multiple nodes.
(5) The appraisals of single individuals held by each
individual of the faction reach consensus: positive
appraisal consensus of the individuals in the same
faction and non-positive appraisal consensus of the
remaining individuals. (6) If a follower is only directly
connected to one faction, then the appraisals held by
this follower are identical to the consensus appraisals
held by the faction. If a follower is directly connected
to multiple factions, then the appraisals held by the
follower are the convex combinations of the appraisals
held by the different factions. (7) As an outsider is
a singleton sink with non-positive self-appraisal, her
appraisals of all individuals are non-positive. These
statements complete the proof of the claims (i)-(iv) in
Theorem 5.1.
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APPENDIX D
SUPPORTING LEMMAS FOR THEOREM 5.2
Lemma D.1 (Convergence for non-negative X(0)).
Consider the coevolution system (4)-(5). If X(0) ∈ RN×N≥0
is irreducible, and ε > 0, then with an exponential rate,

lim
t→∞

X(t) = 1Nv
T , for some vector v ∈ RN>0.

Proof: Given irreducible X(0) ≥ 0 and ε > 0, it is
easy to check X(t) ≥ 0 for all t ≥ 0 and

X(t+ 1)

= diag
(
(X(t) + εIN )1N

)−1(
X(t)2 + εX(t)

)
. (12)

In order to show that the trajectory X(t) of the coevo-
lution system converges to a rank-1 of the form 1NvT ,
we first show that

(i) if X(t) is irreducible, then W (t) is primitive and
X(t+ 1) is irreducible.

(ii) min+i,j wij(t) ≥ δ > 0 uniformly for all t ≥ 0.

Here min+i,j wij refers to the minimum non-zero posi-
tive entry of a non-negative matrix W .

Regarding fact (i), if X(t) is irreducible, then by
definition W (t) =Wε(X(t)) is irreducible. Since ε > 0,
W (t) is also aperiodic. Moreover, as X(t + 1) is gen-
erated by (12) with ε > 0, the irreducible X(t)2 and
X(t) lead to X(t+1) irreducible. Consequently, for all
t ≥ 0, W (t) is primitive and X(t) is irreducible.

Regarding fact (ii), we claim that
ii.1) there exists a finite time t1 such that X(t1) > 0

and then W (t1) > 0;
ii.2) for k ≥ t1, mini,j∈{1,...,N} wij(k) ≥ δ1 with δ1 > 0.

By the definition (6), the diagonal entries of W (t),
t ≥ 0, are always positive. Therefore,

∏t1
k=1W (t1 −

k) > 0 for t1 = N − 1 by Lemma B.1. It follows
that X(t1) =

∏t1
k=1W (t1 − k)X(0) > 0 as X(0) is

irreducible.
For the second claim (ii.2), we have X(k) > 0 and

W (k) > 0, if k ≥ t1. As W (k) is row-stochastic, we
have mini,j∈{1,...,N} xij(k + 1) ≥ mini,j∈{1,...,N} xij(k)
and maxi,j∈{1,...,N} xij(k + 1) ≤ maxi,j∈{1,...,N} xij(k)
which implies for all k ≥ t1,

min
i,j∈{1,...,N}

wij(k) ≥
mini,j∈{1,...,N} xij(t1)

ε+N maxi,j∈{1,...,N} xij(t1)
:= δ1.

Since t1 is finite, δ := min(δ1,min+i,j,t≤t1 wij(t)) > 0 is
well defined. Then mini,j wij(k) ≥ δ > 0 for all k ≥ t1
from the claim (ii.2) above. Hence, fact (ii) holds for
all t ≥ 0.

Overall, X(t) =
∏t
k=1W (t − k)X(0) for all t ≥ 1.

From facts (i) and (ii) above, and Corollary 9.1 in [39],
we obtain limt→∞

∏t
k=1W (t − k) = 1NwT exponen-

tially for some w ∈ RN>0 and therefore limt→∞X(t) =
1NvT , exponentially with v = XT (0)w > 0.

Lemma D.2 (Convergence for X(0) with a posi-
tive column). Consider the coevolution system (4)-(5). If

X(0) ∈ RN×N has one column with all positive entries
and ε ≥ 0, then with an exponential rate,

lim
t→∞

X(t) = 1Nv
T , for some vector v ∈ RN .

Proof: Define Vmax−min : RN → R≥0 by

Vmax−min(x) = max(x1, . . . , xN )−min(x1, . . . , xN )

Without loss of generality, we assume that the first
column of X(0) is strictly positive, and therefore, the
first column of W (0) is strictly positive, which we
denote as W(:,1)(0) > 0. We claim that:

(i) for each j ∈ {1, . . . , N}, Vmax−min(X(:,j)(t)) is
non-increasing w.r.t. t ≥ 0, and it is strictly
decreasing if greater than 0;

(ii) mint≥0,i∈{1,...,N} wi1(t) ≥ δ > 0, i.e., all entries of
all vectors {W(:,1)(t), t ≥ 0} are uniformly greater
than a positive value δ.

Regarding to the first claim (i), define δ(t) =
mini∈{1,...,N} wi1(t). Since X(:,1)(0) > 0, and all W (t)
are row-stochastic for t ≥ 0, all entries of X(:,1)(t+ 1)
are the convex combination of the entries of X(:,1)(t).
Hence, X(:,1)(t) > 0 and W(:,1)(t) > 0 for all t ≥ 0,
which implies δ(t) > 0 for all t.

For all i, j ∈ {1, . . . , N},

xij(t+ 1) =

N∑
k=1

wik(t)xkj(t)

= wi1(t)x1j(t) +

N∑
k=2

wik(t)xkj(t)

≤ wi1(t)x1j(t) + (1− wi1(t))max(X(:,j)(t))

≤ δ(t)x1j(t) + (1− δ(t))max(X(:,j)(t)),

and similarly,

xij(t+ 1) ≥ δ(t)x1j(t) + (1− δ(t))min(X(:,j)(t)).

That is to say,

Vmax−min

(
X(:,j)(t+ 1)

)
≤ δ(t)x1j(t) + (1− δ(t))max

(
X(:,j)(t)

)
−δ(t)x1j(t)− (1− δ(t))min

(
X(:,j)(t)

)
= (1− δ(t))Vmax−min(X(:,j)(t)). (13)

Therefore, if Vmax−min(X(:,j)(t)) > 0, then
Vmax−min(X(:,j)(t + 1)) < Vmax−min(X(:,j)(t)) for
all t ≥ 0, j ∈ {1, . . . , N}; if Vmax−min(X(:,j)(t)) = 0,
then Vmax−min(X(:,j)(t+ k)) = 0 for all k ≥ 1.

Regarding the second claim (ii), define pj =
maxi∈{1,...,N}(xij(0), 0) for all j ∈ {1, . . . , N}. By the
arguments of the first claim, pj ≥ maxi∈{1,...,N} xij(t)
for all t. From the definition, we have

δ(t) = min
i∈{1,...,N}

wi,1(t) ≥ min
i∈{1,...,N}

xi1(0)/(

N∑
j=1

pj + ε).

Then δ = mini∈{1,...,N} xi1(0)/(
∑N
j=1 pj + ε) is well

defined and is strictly greater than 0 since p1 > 0 and
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mini∈{1,...,N} xi1(0) > 0. As a result, δ(t) ≥ δ for all
t ≥ 0.

Overall, it is straightforward to check that the state-
ment (13) still holds for the constant δ, which implies
the exponential convergence of the trajectory of the
function Vmax−min(X(:,j)(t)) to 0, and implies the
exponential convergence of X(t) to a rank-1 matrix
1NvT .

APPENDIX E
PROOF OF THEOREM 5.2
The proof of the claim (i) is a direct application of
Lemma D.2 and that G+(Xs) is irreducible for all t ≥ τ
guarantees that all entries of Xs(t) are positive in the
limit. That is, limt→∞Xs(t) = 1Nsv

T for v ∈ RNs
>0. The

claim (ii) is a direct application of Lemma D.2 where
the nodes with positive appraisals held by all are glob-
ally reachable. The claim (iii) is a direct application of
Lemma D.1. And the claim (iv) is straightforward.

APPENDIX F
PROOF OF LEMMA 6.2
First, for X(t) ∼

[
+
]

for any t ≥ 0. It is clear by the
definition of the influence matrix (5) that W (X(t)) ∼[
+
]
. Consequently, X(t + 1) = W (X(t))X(t) ∼

[
+
]
.

That is to say, the structure
[
+
]

is invariant under the
coevolution dynamics (4)-(5).

Second, if X(t) =

[
D1 S1

S2 D2

]
with D1 ∈ RN1×N1 ,

D2 ∈ R(N−N1)×(N−N1), S1 ∼
[
−
]
, and S2 ∼

[
−
]
,

then W (t) :=

[
D′1 0
0 D′2

]
, where D′1 = (εI + (1 −

ε)D+
1 ) diag(D

+
1 1N1

)−1 > 0 and D′2 = (εI + (1 −
ε)D+

2 ) diag(D
+
2 1N−N1

)−1 > 0. It is noted that we
assume each row sum of D+

1 or D+
2 is strictly positive

for the simplicity of presentation. It is always true for
N1 > 1 and N −N1 > 1, but may not hold for N1 = 1
or N −N1 = 1. If it is not true and D1 ≤ 0, based on
the definition of Ŵ (X), then we simply set D+

1 = 1
(similarly for D2 and D+

2 ). Consequently,

X(t+ 1) =W (t)X(t) =

[
D′1D1 D′1S1

D′2S2 D′2D2

]
∼
[
D1 −
− D2

]
.

That is to say, the structure
[
D1 −
− D2

]
is invariant

under the coevolution dynamics (4)-(5).

APPENDIX G
PROOF OF LEMMA 6.3
We can come to the conclusion in a similar way as
we did for the second classical balanced structure in
Lemma 6.2.

APPENDIX H
PROOF OF LEMMA 6.4
Under the condition that all entries in the same col-
umn of the appraisal matrix have the same sign, it is
clear that, by relabelling the nodes, X has the form as
in (8). If X(t) = X , we have

W (t) ∼



+ . . . + 0 . . . 0
+ . . . + 0 . . . 0
+ . . . + 0 . . . 0
+ . . . + + . . . 0
...

. . .
...

...
. . .

...
+ . . . + 0 . . . +


and hence,

X(t+ 1) ∼



+ . . . + − . . . −
+ . . . + − . . . −
+ . . . + − . . . −
+ . . . + − . . . −
...

. . .
...

...
. . .

...
+ . . . + − . . . −


∼ X(t).

Therefore the sign structure X in (8) is invariant under
the coevolution (4)-(5).

APPENDIX I
PROOF OF COROLLARY 6.1
The results are directly from the convergence analysis
of Lemma B.2 and Theorem 5.1, and the macro-
structure analysis of Lemmas 6.2–6.4.
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