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SENSOR NETWORK LOCALIZATION
ON THE GROUP OF THREE-DIMENSIONAL DISPLACEMENTS

J. R. PETERS , D. BORRA , B. E. PADEN , AND F. BULLO

Abstract. We consider the problem of estimating relative configurations of nodes in a sensor
network based on noisy measurements. By exploiting the cyclic constraints induced by the sensing
topology to the network, we derive a constrained optimization on SE 3 n. For the case of a network
with a single cyclic constraint, we present a closed-form solution. We show that, in certain cases,
namely restriction to pure rotation and pure translation, this solution is independent of the particular
representation of the constraint function and is the unique, constrained minimizer of an appropriate
cost. For sensing topologies represented by a general, weakly connected digraph, we present a solution
method which is based on the limits of the solution curves of a continuous-time ordinary differential
equation. We show that solutions obtained by our method satisfy all semicycle (generalized cycle)
constraints induced by the sensing topology of the network. Further, we show through numerical
simulation that for “Gaussian-like” noise models with small variance, our solution achieves noise
reduction comparable to that of the least squares estimator for an analogous linear problem.
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1. Introduction.

1.1. Problem description. Sensor localization is an important component in
many network applications, as it provides the basis for more complex operations and
computation [39]. Problems that require localization include the hand-eye coordina-
tion problem in robotics [15], the structure from motion problem in computer vision
[22], and the camera calibration problem in visual sensing [18]. Accurate localization
is crucial, as errors in configuration measurements often get amplified during other
calculations. For example, in camera networks, small errors in calibration get ampli-
fied when imaging objects that are far from the camera’s physical location. In many
applications, it is only possible to obtain noisy, relative configuration measurements.
Therefore, it is necessary to develop a methodology for estimating true relative mea-
surements in order to guarantee a global configuration estimate that is both optimal
in some sense and consistent with constraints induced by the network topology.

We consider a three-dimensional sensor network whose sensing capabilities can be
represented by a directed graph. We assume that each sensor obtains noisy, relative
configuration measurements of its neighboring sensors, and thus we associate to each
edge in the sensing graph a displacement matrix, i.e., an element of SE 3 . An
example of this type of sensor network and its associated sensing graph is shown
in Figure 1. The composition of the true displacement matrices associated to edges
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Fig. 1. An example of a sensor network and its associated sensing graph.

that form a semicycle (generalized cycle) must be equal to the identity, and thus for
each semicycle we have an induced constraint. We seek to find relative displacements
that minimize the least squares distance from the noisy measurements and satisfy all
induced semicycle constraints.

1.2. Related work. Of relevance to this work is research concerning network
localization in sensor networks, orientation and pose estimation in robotic sensor
networks, properties of matrix Lie groups, namely SO 3 and SE 3 , estimation and
optimization on manifolds, and properties of cycle spaces in graphs.

There has been significant research on estimating node positions based on noisy
angle of arrival, time of arrival, received signal strength, and distance-based measure-
ments [28, 31]. The relative position localization problem is studied in [16, 32, 29],
and the effect of network properties on the estimation error with extensive analytic
results is investigated in [8, 9]. Some works, such as [11, 14, 28, 7], seek to find global
position information through the use of anchor nodes with known locations. Other
works, such as [40, 29], explore anchor-free methods for position localization. There
has also been research which seeks to find global or relative configurations of sensor
nodes by assigning to each an element of SO 3 or SE 3 . In [36, 25], the authors use
an unconstrained nonlinear optimization to derive a solution. In [8, 34], the authors
study the problem of pose estimation from relative measurements in a distributed
robotic sensor network. In [33] the authors consider the problem of orientation local-
ization on SO 2 under cyclic constraints induced by the network. We note that our
work is largely an extension of the work in [33] to SE 3 .

There has been extensive research concerning matrix Lie groups and their prop-
erties, namely those properties relevant to estimation. A study of metrics on SO 3
is presented in [26]. A survey of the state-of-the-art techniques used for rotation aver-
aging is provided in [24]. Metrics and geodesic curves on SE 3 are presented in [41].
Additional properties of SE 3 are presented in the context of rigid body control in
[13]. With regard to estimation on Riemannian manifolds, [19] studies the problem of
geodesic regression and unconstrained least squares. In [2, 4], the authors formulate
a nonlinear optimization and use a generalized line search technique in order to find
iterates which converge to a local minimum. In [3], the authors provide some tools
for constructing projection-like retractions on general manifolds.

There have also been authors who have studied the properties of cycle spaces on
graphs. In [27, 37], the authors provide an extensive survey of the properties of cycle
bases, including applications and algorithms for finding cycle bases. In [21, 6], the
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authors explore the problem of finding cycle bases with minimum total weight.
The problem considered in the present work is most closely related to those con-

sidered in [38, 35]. In [38], the authors seek to estimate absolute camera poses in
SE 3 based on noisy relative measurements. The authors construct a metric on the
product space SO 3 R3 and present a gradient descent algorithm, which they show
to converge on connected, symmetric sensing graphs. In [35], the authors present
a discrete-time, rotation averaging based algorithm for estimating relative poses in
the context of multiview image registration. The authors construct metrics based
on rotational error and the relative translational location of a point in an absolute
reference frame, explore optimality properties for a single cycle graph (focusing on
rotation), and prove convergence on undirected, connected sensing graphs. We also
note that our treatment of rotational components in the single cycle case is similar
in spirit to [17], although the solution in [17] relies primarily on absolute measure-
ments. Our work differs from that presented in [38, 35, 17] in the following ways:
(i) we work exclusively with relative measures and thus require no knowledge of an
absolute reference frame, (ii) we formulate our cost with respect to a left-invariant
metric, allowing us to retain the group structure of SE 3 , (iii) we rigorously study
the single cycle case and present a closed-form solution which we prove to have certain
invariance and optimality properties with respect to both rotation and translation,
(iv) we formulate a continuous-time Lyapunov-based algorithm, which can be imple-
mented in a straightforward manner and treats both rotations and translations using
similar theoretical machinery, and (v) we prove convergence on any weakly connected
digraph and illustrate through simulation that we achieve noise reduction similar to
that of an analogous linear problem in the case of “Gaussian-like” noise with small
variance.

1.3. Contributions. We choose to work exclusively with relative measurements,
since input data in network applications is generally with respect to relative, rather
than absolute, reference frames. By doing so, we are forced to explicitly consider cyclic
constraints, but we require no knowledge of any global environment; thus, we avoid
other potential difficulties (initialization issues, ambiguities, etc.) that may arise due
to transformations to a global frame. In this setting, we adopt a dynamical systems
perspective on the general problem of sensor network localization by constructing a
continuous-time Lyapunov-based gradient flow algorithm. As such, our work provides
a novel and valuable contribution to the problem of sensor network localization in the
following ways: (i) we provide a unique approach to localizing both positions and
orientations in three dimensions, treating both constructs using similar theoretical
machinery, (ii) we formulate the problem with respect to only relative measurements
in SE 3 and thus require no knowledge of any absolute reference frame, (iii) we
rigorously study the single cycle case, providing a closed-form solution and proving
invariance and optimality properties with respect to both rotation and translation,
(iv) we provide an algorithm for general graphs which is cycle-distributed and can be
implemented in a straightforward way, providing rigorous convergence proofs which
require only weak connectivity of the sensing graph, and (v) we validate our algorithms
through comparison with an analogous linear problem.

Specifically, our contributions are as follows. First, we formulate the sensor net-
work localization problem for a single cycle of length n as a constrained least squares
optimization over SE 3 n. We present a feasible, closed-form solution which distrib-
utes the screw angle error equally among edges in the cycle. Further, we show that
when viewed as a parametric function, our solution is intimately related to the mini-
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mum length geodesic connecting the composition of displacements in the cycle to the
identity. We also show that, in certain cases, namely restriction to pure translation
or pure rotation, our solution is invariant to choice of representation of the constraint
function. We conclude our theoretical study of the single cycle case by showing that,
in some cases, our solution is the unique constrained minimizer of an appropriate cost.
Second, we study the localization problem on a general directed and weakly connected
sensing graph that contains many semicycles (generalized cycles) and present a solu-
tion methodology which is based on the limits of solution curves to a continuous-time
ordinary differential equation (ODE). Using Lyapunov-based arguments, we create an
algorithm which treats both rotations and translations in a way that is structurally
similar in both cases, and we show that solutions obtained using this method satisfy
all semicycle constraints. Finally, we present numerical simulations to verify our algo-
rithms and demonstrate their utility. For a single cycle, we compare our closed-form
solution to the solution produced by the continuous-time flow for general graphs and
show that the two methods produce feasible solutions with nearly identical costs (up
to numerical implementation) for the case of pure rotation and pure translation. For
general graphs, we demonstrate convergence of our continuous-time solution method
for a random geometric graph and show that although our general graph solution is
not optimal for general noise models, for “Gaussian-like” noise with small variance,
we achieve noise reduction comparable to that achieved by a classic least squares
estimator for an analogous linear problem.

1.4. Organization. This paper is organized as follows: section 2 gives back-
ground information about relevant topics. Sections 3 and 4 present the localization
problem and our proposed solution for a single cycle graph. Sections 5 and 6 present
the localization problem and our proposed solution for general sensing graphs. Nu-
merical simulations are in section 7, and proofs of Theorems 3, 4, and 8 are provided
in the appendices.

2. Mathematical preliminaries. In this section, we provide a brief review of
matrix Lie groups and graph theory. For more information, the reader is encouraged
to refer to [12, 30, 23, 33, 20].

2.1. Matrix Lie groups. Let n Rn denote a vector of zeros and In Rn n

denote the identity matrix. Let SE 3 and SO 3 denote the special Euclidean and
special orthogonal groups, respectively, and let se 3 and so 3 denote their respective
matrix Lie algebras.

Let An R 0,π denote the rotation angle associated to a rotation matrix R
SO 3 . This angle obeys the relation tr R 1 2 cos An R . If 0 An R π, let
Ax R R3 denote the unique, unit-length rotation axis associated to R. If An R
0, define Ax R : 3. For R SO 3 with An R π, we have (i) RAx R Ax R ,

(ii) R exp An R Ax R , where : R3 so 3 is the isomorphism defined by

vw v w for any v, w R3, and (iii) 2Ax R sin An R R RT (a consequence
of Rodrigues’ rotation formula). For R SO 3 with An R π, the nth root of R
is1

(1)
n
R exp

1

n
An R Ax R SO 3 .

1There are many natural ways to define the nth root of R SO 3 . Indeed, if n R were defined
by replacing the coefficient 1 n by 1 2πk n for any k Z, the resultant matrix would satisfy

n R n R. However, the reader should be aware that the results contained herein are specific to
the particular definition of the nth root given in the text.
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Note that An n R An R n and Ax n R Ax R . If R SO 3 with An R
π, there exist exactly two unit-length vectors ω1,ω2 R3 that satisfy R exp πω1

exp πω2 . These vectors satisfy ω1 ω2. For any R SO 3 , ω R3, we have the
identity RωRT Rω . Thus for any R1, R2 SO 3 (including those with rotation an-
gle π), there exists a unit-length ω R3 such that R1R2RT

1 exp An R2 R1ωRT
1

exp An R2 R1ω and thus An R1R2RT
1 An R2 .

For a displacement matrix E SE 3 , we write E R, p to represent

(2) E
R p
T
3 1

.

If E I3, p for some p R3, we say that E represents pure translation. Similarly,
if E R, 3 for some R I3 SO 3 , we say that E represents pure rotation. For
any E R, p SE 3 , we have tr E 2 2 cos An R . Note that tr E 0 if
and only if An R π. In addition to the map already defined for rotations, we use
the symbol to denote the map : R6 se 3 defined by

ξ
ξ1
ξ2

ξ1 ξ2
T
3 0

se 3 ,

where ξ1, ξ2 R3. Define the screw angle2 of E R, p SE 3 by

(3) An E
An R if R I3,

p if R I3.

Simple calculation yields An E1E2E
1

1 An E2 for any E1, E2 SE 3 . For
E R, p with tr E 0, define the screw axis Ax E Ax R R3 and the
translational differential Tran E R3 by
(4)

Tran E :

3 if E I4,

p p if R I3, E I4,

I3 R Ax E I3 Ax E
2

An E
1

p otherwise.

The vectors Tran E and Ax E are well defined and satisfy E exp An E ξ , where
ξ Ax E T Tran E T T . This representation of the matrix E is unique.

Let ξ1 : ωT
1 , v

T
1

T , ξ2 ωT
2 , v

T
2

T R6. Define the inner product , I4 :

se 3 se 3 R by ξ1, ξ2 αωT
1 ω2 βvT1 v2, where α,β R 0. This inner

product induces a left-invariant Riemannian metric by associating the tangent space
of each E SE 3 with the map , E : TESE 3 TESE 3 R, where

(5) Eξ1, Eξ2
E

ξ1, ξ2
I4

αωT
1 ω2 βvT1 v2.

With this metric, SE 3 naturally carries the structure of a topological metric space
with distance function d : SE 3 SE 3 R 0 defined as the arc length of a min-
imum length geodesic. Using the explicit definition of the minimum length geodesic

2The screw angle An E of a displacement E SE 3 does not have a literal interpretation as an
angle in the general case, as does the rotation angle An R of a rotation matrix R SO 3 . However,
it is analogous in the following sense: If R SO 3 and E SE 3 , then R exp An R ω for some

unit length ω R3, and E exp An E ξ for some ξ ξT1 , ξT2
T R6, where at least one of

ξ1, ξ2 R3 is unit length.
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with respect to (5) presented in [41], for E1 R1, p1 , E2 R2, p2 we have

(6) d E1, E2 αAn RT
1 R2

2 β p2 p1 2.

If E1, E2 are two displacements both representing pure rotation or both representing
pure translation, then d E1, E2 cAn E 1

1 E2 , where c α in the rotation case
and c β in the translation case. The distance function d satisfies the triangle
inequality: d E1, E3 d E1, E2 d E2, E3 for any E1, E2, E3 SE 3 .

Remark 1 (choice of metric). We make use of the left-invariant Riemannian
metric (5) and the associated distance function (6) because they are simple, well
characterized (e.g., [41]), and intuitive to most applications. Indeed, the distance (6)
is simply a weighted sum of the rotational and translational errors. A thorough
study of other metrics on SE 3 is beyond the scope of this paper; however, a few
comments are in order. First, we could just as easily have chosen the right-invariant
Riemannian metric analogous to (5) and generated a set of results virtually identical
to those herein. Second, we note that some authors, e.g., [38], choose to discard the
group structure of SE 3 and instead work with metrics defined on the product group
SO 3 R3. If we take α β 1, then the distance (6) is equivalent to the double
geodesic distance [5], a commonly used metric defined on SO 3 R3.

2.2. Elements of graph theory. Let G V , E represent a digraph with
vertex set V : 1, . . . ,m and edge set E . Let i, j E denote a directed edge
starting from node i and terminating at node j. A cycle is an alternating se-
quence v1, v1, v2 , v2, v2, v3 , . . . , vr, vr 1 , vr 1 , in which (i) r 3, (ii) for all
k 1, . . . , r , vk V and vk, vk 1 E , (iii) vr 1 v1, and (iv) all vertices besides
v1, vr 1 are pairwise distinct. A semicycle on the graphG is a generalized cycle, whose
definition arises by replacing condition (ii) with the following: for all k 1, . . . , r ,
vk V , and either vk, vk 1 or vk 1, vk E . Every cycle on G is a semicycle, but
the converse does not hold. If σ is a semicycle on G, an edge i, j E is contained
in σ if either i, j or j, i appears in the sequence. With slight abuse of notation,
we write i, j σ if σ contains i, j . Define Gσ G as the subgraph whose vertex
and edge sets are the sets of vertices and edges that are contained in the semicycle σ.
Define an equivalence class by the rule σ σ̄ if the semicycles σ, σ̄ contain the same
set of edges. Given a parametrization 1, . . . , n of E , let Ei denote the edge with index
i. We define the semicycle vector of a semicycle σ as the vector ℓσ 1, 0, 1 n

for which ℓσ i 1 if Ei σ and has an orientation that is consistent with σ, as
ℓσ i 1 if edge Ei σ and has an orientation that is opposite of σ, and as ℓσ i 0
otherwise.

Given a digraph G, let GUD : V , EUD be the undirected graph obtained by
ignoring edge orientations. If G is weakly connected, there exists a spanning tree
TUD GUD. Let T G be the digraph obtained by replacing each edge in TUD by
one of its associated edges in E . If T is augmented by a single edge i, j E , i, j T ,
the resulting graph contains at most one equivalence class of semicycles. A set of
fundamental semicycles is a set of distinct (nonequivalent) semicycles on G which can
be formed by the preceding process. Let Lf G denote a maximal set of fundamental
semicycles. Any set Lf G is a basis for the semicycle space, and thus for any semicycle
σ there exists a semicycle σ̄ σ such that Gσ̄ Gσ1△Gσ2△ △Gσn , where △
denotes the symmetric difference operation, n N, and σ1,σ2, . . . ,σn Lf G . If
GUD is connected, then any Lf G has the property Lf G EUD V 1.
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Fig. 2. The sensing topology for a ring graph G V , E . Note that G contains a single
equivalence class of cycles. In the left figure, we represent this equivalence class with the cycle σ,
while in the right figure, we represent this equivalence class with a different cycle σ̄. In this example,
we see that Eσ1 Eσ̄n and Eσi Eσ̄i 1 for each i 1, . . . , n 1 . The cycle constraint (7) is
equivalently represented by the two cycles σ, σ̄.

3. Problem setup, single cycle case. Consider a network consisting of n
sensors, whose sensing capability is represented by a digraph G with edge set E
1, 2 , 2, 3 , . . . , n 1, n , n, 1 . Parametrize E by assigning an index i 1, . . . , n

to each edge. Let σ denote a cycle on G (note that all cycles on G are equivalent).
Let σi 1, . . . , n be the index of the edge in E associated with the ith edge in σ.

We assume that each sensor is able to obtain a relative displacement measurement
of its neighbor, and thus we associate to each edge Ei E a displacement matrix
Ei Ri, pi SE 3 . A composition of true relative displacements around the
loop formed by σ must equal the identity matrix. However, we assume that our
measurements are corrupted by some noise such that Eσ1Eσ2 Eσn I4. We aim
to find correction matrices C1, C2, . . . , Cn SE 3 which satisfy the cycle constraint

(7) Eσ1Cσ1Eσ2Cσ2 EσnCσn I4

and are optimal in some way. Specifically, we consider the least squares optimization

(8)
minimize

n

i 1

d Ci, I4
2

subject to Eσ1Cσ1Eσ2Cσ2 EσnCσn I4,

where d : SE 3 SE 3 R 0 is defined in (6). Note that (7) is the con-
straint function of the optimization (8). The constraint (7) is satisfied if and only
if E 1 Eσ1Cσ1Eσ2Cσ2 EσnCσn E I4 for any E SE 3 . Thus, we can form
an alternative, equivalent representation of the constraint (7) by choosing a different
cycle σ̄ with σ̄ σ, giving the constraint Eσ̄1Cσ̄1Eσ̄2Cσ̄2 Eσ̄nCσ̄n I4 (see Fig-
ure 2). We seek to find a solution that is independent of how we choose to represent
the cycle constraint.

If E1, E2, . . . , En all represent pure rotation, we could formulate a localization
problem on SO 3 n by constraining all correction matrices to represent pure rotation.
In this case, the optimization analogous to (8) is

(9)

minimize
n

i 1

An Ci
2

subject to Eσ1Cσ1Eσ2Cσ2 EσnCσn I4,
Ci Ri, n for all i 1, . . . , n .

Similarly, we can derive an optimization on R3 if E1, . . . , En represent pure transla-
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tion:

(10)

minimize
n

i 1

pi
2

subject to Eσ1Cσ1Eσ2Cσ2 EσnCσn I4,
Ci I3, pi for all i 1, . . . , n .

We also seek to study the relationship of our proposed general solutions to the solu-
tions to these specific cases.

Remark 2 (noise model). Our formulation of the optimization (8) is indepen-
dent of the type of noise present. However, for illustrative purposes (particularly in
section 7), we sometimes refer to “Gaussian-like” noise, which we model as follows: as-
sume that the true displacements are given by Ēi R̄i, p̄i SE 3 for i 1, . . . , n .
We assume the nominal measurements are given by

Ei R̄ exp vri , p̄i vti ,

where vri , v
t
i N 3, ν2I3 are independent and identically distributed Gaussian ran-

dom variables. For an in-depth discussion of other possible noise models on SE 3 ,
we refer the reader to [10].

4. Solution to the single cycle case. To avoid tedious notation, from this
point forward we adopt the following convention for products of indexed matrices.

Convention 1. Define EσaEσa 1 Eσb
: I4 and RσaRσa 1 Rσb

: I3 when-
ever (i) b a, (ii) b 0, or (iii) a σ , where σ is the number of edges contained
in the cycle or semicycle under consideration. Whenever there is possibility of am-
biguity, we group compositions with parentheses. For example, if σ n, then, with
this convention, we have Eσ2Eσ3 Eσn Eσ1Eσ2 Eσ0 Eσ2Eσ3 Eσn .

Specific reasons for using this convention will become clear as the exposition
progresses. In short, Convention 1 permits concise, parametric presentations of results
containing compositions of displacements, and, therefore, allows us to avoid tedious
case-by-case treatments of individual edges based on their associated index.

Consider now the problem setup of section 3. For convenience, we define the set

SE 3 n
tr 0 E1, E2, . . . , En SE 3 n tr Eσ1Eσ2 Eσn 0 .

Adopting Convention 1, we introduce the following definition.
Definition 1 (equal angle solution). Given E1, E2, . . . , En SE 3 n

tr 0, define
the equal angle solution Cσ Cσ

1 , C
σ
2 , . . . , C

σ
n SE 3 n by

Cσ
i Eσi 1Eσi 2 Eσn Cσ

EA i Eσi 1Eσi 2 Eσn

1
,

where

Cσ
EA i

n Rσ
T ,

1

n
n Rσ

T
n i 1

pσ

and Rσ SO 3 , pσ R3 are defined such that Eσ1Eσ2 Eσn Rσ, pσ .
We present some key properties of the equal angle solution in Theorem 2.
Theorem 2 (feasibility and relation to geodesics). Suppose E1, E2, . . . , En

SE 3 n
tr 0. The equal angle solution Cσ SE 3 n has the following properties:
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(i) for each i 1, . . . , n , An Cσ
i

1
n An Eσ1Eσ2 Eσn ;

(ii) Eσ1C
σ
1 Eσ2C

σ
2 EσnC

σ
n I4; and

(iii) the curve defined by 0, 1 t Eσ1C
σ
1 t Eσ2C

σ
2 t EσnC

σ
n t is a mini-

mum length geodesic between Eσ1Eσ2 Eσn and I4 with respect to the met-
ric (5), where Cσ

i t is the parametrized matrix obtained by replacing Cσ
EA i

in Definition 1 with Cσ
EA i t : Rσ

EA i t , pσEA i t defined by

Rσ
EA i t exp

1

n
An Rσ Ax Rσ t ,

pσEA i t
1

n
exp

i 1

n
t 1 An Rσ Ax Rσ pσt.

With this definition, Cσ
i 1 Cσ

i for all i 1, . . . , n .
Proof. For statement (i), we note that for any i 1, . . . , n we have

An Cσ
i An Eσi 1Eσi 2 Eσn Cσ

EA i Eσi 1Eσi 2 Eσn
1

An Cσ
EA i

1

n
An Eσ1Eσ2 Eσn .

For statement (ii), we use direct substitution to show

Eσ1C
σ
1 Eσ2C

σ
2 EσnC

σ
n Eσ1Eσ2 Eσn Cσ

EA 1 Cσ
EA 2 Cσ

EA n

Eσ1Eσ2 Eσn

n Rσ
T

n
n Rσ

T
n
p

T
3 1

Eσ1Eσ2 Eσn Eσ1Eσ2 Eσn

1 I4.

To prove statement (iii), we use direct substitution once again to show

Eσ1C
σ
1 t EσnC

σ
n t

Eσ1Eσ2 Eσn

exp An Rσ Ax Rσ t Rσ
T pσt

T
3 1

.

This is a minimum length geodesic between Eσ1Eσ2 Eσn and I4 [41]. Setting t 1
and using the definition of Cσ

i t easily proves the final statement.
Roughly speaking, the solution Cσ attempts to “distribute” a minimum length

geodesic between Eσ1Eσ2 Eσn and I4 equally among the edges in the cycle through
conjugation. However, since there is no Riemannian metric on SE 3 that is both bi-
invariant and positive definite [41], the distance function d is not, in general, invariant
under coordinate changes, i.e., conjugation. As a result, in the general case, the
equal angle solution may be sensitive to the choice of representation of the constraint
function (7) and may not be optimal with respect to the optimization (8). In certain
cases, however, we can comment on these two properties, as we show with the following
theorems. For clarity, we postpone the proof of these results until Appendix A.

Theorem 3 (invariance). Suppose E1, E2, . . . , En SE 3 n
tr 0, and let σ̄ be a

cycle on the graph G such that σ σ̄. If Ax EσkEσk 1 Eσn Eσ1Eσ2 Eσk 1 is
aligned 3 with Tran EσkEσk 1 Eσn Eσ1Eσ2 Eσk 1 for all k 1, . . . , n , then
Cσ

i Cσ̄
j σ̄,σi

for all i 1, . . . , n , where j σ̄,σi is the index such that σ̄j σ̄,σi
σi.

3We say that w, v R3 are aligned if wv 3.
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Fig. 3. Left: An illustration of a screw motion whose rotation axis intersects the origin of the
body reference frame. If E SE 3 is associated with this screw motion, then Tran E is aligned
with Ax E . The case of pure rotation or pure translation is a special case of this phenomena.
Right: An illustration of a screw motion for which the rotation axis does not intersect the origin of
the body reference frame, in which case Tran E is not aligned with Ax E .

Theorem 4 (optimality). Suppose E1, E2, . . . , En SE 3 n
tr 0. We have

(i) if Ei represents pure rotation for each i 1, . . . , n , then the equal angle
solution Cσ is the unique, global minimizer of the optimization (9), and

(ii) if Ei represents pure translation for each i 1, . . . , n , then the equal angle
solution Cσ is the unique, global minimizer of the optimization (10).

A few comments are in order. First, any displacement matrix E has an associated
rigid body screw motion, and Ax E is aligned with Tran E if and only if the screw
motion associated with the displacement E has an axis of rotation that intersects
the origin of the body reference frame (see Figure 3) [30, Chapter 2]. Therefore,
Theorem 3 applies in the case where E1, E2, . . . , En either all represent pure rota-
tion, or all represent pure translation. Second, under the conditions of Theorem 3,
the equal angle solution is not sensitive to our choice of representation of the cycle
constraint (7). Third, for localization on SO 3 or R3, the solution Cσ provides the
unique, constrained, global minimizer of the appropriate cost function despite nonlin-
ear cost and constraints. Finally, we remark that in the case of localization on R3, the
optimization (10) has a quadratic cost and linear constraints. Therefore, it is possible
to use other tools to find a closed-form solution. Theorem 4 guarantees that the equal
angle solution is equivalent to any optimal solution derived using other means.

Remark 3 (relation to equation (8)). If E1, E2, . . . , En SE 3 n
tr 0 and Ei

represents pure rotation for each i 1, . . . , n , then the equal angle solution is also
the unique, global minimizer of the more general optimization (8). Indeed, it is easily
shown that the minimizer of (8), in this case, is given by a set of correction matrices
that each represent pure rotation, and thus optimality of Cσ follows. However, due
to the coupling between rotation and translation, as well as the lack of bi-invariance
of (5), the same cannot be said for the pure translation case. That is, for the pure
translation case, we do not rule out the existence of correction matrices with nontrivial
rotational components that produce a lower value of the cost function of (8).

Remark 4 (other costs). The equal angle solution may have optimality properties
with respect to cost functions other than that of (8). Although exploring other costs
is not our main focus, we note that in the case of localization on SO 3 n as in (9),
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Cσ is also the unique, global minimizer with respect to the optimization

(11)

minimize
n

i 1

tr Ci

subject to Eσ1Cσ1Eσ2Cσ2 EσnCσn I4,
Ci Ri, n for all i 1, . . . , n .

5. Problem setup for general graphs. Consider a network whose sensing
topology is represented by a directed graph G V , E , where V 1, . . . ,m and
E n, and let Lf G be a maximal set of fundamental semicycles. Once again,
parametrize the edge set by assigning an index i 1, . . . , n to each edge in E ,
and associate to each edge Ei a displacement matrix Ei Ri, pi SE 3 . For
consistency of measurements, assume that there is at most one directed edge between
any two nodes i, j V . Recall that the semicycle vector associated with a semicycle σ
is denoted ℓσ. Given a semicycle σ on G, we define the map σ : SE 3 1, . . . , n
SE 3 by

E, i
σ

E if ℓσ i 1,

E 1 if ℓσ i 1,

I4 otherwise.

(12)

A composition of true relative displacements around a set of edges forming a semicycle
(composed with proper orientation) must equal the identity matrix. We assume that
the measurements Ei are corrupted by some noise such that for any semicycle σ,
the constraint4 Eσ1

σ
Eσ2

σ
Eσ σ

σ
I4 may not be satisfied. Analogously to the

single cycle case, we seek to find correction matrices C1, C2, . . . , Cn to compose with
the nominal displacements E1, E2, . . . , En, which are optimal in some way and also
have the property that the composition of the resulting displacements around any
semicycle in the graph equals I4. That is, for any semicycle σ, we wish to satisfy a
constraint analogous to the constraint (7), which can be written as

(13) Eσ1Cσ1

σ
Eσ2Cσ2

σ
Eσ σ

Cσ σ

σ
I4,

where σ is the number of edges contained in σ. The following result shows that it is
sufficient to satisfy the constraint (13) only over semicycles contained in Lf G .

Lemma 5 (semicycle constraint). Suppose C1, C2, . . . , Cn SE 3 are such that
for all semicycles σ Lf G , we have Eσ1Cσ1

σ
Eσ2Cσ2

σ
Eσ σ

Cσ σ

σ
I4. Then,

for any other semicycle σ̄ defined on the graph G, we have

Eσ̄1Cσ̄1

σ̄
Eσ̄2Cσ̄2

σ̄
Eσ̄ σ̄

Cσ̄ σ̄

σ̄
I4.

Proof. For the sake of brevity, we only sketch the proof. It is trivial to show that if
the semicycle constraint (13) holds for some semicycle onG, then it holds for any other
equivalent semicycle. If σ1,σ2 Lf G , there exist semicycles σ̄1 σ1, σ̄2 σ2 such
that any shared edges between the two are consecutive, i.e., for some k 0, 1, . . . , n

Eσ̄1
1

σ̄1

Eσ̄2
1

σ̄2

, Eσ̄1
2

σ̄1

Eσ̄2
2

σ̄2

, . . . , Eσ̄1
k

σ̄1

Eσ̄2
k

σ̄2

,

4Note that the map σ has an explicit dependence upon an index i 1, . . . , n . For ease of
notation, when the argument E SE 3 has an implicit association with an index i, we drop this

explicit dependence from our notation; e.g., we write Ei
σ

Ei, i
σ
, EiCi

σ
EiCi, i

σ
, etc.
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and there exists no k̃ k such that Eσ̄1
k̃

σ̄1

Eσ̄2
k̃

σ̄2

. By assumption, we then have

Eσ̄1
1
Cσ̄1

1

σ̄1

Eσ̄1
σ̄1

Cσ̄1
σ̄1

σ̄1 1

Eσ̄2
1
Cσ̄2

1

σ̄2

Eσ̄2
σ̄2

Cσ̄2
σ̄2

σ̄2

I4.

This is sufficient to prove that the semicycle constraint (13) is satisfied for a semicycle
σ defined such that Gσ Gσ1△Gσ2 , where △ denotes the symmetric difference
operation. Since Lf G is a basis for the semicycle space, we can assume without
loss of generality that the Gσ̄ is equal to the symmetric difference of the subgraphs
associated with a finite number of elements of the set Lf G . Using logic similar to
that above, the statement can be proved by induction.

In light of Lemma 5, we can formally pose the problem for general graphs as a
constrained optimization:

(14)
minimize

n

i 1

d Ci, I4
2

subject to Eσ1Cσ1

σ
Eσ2Cσ2

σ
Eσ σ

Cσ σ

σ
I4 for all σ Lf G ,

where d is defined in (6). Note that by Lemma 5, the feasible set is the same regardless
of our choice of the set Lf G .

6. Solution for general graphs. In this section, we extend our analysis to a
larger class of graphs, and thus we consider the problem setup of section 5.

6.1. Incorporating edge orientations. Recalling Convention 1, we extend
our definition of the equal angle solution as follows.

Definition 6 (equal angle solution (general)). Given σ Lf G and nominal
measurements Eσ1 , Eσ2 , . . . , Eσ σ

satisfying tr Eσ1

σ
Eσ2

σ
Eσ σ

σ
0, we define

Cσ Cσ
1 , C

σ
2 , . . . , C

σ
σ by

Cσ
i

Eσi 1

σ
Eσ σ

σ
Cσ

EA i Eσi 1

σ
Eσ σ

σ 1
if ℓσ σi 1,

Eσi

σ
Eσ σ

σ
Cσ

EA
1

i Eσi

σ
Eσ σ

σ 1
if ℓσ σi 1,

where

Cσ
EA i

σ Rσ
T ,

1

σ
σ Rσ

T
σ i 1

pσ

and Eσ1

σ
Eσ2

σ
Eσ σ

σ
: Rσ, pσ .

Notice that Definition 6 is equivalent to Definition 1 when ℓσ 1 n, i.e., when
σ is a cycle of length n. Now consider an optimization problem associated to our
choice of σ:

(15)
minimize

σ

i 1

d Cσi , I4
2

subject to Eσ1Cσ1

σ
Eσ2Cσ2

σ
Eσ σ

Cσ σ

σ
I4.

Results analogous to those of Theorems 2–4 hold for the generalized solution Cσ with
respect to (15). We omit explicit statements and proofs of these results.
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6.2. Continuous-time flow for general graphs. In this section, we develop
a continuous-time flow whose solution curves determine an appropriate localization
for the graph G. For the remainder of this section, we redefine the set

SE 3 n
tr 0 : E1, E2, . . . , En tr Eσ1

σ
Eσ2

σ
Eσ σ

σ
0 for all σ Lf G .

In what follows, we assume that the measurements Ei are functions of a parameter,
t R 0. Consider the following definition.

Definition 7 (equal angle flow). We define the equal angle flow on the set
SE 3 n

tr 0 as the vector field defined by

Ri Ri

σ Lf G
Ei σ

An Rσ

σ π2 An Rσ
2
Ax Cσ

j σ,i

pi 3

if Rσ I3 for some σ Lf G ,

Ri 3 3

pi Ri

σ Lf G
Ei σ

pσ
σ

Tran Cσ
j σ,i otherwise,

where Eσ1

σ
Eσ2

σ
Eσ σ

σ
Rσ, pσ and j σ, i 1, . . . , σ is the index such that

σj σ,i i.
For our purposes, we define a solution to the equal angle flow as a continuously

differentiable map E1, E2, . . . , En : R 0 SE 3 n
tr 0, whose domain can be ex-

tended to an open set R δ for some δ 0 in such a way that the extended map
obeys the dynamics defined by the equal angle flow for all t R 0. We now char-
acterize the well-posedness and convergence of solutions to the equal angle flow. We
once again postpone proof of this result until Appendix B.

Theorem 8 (solutions to the equal angle flow). Assume that G V , E is weakly
connected. Given initial measurements E1 0 , E2 0 , . . . , En 0 SE 3 n

tr 0, there
exists a unique solution 0, t E1 t , E2 t , . . . , En t to the equal angle flow.
The solution has the properties

(i) Ei : limt Ei t exists for each i 1, . . . , n , and
(ii) Eσ1

σ
Eσ2

σ
Eσ σ

σ
represents pure translation for all σ Lf G .

If, in addition, the measurements E1 0 , E2 0 , . . . , En 0 are such that the composi-

tion Eσ1 0
σ
Eσ2 0

σ
Eσ σ

0
σ
represents pure translation for all σ Lf G , then

(iii) Eσ1

σ
Eσ2

σ
Eσ σ

σ
I4 for all σ Lf G .

Theorem 8 motivates a natural method for finding feasible configurations given
nominal displacement measurements on any weakly connected digraph G. Indeed,
allowing the displacements to evolve according to the equal angle flow guarantees
convergence to a set of displacements whose compositions around the semicycles rep-
resent pure translation. If we then initialize a second instance of the equal angle
flow, using the limiting displacements from the first instance as initial points, we will
produce convergence to a set of displacements satisfying all semicycle constraints. We
refer to this method of finding a solution as the equal angle flow method.

If a semicycle σ Lf G is disjoint from the rest of the semicycles in Lf G , we
can compare the configuration produced by the equal angle flow method to the equal
angle solution for a single cycle (Definition 6). If, for such a σ, we have Eσi Rσi , 3
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for all i 1, . . . , σ , then under the assumptions of Theorem 8, Eσi
EσiC

σ
i for

each i 1, . . . , σ , where Eσi
is the displacement resulting from the equal angle

flow method. This is because the flow causes the solution curve to move along the
minimum length geodesic with respect to pure rotation. A similar result holds in the
case where each Eσi I3, pσi . However, in the general case, we cannot guarantee
that the result of the equal angle flow method and the equal angle solution will
be equal, since the rotational and translational components of compositions around
semicycles may be “coupled”; i.e., altering the rotational component may affect the
translational component. We conclude this section with some remarks.

Remark 5 (weighting). Each summand in Definition 7 is weighted by the inverse
of its associated semicycle length. These weights can be replaced by any strictly
positive set of values, and the convergence properties of Theorem 8 still hold. The
reason for our particular choice of weights is twofold: first, our choice of weights helps
to enforce consistency between the definitions of the equal angle flow and the solution
to the single cycle case, the equal angle solution. Second, in light of Theorem 8, our
choice of weights helps to ensure that the errors due to each semicycle are treated
equally; that is, in general graphs our weights serve to balance the rate of error
convergence across semicycles. To see this, we note that if all semicycles were weighted
equally and the equal angle flow method were used to find a solution of two single
loop graphs individually, each with the same error, then the graph with more edges
would converge faster.

Remark 6 (choice of semicycle basis). If we replace the set Lf G in Definition 7
with any other semicycle basis B whose elements each contain at least one edge that
is not contained in any other element of B (Lf G always has this property), then the
results of Theorem 8 still hold. That is, replacing Lf G with B, we can find feasible
configurations using a method analogous to the equal angle flow method.

Note, however, that limiting configurations produced in this way will, in the
general case, be affected by the particular choice of B. Indeed, it is straightforward to
construct examples in which two different choices of bases cause convergence to two
different configurations (e.g., consider a pure rotational planar graph whose semicycle
bases contain two semicycles). This is in contrast to the special case of a sensing
graph containing a single semicycle, in which choice of basis will not affect the final
result of the equal angle flow due to the invariance property of Theorem 3.

Remark 7 (alternative algorithms and distributed properties). If the composition
of nominal displacements around each semicycle represents pure translation and we
restrict our attention to purely translational corrections, then the optimization (14)
can be reformulated as a convex problem. This problem can be solved using stan-
dard optimization or linear algebra tools. Thus, an alternative solution approach for
general localization is to let displacements follow the equal angle flow until a configu-
ration is reached in which the rotational constraint around all semicycles is satisfied,
and subsequently solving the remaining translational optimization using alternative
means. Due to dependencies of translational components on rotational components,
however, it may be tedious to properly formulate such a standard translational opti-
mization, especially in the case of large graphs with many semicycles. In such cases,
the equal angle flow method may offer more straightforward implementation, since it
is semicycle distributed. That is, the flow at a given node only requires knowledge of
the displacements of other nodes with which it shares a cycle. In general, tractability
of any method with respect to a specific problem will need to be assessed by system
designers.
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7. Simulations. In this section, we present a series of simulation studies to illus-
trate our findings and the behavior of our solutions. For the simulations, it is necessary
to choose appropriate α,β values in the definition of the distance function (6). When
choosing these values, the larger the ratio α β, the more penalty is assigned to errors
in rotation. Since the rotational and translational components are measured in differ-
ent units, choosing α,β will generally be application specific. However, we note that,
in general, the larger the average translational component present in the graph, the
larger the ratio α β that is necessary to achieve significant noise reduction using our
solution methods. Indeed, for larger translational distances, errors in rotation often
have a more significant impact on the configuration error than in the case where these
distances are small. For our simulations, we illustrate our results for α 10,β 1,
and average translational components between 5 and 10 units.

In order to simulate the continuous-time ODE in Definition 7, we discretize the
solution by making use of an Euler step. For an ODE defined on SO 3 of the form
R RΩ, the Euler step takes the form R k 1 R k exp ϵΩ for some ϵ 0.
Practical implementation of the equal angle flow method involves setting an error
threshold for convergence, and once the solution comes sufficiently close to satisfying
the constraints of the problem, we use the value of the displacements as the limit.

7.1. Single cycle case. In our first simulation study, we consider the case of a
“ring” graph as in section 3. We consider three types of displacement measurements:
pure rotation, pure translation, and general displacement. In each simulation, we
initialize the noisy displacement measurements so that they do not satisfy the cycle
constraint. We then find both the equal angle solution, as well as the solution resulting
from the equal angle flow method. Figure 4 shows the cost and constraint function
evaluated for both solution methods for varying numbers of nodes. In all cases, both
solutions are feasible, i.e., they satisfy the cycle constraint. Further, in the case of
pure translation and pure rotation, the equal angle flow method produces costs which
are very close to those produced by the equal angle solution, with only small errors due
to numerical implementation. In the case of general displacements, the two solutions
differ, which is a result of the fact that the equal angle flow method adjusts rotational
and translational components separately.

7.2. General graph case. In our second simulation study, we fix a random
digraph with 10 nodes. We associate to each edge a displacement matrix and use
the equal angle flow method to find new displacements. The left plot in Figure 5
illustrates a typical evolution of the constraint σ I4 Eσ1

σ
k Eσ σ

σ
k (note

that requiring this expression to equal 0 is equivalent to enforcing the constraint
in (14)), as well as a typical evolution of the cost function of (14) evaluated by let-
ting Ci k Ei 0 1Ei k at each discrete time step. The plot clearly shows the
transition from the first implementation of the equal angle flow to the second imple-
mentation, which occurs at k 1200. Note that the cost increases monotonically,
while the constraint decreases monotonically only during the second implementation
of the flow. Since the translational components do not change during the first imple-
mentation of the flow, the constraint need not decrease during this phase.

It is clear that for general noise models our solutions for the localization problem
on SE 3 are not proven to be optimal. However, for measurements that are subject
to “Gaussian-like” noise models with zero mean and small standard deviation ν π,
and when α β in (6), we believe that our presented solution method (i) substantially
reduces the mean square error for graphs with large numbers of semicycles, and (ii) in
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Fig. 4. We consider the pure rotation case (top left), the pure translation case (top right),
and the general displacement case (bottom). For each case, we show the cost and the constraint
functions evaluated for the equal angle solution and the solution resulting from the equal angle flow
method. The constraint is computed as Eσ1Cσ1 EσnCσn I4 .
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Fig. 5. Left: The evolution of the constraint σ I4 Eσ1

σ
k Eσ σ

σ
k , as well as the

evolution of the cost function of (14) evaluated by letting Ci k Ei 0 1Ei k at each discrete
time step k under the equal angle flow for a random, weakly connected graph with 10 nodes. We
assume the noise model described in Remark 2. Note the transition from the first implementation
of the equal angle flow to the second implementation, which occurs at k 1200, and note that the
trajectory converges to a feasible point as k . Right: An illustration of 1 minus the ratio of
the mean square error of the configuration resulting from the equal angle flow method to the value
of the mean square error of the initial noisy measurements as the number of semicycle constraints
enforced increases. For this study, we consider a complete graph with m 10 nodes. The plot
shows results for ν2 0.05, 0.1, 0.3 (see Remark 2), as well as the expected noise reduction for the
analogous linear problem as predicted by (17).
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terms of noise reduction, is comparable to the classic least squares estimator for an
analogous linear problem. We make these statements precise in what follows. The
following analysis is analogous to that appearing in [33].

We first construct the linear analogue of problem (14). Since SE 3 n is a 6n-
dimensional manifold, we consider a problem in which we have noisy measurements
y p vI6n, where p R6n is the nominal measurement vector and v R is a zero
mean Gaussian random variable with variance ν2. We consider additive semicycle
constraints, and thus we have a problem of the form

(16)
minimize y p̂ 2

subject to 1T
ℓσ p̂ 2πkσ for all σ Lf G ,

where kσ N6 and 1ℓσ R6n 6 is a vector that is formed by replacing each 1 entry
in ℓσ with I6, each 1 entry in ℓσ with I6, and each 0 entry with 6 6. Suppose p is
the true solution. Let Cf R6r 6n be the matrix formed by stacking the matrices 1T

ℓσ ,
where r Lf G . The true solution p satisfies p p0 Uη, where Cfp0 2πkf ,
kf N6r is formed by stacking the vectors kσ, U R6n 6n 6r spans the null space
of Cf , and η R6n 6r is computed accordingly. It follows that the constraint in (16)
can be written as Cf p̂ 2πkf . We calculate the error covariance matrix Q R6n 6n:

Q E p̂ p p̂ p T ν2U UTU 1UT .

The matrix U UTU 1UT is an orthogonal projector onto the vector space that is
spanned by the columns of U . The trace of a projector is equal to the rank of the
projection, that is, tr U UTU UT 6n 6r, and the expected value of the estimation
mean square error (MSE) is given by

(17) MSE
tr Q

number of measurements
ν2

n r

n
.

Since r is the number of independent semicycles, for a connected graph we have
r n m 1, with n,m the number of edges and nodes, respectively. Thus MSE
ν2 m 1

n . For a complete graph, n m m 1 2, and thus MSE ν2 2
m , which is a

noise reduction of at least 80% when m 10 nodes. Note that once the number of
nodes and edges, m,n, along with the noise covariance ν2 are fixed, as the number of
semicycle constraints that we enforce increases, the redundancy of the available noisy
measurements is correctly exploited, and we get increased noise reduction.

The right-hand plot in Figure 5 illustrates that our nonlinear problem (14) ex-
hibits similar behavior to that of its linear analogue. Here we consider a complete
graph with m 10 nodes and assume that ν is fixed (see Remark 2). We plot 1 minus
the ratio of the mean square error of our estimate, which was found using the equal
angle flow method, to the value of the mean square error of the initial measurements
as we increase the number of semicycle constraints that we choose to enforce. We see
that the noise reduction obtained by the equal angle flow method is similar to that of
the linear analogue for small ν.

We note that we do not achieve noise reduction comparable to the linear case when
α β is small compared to the average translational component length of the graph.
In such cases, other methods, e.g., similar to those presented in [38, 35], may be more
appropriate. However, such methods bring about a different set of computational
challenges, and thus tractability will need to be assessed by system designers.
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8. Conclusion. We have presented a rigorous discussion of the sensor network
localization problem on SE 3 n. We started by generating a closed form solution for
the case of a graph containing a single cycle of length n. We showed that our solution
satisfies the cycle constraint induced by the network sensing topology and distributes
the screw angle error equally among the edges. Moreover, in certain cases, namely
pure rotation and pure translation, our solution does not depend on the particular
representation of the cycle constraint function and is the unique minimizer of an
appropriate cost. We then considered the case of a general, weakly connected graph.
We showed that our single cycle solution can be adapted to take into account arbitrary
edge orientations on any given semicycle, and used this result to generate a continuous-
time ODE, for which we can use solution curves to find a feasible localization on the
entire graph. We presented a series of simulation studies to verify our results, including
a study which shows that for certain noise models, our solution obtains noise reduction
comparable to that of the classic least squares for the analogous linear problem.

A variety of future problems are of interest. One possible problem is the issue of
implementing these procedures in conjunction with standard robotic operations, such
as camera network calibration. In addition, it would also be of interest to explore
other cost functions and see how these alternative formulations affect aspects like noise
reduction. It would also be useful to find other statistical measures of uncertainty in
SE 3 and incorporate these measures into our algorithms. Finally, deriving a flow
that alters both the rotational and translational components simultaneously and is
guaranteed to converge for general graphs is an open problem that could potentially
improve performance.

Appendix A. Proof of Theorems 3 and 4. For this appendix, assume the
problem setup and notation of sections 3 and 4. In addition, we introduce the following
shorthand: Cσ

i Rσ
i , p

σ
i , and

Eσ
i,j Rσ

i,j ,p
σ
i,j

EσiEσi 1 Eσn Eσ1Eσ2 Eσj if j n,

EσiEσi 1 Eσn otherwise,

where i 1, . . . , n 1 and j 0, 1, . . . , n (recall Convention 1 for products of
indexed matrices). Direct calculation yields

Rσ
i,j

RσiRσi 1 Rσn Rσ1Rσ2 Rσj if j n

RσiRσi 1 Rσn otherwise,
(18)

pσ
i,j

n

k i

RσiRσi 1 Rσk 1pσk

j

k 1

Rσ
i,k 1pσk if j n,

n

k i

RσiRσi 1 Rσk 1pσk otherwise,

(19)

where empty summations in (19) are understood to equal zero, i.e., b
a : 3

whenever b a. We will need the following lemma.
Lemma 9 (conjugation of tangent vectors). If E1, . . . , En SE 3 n

tr 0, then

Eσ1

Ax Eσ
2,1

Tran Eσ
2,1

Eσ1

1 Ax Eσ
1,n

Tran Eσ
1,n

.
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Proof. Simple algebra yields

(20)
Eσ1

Ax Eσ
2,1

Tran Eσ
2,1

Eσ1

1

Rσ1Ax Eσ
2,1 RT

σ1
Rσ1 Tran Eσ

2,1 Rσ1Ax Eσ
2,1 RT

σ1
pσ1

T
3 0

.

Recall that An Rσ
2,1 An Rσ

1,n and An Eσ
2,1 An Eσ

1,n , since both rotation and
screw angles are invariant under conjugation (see section 2.1). There are two possible
cases.

Case I (An Rσ
2,1 An Rσ

1,n 0). In this case, Ax Eσ
2,1 Ax Eσ

1,n 3. If
Eσ

2,1 I4, then Tran Eσ
2,1 Tran Eσ

1,n 3, and the statement holds trivially. If
Eσ

2,1 I4, from (4) and (19) we have

Rσ1 Tran Eσ
2,1 Rσ1

pσ
2,1

An Eσ
2,1

1

An Eσ
1,n

Rσ
1,npσ1

n

k 2

Rσ
1,k 1pσk(21)

1

An Eσ
1,n

n

k 1

Rσ
1,k 1pσk(22)

pσ
1,n

An Eσ
1,n

Tran Eσ
1,n ,(23)

where we have used (i) the invariance of screw angles under conjugation, and (ii) the
fact that An Rσ

1,n 0 and thus Rσ
1,n I3 by assumption. From (20), it follows that

Eσ1

Ax Eσ
2,1

Tran Eσ
2,1

Eσ1

1 3 Rσ1 Tran Eσ
2,1

T
3 0

Ax Eσ
1,n

Tran Eσ
1,n

.

Case II (An Rσ
2,1 An Rσ

1,n 0). In this case, we examine the entries of
the matrix in (20) separately. Regarding the top left entry of the matrix in (20),
Rodrigues’ rotation formula (see section 2.1) implies

Rσ1Ax Eσ
2,1 RT

σ1
Rσ1

Rσ
2,1 Rσ

2,1
T

2 sin An Rσ
2,1

RT
σ1

Rσ
1,n Rσ

1,n
T

2 sin An Rσ
1,n

Ax Eσ
1,n ,

where we once again have used the invariance of rotation angles under conjugation. It
remains to show that the top right term of the matrix in (20) is equal to Tran Eσ

1,n .

Recall (4), and let ξξξ : I3 Rσ
1,n Ax Eσ

1,n I3 Ax Eσ
1,n

2
An Eσ

1,n . We have

Rσ1 Tran Eσ
2,1 Rσ1Ax Eσ

2,1 RT
σ1
pσ1

Rσ1 I3 Rσ
2,1 Ax Eσ

2,1 I3 Ax Eσ
2,1

2
An Eσ

2,1
1pσ

2,1 Ax Eσ
1,n pσ1

Rσ1 RT
σ1

I3 Rσ
1,n Ax Eσ

1,n Rσ1 RT
σ1

I3 Ax Eσ
1,n

2
Rσ1 An Eσ

1,n
1pσ

2,1

Ax Eσ
1,n pσ1

Rσ1 I3 RT
σ1
ξξξ RT

σ1
Rσ1

1
pσ
2,1 Ax Eσ

1,n pσ1

I3 Rσ1 RT
σ1
ξξξ RT

σ1

1
Rσ1p

σ
2,1 Ax Eσ

1,n pσ1

ξξξ 1Rσ1 Rσ
2,0pσ1

n

k 2

Rσ2Rσ3 Rσk 1pσk Ax Eσ
1,n pσ1
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ξξξ 1 Rσ
1,npσ1

n

k 2

Rσ1Rσ2 Rσk 1pσk Ax Eσ
1,n pσ1

ξξξ 1 Rσ
1,npσ1 pσ

1,n pσ1 Ax Eσ
1,n pσ1

Tran Eσ
1,n ξξξ 1 Rσ

1,n I3 pσ1 Ax Eσ
1,n pσ1 ,

where the fourth equality follows from the fact that P I3 QP 1 I3 PQ 1P
for any P,Q R3 3 such that I3 PQ , I3 QP are invertible. Invertibility of the
appropriate matrices follows from well-posedness of (4) [30]. To conclude, we show

that ξξξ 1 Rσ
1,n I3 pσ1 Ax Eσ

1,n pσ1 3. We utilize the following identities [30,

Lemma 2.3]: for any w R3, we have w2 wwT w I3 and w3 w 2w. By
assumption, An Rσ

1,n 0, and thus Ax Eσ
1,n has unit norm. We have

Rσ
1,n I3 pσ1 ξξξAx Eσ

1,n pσ1

Rσ
1,n I3 pσ1 I3 Rσ

1,n Ax Eσ
1,n

2
Ax Eσ

1,n Ax Eσ
1,n

3
An Eσ

1,n pσ1

Rσ
1,n I3 pσ1 I3 Rσ

1,n Ax Eσ
1,n Ax Eσ

1,n
T I3 pσ1

Rσ
1,n I3 pσ1 Rσ

1,n I3 pσ1 3,

where the last equality follows from the identity Rσ
1,n Ax Eσ

1,n Ax Eσ
1,n .

Proof of Theorem 3. For any cycle σ̄ on the graph G with σ̄ σ, either Eσ
2,1

Eσ̄
1,n, or there exist k 1, . . . , n 2 and a sequence of cycles σ1,σ2, . . . ,σk such that

(24) σ σ1 σ2 σk σ̄,

Eσ
2,1 Eσ1

1,n, E
σk

2,1 Eσ̄
1,n, and Eσj

2,1 Eσj 1

1,n for all j 1, . . . , k 1 . Thus, it suffices
to show that for any i 1, . . . , n , Cσ

i Cσ
new i, where

Cσ
new i

Eσ
i 1,1

n Rσ
2,1

T 1
n

n Rσ
2,1

T
n i 2

pσ
2,1

T
3 1

Eσ
i 1,1

1 if i 1,

n Rσ
2,1

T 1
n

n Rσ
2,1

Tpσ
2,1

T
3 1

if i 1.

We remark that the expression for Cσ
new i is analogous to Definition 1, with the

quantities associated with Eσ
2,1 substituted for those of Eσ

1,n. If this relation holds,
then an induction step using the sequence of cycles in (24) proves the theorem.

If An Eσ
1,n 0, then Cσ

i I4 Cσ
new i for all i 1, . . . , n , and the statement

is trivial. Assume An Eσ
1,n 0. Define Cσ

new i Rσ
new i, pσnew i , and assume

the conditions of the theorem. Recall that the action of a rotation matrix on a vector
which is aligned with its axis of rotation is trivial. Since Ax Eσ

i,i 1 Tran Eσ
i,i 1 3

for all i 1, . . . , n by assumption, we have

n Rσ
i,i 1

T Tran Eσ
i,i 1 Tran Eσ

i,i 1 for any i 1, . . . , n .

Further, results from [30, Chapters 2–3] state the following: if E R, p SE 3

such that Ax E Tran E 3, then p An E Tran E , and thus

E exp An E
Ax E
Tran E

R An E Tran E
T
3 1

.
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It follows that

Cσ
i Eσ

i 1,n

n Rσ
1,n

T 1
n

n Rσ
1,n

T
n i 1

pσ
1,n

T
3 1

Eσ
i 1,n

1

Eσ
i 1,n

n Rσ
1,n

T 1
n

n Rσ
1,n

T
n i 1

An Eσ
1,n Tran Eσ

1,n
T
3 1

Eσ
i 1,n

1

Eσ
i 1,n

n Rσ
1,n

T 1
nAn Eσ

1,n Tran Eσ
1,n

T
3 1

Eσ
i 1,n

1

Eσ
i 1,n exp

1

n
An Eσ

1,n
Ax Eσ

1,n

Tran Eσ
1,n

Eσ
i 1,n

1.

Applying Lemma 9, we have

Eσ
i 1,n exp

1

n
An Eσ

1,n
Ax Eσ

1,n

Tran Eσ
1,n

Eσ
i 1,n

1

Eσ
i 1,n exp

1

n
An Eσ

1,n Eσ1

Ax Eσ
2,1

Tran Eσ
2,1

E 1
σ1

Eσ
i 1,n

1

Eσ
i 1,1 exp

1

n
An Eσ

2,1
Ax Eσ

2,1

Tran Eσ
2,1

Eσ
i 1,1

1

Eσ
i 1,1

n Rσ
2,1

T 1
nAn Eσ

2,1 Tran Eσ
2,1

T
3 1

Eσ
i 1,1

1

Eσ
i 1,1

n Rσ
2,1

T 1
n

n Rσ
2,1

T
n i 2

pσ
2,1

T
3 1

Eσ
i 1,1

1

Cσ
new i.

To see the last equality for the case when i 1, we simply note that

Eσ
2,1

n Rσ
2,1

T 1
n

n Rσ
2,1

T
n i 2

pσ
2,1

T
3 1

Eσ
2,1

1

n Rσ
2,1

T 1
n

n Rσ
2,1

T
n i 2

pσ
2,1

T
3 1

,

since Ax Eσ
2,1 is aligned with pσ

2,1 An Eσ
2,1 Tran Eσ

2,1 by assumption.
We will need the following result for the proof of Theorem 4.
Lemma 10 (rotational optimality). Let R SO 3 . A global minimizer of the

optimization problem

minimize An R1
2 An R2

2

subject to R1R2 R,

R1, R2 SO 3 ,

is given by R1 R2 R̃, where R̃ is such that R̃R̃ R and An R̃ 1
2 An R .



NETWORK LOCALIZATION ON SE 3 3555

Similarly, if p R3, then a global minimizer of the optimization problem

minimize p1
2 p2

2

subject to p1 p2 p,

p1, p2 R3,

is given by p1 p2 p 2.
Proof. Let R1, R2 SO 3 such that R1R2 R. It is trivial to show that if

both An R1 An R and An R2 An R , then R1, R2 are not optimal (compare
this to the case where R1 R2 R̃). Therefore, assume without loss of generality
that An R1 An R . A consequence of the triangle inequality for the distance (6)
implies that An R1 An R2 An R An R1 An R An R1 , and thus
An R2 An R An R1 . We then have

An R1
2 An R2

2 An R1
2 An R An R1

2

1

2
An R δ

2 1

2
An R δ

2

1

2
An R 2 ,

where δ 1
2 An R An R1 . Notice that 2An R̃ 2 1

2 An R 2. Therefore, R1

R2 R̃ is a global minimizer of the specified optimization.
The proof of the translational case is analogous.
Proof of Theorem 4. Both optimizations (9) and (10) are feasible, as Cσ is a

feasible solution (Theorem 2).
Case I (rotation). Assume Ei Ri, 3 for all i 1, . . . , n , and suppose that

C1, C2, . . . , Cn is a global minimizer of (9) (such a global minimizer exists by com-
pactness of SO 3 n). We prove the statement by showing that Ci must be equal
to Cσ

i for all i 1, . . . , n . We can apply a similarity transformation to each Ci

for i 1, . . . , n to obtain a new set of matrices Cσ1 shift, Cσ2 shift, . . . , Cσn shift

that satisfy Eσ1Cσ1Eσ2Cσ2 EσnCσn Eσ
1,n Cσ1 shift Cσ2 shift Cσn shift. The

value of the cost function of (9) with respect to C1 shift, C2 shift, . . . , Cn shift is
the same as the cost function with respect to C1, C2, . . . , Cn; i.e.,

n
i 1 d Ci, I4 2

n
i 1 d Ci shift, I4 2. Indeed, if C RC , 3 , E R, 3 SE 3 are arbi-

trary matrices of pure rotation, then ECiE 1 RRCRT , 3 and thus d Ci, I4
d ECiE 1, I4 since rotation angles are invariant under conjugation.

By assumption of feasibility, Cσ1 shift Cσ1 shift Cσn shift Eσ
1,n

1
, which

is a matrix of pure rotation. We deduce that for the solution C1, C2, . . . , Cn to be
optimal, An C1 shift An C2 shift An Cn shift . Indeed, if this were
not so, there would exist indices i, i 1 such that An Cσi shift An Cσi 1 shift ,
and according to Lemma 10 we could lower the cost function by finding a matrix C
that satisfies the equation CC Cσi shift Cσi 1 shift and redefining our corrections
accordingly. Further, a consequence of the triangle inequality tells us that in order

to satisfy Cσ1 shift Cσ1 shift Cσn shift Eσ
1,n

1
, where all of our corrections

are pure rotations, we must have n
i 1 An Ci shift An Eσ

1,n . These properties
allow us to deduce Cσi shift Cσ

EA i for all i 1, . . . , n , as this is the only choice
such that An C1 shift An C2 shift An Cn shift 1 n An Eσ

1,n (the
invariance property of Theorem 3 holds in this setting). It follows that Ci Cσ

i for
all i 1, . . . , n as desired.
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Case II (translation). Now assume Ei I3, pi for all i 1, . . . , n . A global
minimizer of (10) exists by the following logic: if Cost Cσ denotes the cost ofCσ, then
the minimizer of (10) over the compact set consisting of pure translational correction
matrices with translational components having norm less than or equal to Cost Cσ

is a global minimizer, since any solution outside of this set has a cost larger than
Cost Cσ . Suppose that C1, C2, . . . , Cn is such a minimizer. We prove the statement
by showing that Ci must be equal to Cσ

i for all i 1, . . . , n . Notice that any Ci

remains unchanged under similarity transformation by any composition of Ei’s:

Ci
I3 p
T
3 1

exp An Ci
3

Tran Ci

I3 p
T
3 1

.

Therefore, we have Eσ1Cσ1Eσ2Cσ2 EσnCσn Eσ
1,nCσ1Cσ2 Cσn . By assumption

of optimality, we deduce that An C1 An C2 An Cn . Indeed, if this were
not the case, then there would exist indices i, i 1 such that An Cσi An Cσi 1 ,
and thus by Lemma 10 we could lower the cost function by replacing pσi and pσi 1

with pσi pσi 1 2. Further, by the triangle inequality, we must have n
i 1 An Ci

An Eσ
1,n . It follows that choosing Cσi Cσ

EA i for all i 1, . . . , n is optimal, since

this is the only choice such that p1 p2 pn
1
n pσ

1,n (the invariance
property of Theorem 3 holds). It follows that Ci Cσ

i for all i 1, . . . , n .

Appendix B. Proof of Theorem 8. In this appendix, we assume the prob-
lem setup and notation of sections 5 and 6. We also make use of the bi-invariant
Riemannian metric on SO 3 obtained by projection of the metric (5); i.e., at any
R SO 3 , we adopt5 the inner product , R : TRSO 3 TRSO 3 R defined by
Rv,Rw R vTw and the associated geodesic distance function d : SO 3 SO 3
0,π defined by d R1, R2 An RT

1 R2 . This metric extends to SO 3 n in a
natural way: for each R : R1, R2, . . . , Rn SO 3 n, define the inner product
, R : TRSO 3 n TRSO 3 n R with the rule

R1v1, R2v2, . . . , Rnvn , R1w1, R2w2, . . . , Rnwn R

n

i 1

Rivi, Riwi Ri .

In accordance with notation of section 6, given a semicycle σ, a vector R : R1, R2,

. . . , Rn SO 3 n, and a vector p : p1, p2, . . . , pn R3n, let Rσ : Rσ1

σ
Rσ2

σ

Rσ σ

σ
and pσ be defined as the translational component of Eσ1

σ
Eσ2

σ
Eσ σ

σ
, where

Ei : Ri, pi for each i 1, . . . , n . For convenience, we also define the set U
R SO 3 n An Rσ π for some σ Lf G . Since Lf G is finite, it is trivial
to show that the set U is closed in SO 3 n: if R U , then there exists a neighborhood
that is not contained in U . Therefore, the notion of a derivative is well defined at
points in the open set SO 3 n U .

For a semicycle σ, define the map erotσ : SO 3 n U 0,π by the rule erotσ R
An Rσ . Further, given a vector R SO 3 n, we define the map etranσ,R : R3n R 0 by

the rule etranσ,R p pσ . We write erotσ
2, etranσ,R

2 to denote the maps R erotσ R 2

and p etranσ,R p 2, respectively. We proceed with a few useful results.
Lemma 11 (differentiability). The maps erotσ

2 and etranσ,R
2 are differentiable.

Proof. The mapping etranσ,R is linear, and thus it is clear that etranσ,R
2 is differentia-

ble. Let R R1, R2, . . . , Rn SO 3 n U . Since erotσ
2 R is the squared rotation

5Without loss of generality we take α 1.
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angle of a composition of rotations, differentiability is clear at any point such that
Rσ I3. Suppose Rσ I3, and let ω : ω1,ω2, . . . ,ωn R3n. Let δ 0 be small
and define a curve γ : δ, δ SO 3 n by

γ t R1 exp tω1 , R2 exp tω2 , . . . , Rn exp tωn .

Notice that dγ
dt t 0 R1ω1, R2ω2, . . . , Rnωn , and thus it suffices to show that

d
dt erotσ

2 γ t 0 is well defined for any choice of the vector ω. We have

erotσ
2 γ t An Rσ1 exp tωσ1

σ
Rσ2 exp tωσ2

σ
Rσ σ

exp tωσ σ

σ 2
.

By appropriate conjugations of the exponential terms, one obtains

erotσ
2 γ t An Rσ exp tνσ1 exp tνσ2 exp tνσ σ

2
,

where νσi R3, νσi ωσi for all i 1, . . . , σ (by invariance of rotation angles
under conjugation). For t 0 sufficiently small, by the triangle inequality we have

erotσ
2 γ t An Rσ exp tνσ1 exp tνσ2 exp tνσ σ

2

An Rσ t σ 2 O t2 as t 0,

since An Rσ 0 by assumption. It follows that d
dt erotσ

2 γ t 0 limt 0
1
tO t2

0. The statement of Lemma 11 follows.
Lemma 12 (gradient behavior). Let R R1, R2, . . . , Rn SO 3 n U and

p p1, p2, . . . , pn R3n. The gradient

∇ erotσ
2 R : ∇ erotσ

2 R 1, ∇ erotσ
2 R 2, . . . , ∇ erotσ

2 R n TRSO 3 n

is given by

∇ erotσ
2 R i

2RiAn Rσ Ax Cσ
j σ,i if Ei σ,

3 otherwise,

where j σ, i is the index such that σj σ,i i. If, in addition, Rσ I3, then
∇ etranσ,R

2 p : ∇ etranσ,R
2 p 1, . . . , ∇ etranσ,R

2 p n R3n is given by

∇ etranσ,R
2 p i

2Ri pσ Tran Cσ
j σ,i if Ei σ,

3 otherwise.

Proof. The vectors ∇ erotσ
2 R and ∇ etranσ,R

2 p exist by Lemma 11. Let i
1, . . . , n . If Ei σ, it is trivial to show that ∇ etranσ,R

2 p i 3 and ∇ erotσ
2 R i

3. Thus, in what follows assume that Ei σ. We break the proof into two parts.
Part I (gradient of erotσ

2). If An Rσ 0, then R is a local minimizer of erotσ ,
and thus the statement about ∇ erotσ

2 is clear. Assume An Rσ 0, let δ 0 be
small, and define γ : δ, δ SO 3 σ by

γ t Rσ1 exp t σ
1
2Ax Cσ

1 , . . . , Rσ σ
exp t σ

1
2Ax Cσ

σ .

It is easily verified that dγ
dt t 0 σ

1
2Rσ1Ax Cσ

1 , . . . , σ
1
2Rσ σ

Ax Cσ
σ and

has unit magnitude with respect to the natural metric associated with the inner



3558 J. R. PETERS, D. BORRA, B. E. PADEN, AND F. BULLO

product defined on TRSO 3 σ . We now calculate the derivative in the direction of
dγ
dt t 0. For t 0 small we have

erotσ
2 γ t

An Rσ1 exp t σ
1
2Ax Cσ

1

σ

Rσ σ
exp t σ

1
2Ax tCσ

σ

σ 2

An Rσ exp t σ
1
2Ax Cσ

EA 1 exp t σ
1
2Ax Cσ

EA σ

2
.

By construction, Ax Cσ
EA i Ax Rσ for every i such that Ei σ, and thus for t

0 sufficiently small, erotσ
2 γ t An Rσ t σ 2 and thus d

dt erotσ
2 γ t 0

limt 0
1
t An Rσ t σ 2 An Rσ

2 2 σ An Rσ . From the manipulations

above, it is also clear that for any other curve γ̃ : δ, δ SO 3 σ with a de-
rivative of unit magnitude at t 0, if dγ̃

dt t 0
dγ
dt t 0, then d

dt erotσ
2 γ̃ t 0

d
dt erotσ

2 γ t 0. Indeed, using similar manipulations and letting t 0 be small, we

find erotσ
2 γ̃ t An RσR̃ 2 for some R̃ SO 3 with an axis of rotation that does

not point in the same direction as Ax Rσ , and thus An RσR̃ 2 An Rσ t σ 2.

By definition of the gradient we have ∇ erotσ
2 R i 2RiAn Rσ Ax Cσ

j σ,i .

Part II (gradient of etranσ,R
2). For this part of the proof, we assume that Rσ I3.

If pσ 0, then Tran Cσ
i 3, and since p is a local minimizer of the function

etranσ,R , the statement about ∇ etranσ,R
2 holds. Assume pσ 0. Then, Cσ

i represents
pure translation for each i, and thus by (4) the vector Tran Cσ

i is a unit vector that
points in the direction of the translational component of Cσ

i . Similarly to the rotation
case, for some small δ 0 we define a curve γ : δ, δ R3 σ by γ t pσ1

t σ
1
2Rσ1 Tran Cσ

1 , . . . , pσ σ
t σ

1
2Rσ σ

Tran Cσ
σ . We now find the derivative

of etranσ,R
2 in the direction dγ

dt t 0. Let t 0 be small. Note that for any choice of i
such that Ei σ, we have
(25)

Rσi pσi t σ
1
2Rσi Tran Cσ

i
T
3 1

σ
Rσi pσi

T
3 1

I3 t σ
1
2 Tran Cσ

i
T
3 1

σ

,

and thus finding the value of etranσ,R
2 γ t is equivalent to finding the squared norm

of the translational component of the composition

Eσ1C̃
σ
1

σ
Eσ2C̃

σ
2

σ
Eσ σ

C̃σ
σ

σ
Eσ1Eσ2

σ
Eσ σ

σ
C̃σ

EA 1 C̃σ
EA 2 C̃σ

EA σ ,

where C̃σ
i : I3, t σ

1
2 Tran Cσ

i , C̃σ
EA i : I3, t σ

1
2 Tran Cσ

EA i SE 3 .
By construction, Tran Cσ

EA i pσ pσ ; thus

etranσ,R
2 γ t pσ t σ

pσ
pσ

2

pσ t σ
1
2 2,

and

d

dt
etranσ,R

2 γ
t 0

lim
t 0

1

t
pσ t σ 2 pσ

2 2 σ pσ .

By arguments similar to those in the rotation case, we can argue that for any other
curve γ̃ : δ, δ R σ n with a derivative of unit magnitude at t 0, if dγ̃

dt t 0
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dγ
dt t 0, then

d
dt etranσ,R

2 γ̃ t 0
d
dt etranσ,R

2 γ t 0. Thus we have deduced that

∇ etranσ,R
2 p i 2Ri pσ Tran Cσ

j σ,i .

We are now poised to complete the proof of Theorem 8.
Proof of Theorem 8. We consider two cases.
Case I (there exists σ Lf G such that Rσ I3). In this setting, any solution

to the equal angle flow with given initial measurements will not reach a configuration
in which Rσ I3 for all σ Lf G in finite time, since the derivatives of all Ri

asymptotically approach 0 as the system approaches any such configuration. As such,
the translational component of any solution will be constant, and thus we need only
study the evolution of the rotational components for a complete understanding of the
solution curves. Consider the candidate Lyapunov function V : SO 3 n U R 0

given by

V R

σ Lf G

1

σ
ln π2 ln π2 erotσ

2 R .

Note that this function is differentiable as it is the composition of differentiable func-
tions (Lemma 11) and that V R as R U . Differentiating termwise and using
Lemma 12,

∇V R
σ Lf G

1

σ π2 erotσ
2 R

∇ erotσ
2 R ,

and thus we have

∇V R i 2Ri

σ Lf G
Ei σ

An Rσ

σ π2 An Rσ
2
Ax Cσ

j σ,i ,

where i 1, . . . , n . It follows that under the equal angle flow, R1, . . . , Rn is always
in the direction of the negative gradient of the function V . Thus, if a solution exists,
it would have the property that ∇V R ,R R 0 for all time t 0. Since V as
R U , it follows that any solution lies entirely in a compact set which is disjoint from
U. The vector field in Definition 7 is easily shown to be locally Lipschitz continuous,
as it is the composition of locally Lipschitz continuous mappings, and thus existence
and uniqueness of solutions to the equal angle flow follow immediately (see, e.g., [1,
Chapter 4]). Invoking Lasalle’s invariance principle (see, e.g., [12, Chapter 6]), we
conclude that solution curves will converge to a set such that ∇V R ,R R 0 (or,
equivalently, the set where ∇V R vanishes).

To complete the proof, we note that, through our construction of the set Lf G ,
each semicycle σ contains at least one edge that is not contained in any of the other
semicycles. It follows that ∇V R does not vanish unless An Rσ 0 for all σ
Lf G . We conclude that under the equal angle flow, we obtain convergence to a set
of rotations such that Rσ I3 for all σ Lf G .

Case II (Rσ I3 for all σ Lf G ). We now assume that the nominal mea-

surements have the additional property that Eσ1 0
σ
Eσ2 0

σ
Eσ σ

0
σ
represents

pure translation for all σ Lf G . In this setting, the rotational component of any
solution to the equal angle flow will remain constant for all time, and thus R remains
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fixed. Assume p t p1 t , . . . , pn t , where p 0 is equal to our nominal translation
measurements, and define the candidate Lyapunov function V : R3n R 0 by

V p

σ Lf G

1

σ
etranσ,R

2 p .

Note that V is differentiable (Lemma 11). From Lemma 12, we have

∇V p i

σ Lf G
Ei σ

1

σ
∇ etranσ,R

2 p i 2Ri

σ Lf G
Ei σ

pσ
σ

Tran Cσ
j σ,i ,

where i 1, . . . , n . Under the equal angle flow, p is in the direction of ∇V p .
Thus, we have ∇V p T p t 0 for all time t 0. Using the same argument as
in the rotational case, we conclude that there exists a well-defined, unique solution
R 0 t E1 t , E2 t , . . . , En t . Since ∇V p 3n unless pσ 3 for all
σ Lf G , the statement follows once again by Lasalle’s invariance principle.
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