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Abstract— This work proposes several analysis and design
results for primary droop control and secondary control in
inductive microgrids. Building on our recent work, we study the
problem of set point design in primary-controlled microgrids,
and provide a choice of droop coefficients leading to the desired
power flows. We then compare and contrast two distributed
secondary-control schemes, and extend them to the case where
only a fraction of inverters cooperates in regulating the network
frequency. We show that both these secondary-control schemes
achieve frequency regulation in the presence of network losses.

I. INTRODUCTION

Microgrids are low-voltage electrical distribution net-
works, heterogeneously composed of distributed generation,
storage, load, and managed autonomously from the larger
primary network. Microgrids are able to connect to the wide
area electric power system through a Point of Common
Coupling (PCC), but are also able to “island” themselves
and operate independently [1], [2]. Energy generation within
a microgrid can be highly heterogeneous, including pho-
tovoltaics, wind, geothermal, micro-turbines, etc. Many of
these sources generate either variable frequency AC power or
DC power, and are interfaced with a synchronous AC grid via
power electronic DC/AC inverters. In islanded operation, it
is through these inverters that actions must be taken to ensure
synchronization, security, power balance and load sharing in
the network [3].

The so-called primary droop controllers have been used
successfully to achieve these tasks, see [3]–[9]. For inductive
lines, the controller balances the active power demands in the
network by instantaneously changing the frequency ωi of the
voltage signal at the ith inverter according to

ωi = ω∗ − ni(Pe,i − P ∗i ), (1)

where ω∗ is a rated frequency, Pe,i is the active electrical
power injection at node i, and P ∗i is the nominal active power
injection. The parameter ni > 0 is referred to as the droop
coefficient. Despite forming the foundation for the operation
of parallel inverters, primary-droop-controlled networks of
inverters and loads have only recently been subject to a
rigorous nonlinear analysis. In the recent work [10], the
authors presented a necessary and sufficient condition for the
existence of a unique and locally exponentially stable steady
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state of a droop-controlled network. Moreover, a secondary-
control scheme was devised — termed the distributed-
averaging PI controller — which dynamically regulates the
network frequency to a nominal value while maintaining a
proportional sharing of power among the inverters. These
results are foundational to the present work, and are reviewed
in Section II.

Conservative conditions for stability are presented in [11]
for all-to-all networks controlled by droop-like controllers.
In [12] state feedback is combined with a decentralized
LMI strategy to ensure stabilization and frequency regula-
tion, while [13] studies the performance of centralized and
decentralized frequency-control algorithms based on integral
action. In [14] a secondary-control scheme based on all-to-
all inverter frequency averaging is proposed. These works
all represent variations on the theme of secondary control,
but share the common disadvantage that the steady-state
power injections after the frequency is restored can be quite
disparate when compared to the power injections before, un-
less the network topology, weights, and controller gains are
carefully manipulated. That is, the additional integral action
disrupts any fair sharing of power between the distributed
generators established by the primary stabilizing controller.

The contributions of this work are as follows. Starting
from our previous analysis in [10], we present several novel
analysis and design results for frequency-droop and sec-
ondary control in inductive microgrids. First, in Section III
we characterize the set of droop coefficients which leads to a
desired configuration of power flows for primary-controlled
networks. In Section IV-A we present necessary and suffi-
cient stability conditions for the secondary-control scheme
proposed in [14], while in Section IV-B we partially extend
our secondary-control results to lossy networks. Section IV-C
extends our secondary-control results to the case where only
a fraction of inverters participate in frequency regulation.
Finally, Section V contains simulations illustrating some of
our results.

The remainder of the paper is organized as follows. In
Sections II–II-C we review our previous works on primary
and distributed secondary control. The remaining sections of
the paper contain our main results, with some comments and
outlook at the conclusion of the document.

II. PROBLEM SETUP, DROOP CONTROL AND DAPI
CONTROL

A. Preliminaries and Notation
Sets, vectors and functions: Given a finite set V , let |V|

denote its cardinality. Given an index set I and a real valued
1D-array {x1, . . . , x|I|}, diag({xi}i∈I) ∈ R|I|×|I| is the
associated diagonal matrix. We denote the n × n identity



matrix by In. Let 1n and 0n be the n-dimensional vectors
of all ones and all zeros, and let 1⊥n , {x ∈ Rn | 1Tnx = 0}
be the subspace of Rn orthogonal to 1n. We will drop the
subscripts from In, 1n and 0n when the dimensions are clear
from context. For a finite partitioned set V = VL ∪ VI , a
vector x ∈ R|V| inherits the partitioning as x = (xL, xI),
where xL ∈ RnL and xI ∈ RnI . For x ∈ Rn, let sin(x) ,
(sin(x1), . . . , sin(xn))T ∈ Rn
Algebraic graph theory: We denote by G(V, E , A) an
undirected and weighted graph, where V is the set of nodes,
E ⊆ V × V is the set of edges, and A ∈ R|V|×|V| is
the adjacency matrix. If a number ` ∈ {1, . . . , |E|} and
an arbitrary direction is assigned to each edge {i, j} ∈ E ,
the node-edge incidence matrix B ∈ R|V|×|E| is defined
component-wise as Bk` = 1 if node k is the sink node
of edge ` and as Bk` = −1 if node k is the source
node of edge `, with all other elements being zero. For
x ∈ R|V|, BTx ∈ R|E| is the vector with components xi−xj ,
with {i, j} ∈ E . If A , diag({aij}{i,j}∈E) ∈ R|E|×|E|
is the diagonal matrix of edge weights, then the positive
semidefinite Laplacian matrix is given by L = BABT . If the
graph is connected, then ker(BT ) = ker(L) = span(1|V|),
and ker(B) = ∅ for acyclic graphs. In this case, for every
x ∈ 1⊥|V|, that is,

∑
i∈V xi = 0, there exists a unique

ξ ∈ R|E| satisfying Kirchoff’s Current Law (KCL) x = Bξ
[15], [16]. The vector x is interpreted as nodal injections,
with ξ being the associated flows along edges. We denote
by B† , (BTB)−1BT the pseudoinverse of B.

Geometry on the n-torus: The set S1 denotes the unit
circle, an angle is a point θ ∈ S1, and an arc is a connected
subset of S1. With a slight abuse of notation, let |θ1 − θ2|
denote the geodesic distance between two angles θ1, θ2 ∈ S1.
The n-torus Tn = S1 × · · · × S1 is the Cartesian product of
n unit circles. For γ ∈ [0, π/2[ and a given graph G(V, E , ·),
let ∆G(γ) = {θ ∈ T|V| : max{i,j}∈E |θi − θj | ≤ γ} be the
closed set of angle arrays θ = (θ1, . . . , θn) with neighboring
angles θi and θj , {i, j} ∈ E no further than γ apart.

B. droop-controlled inverters in islanded microgrids

For our purposes, a microgrid is a linear AC circuit with
purely inductive admittance matrix Y ∈ jRn×n. The asso-
ciated connected, undirected, and complex-weighted graph
is G(V, E , A) with node set (or buses) V = {1, . . . , n},
edge set (or branches) E ⊂ V × V , and symmetric edge
weights (or admittances) aij = −Yij = −Yji ∈ C for every
branch {i, j} ∈ E , where Y is the bus admittance matrix.
We partition the set of buses as V = VL∪VI , corresponding
to the loads and inverters. For simplicity, we denote the
respective sizes of V,VL and VI by n, nL and nI . To each
bus i ∈ V , we associate an active electrical power injection
Pe,i ∈ R and the phasor voltage variable Vi = Eie

√
−1θi

corresponding to the magnitude Ei > 0 and the phase shift
θi ∈ S of a harmonic voltage solution to the AC power flow
equations. The active electrical power Pe,i ∈ R injected into
the network at node i ∈ {1, . . . , n} is then given by [17]

Pe,i(θ) =
∑n

j=1
EiEj |Yij | sin(θi − θj) . (2)

Each load i ∈ VL demands a constant amount of active power
P ∗i and must satisfy the power balance equation

0 = P ∗i − Pe,i(θ) , i ∈ VL . (3)

The frequency of each inverter i ∈ VI is controlled according
to the frequency droop control law (1), which as shown in
[10] can be formulated as

Diθ̇i = P ∗i − Pe,i(θ) + ui(t), i ∈ VI , (4)

where Di , n−1i is the (inverse) droop coefficient, ui :
R≥0 → R is a secondary-control input, and P ∗i ∈ [0, P i] is
a nominal injection, where P i is the rating (power limit) of
inverter i. In this equation, θ̇i = ωi − ω∗ is the deviation of
the frequency from the nominal value ω∗, cf. (1).

By summing over all equations (3)-(4) without secondary-
control input ui = 0 for all i ∈ VI , it can be verified that if
the closed-loop system possesses a frequency-synchronized
solution θ̇i(t) = ωsync ∈ R for all i ∈ {1, . . . , n}, then
the explicit synchronization frequency ωsync is given by the
scaled power imbalance

ωsync = ωavg ,

∑
j∈V P

∗
i∑

j∈VI Dj
. (5)

By transforming to a rotating coordinate frame θ(t) 7→ θ(t)−
ωavgt (mod 2π), a frequency-synchronized solution of (3)-
(4) is equivalent to an equilibrium of

0 = P̃i − Pe,i(θ) , i ∈ VL , (6a)

Diθ̇i = P̃i − Pe,i(θ) , i ∈ VI , (6b)

where P̃i = P ∗i for i ∈ VL, and P̃i = P ∗i − Diωavg for
i ∈ VI . Using the incidence matrix B of the graph describing
the circuit, equilibria of (6a)-(6b) satisfy [10]

P̃ = BA sin(BT θ∗) , (7)

where A=diag({EiEj |Yij |}{i,j}∈E) and P̃ =(P̃1, . . . , P̃n).
For acyclic networks, the following result gives a necessary
and sufficient condition for the existence of an exponentially
stable equilibrium of (6a)-(6b), and hence a synchronized
solution of the closed-loop droop control system (3)-(4) [10,
Theorem 2].

Theorem 2.1: (Existence and Stability of Sync’d Solu-
tion). Consider the frequency-droop-controlled system (3)-
(4) without secondary-control input ui = 0 for all i ∈ VI
and defined on an acyclic network with node-edge incidence
matrix B. Let ξ ∈ R|E| be the unique vector of edge power
flows satisfying KCL, given by ξ = B†P̃ . The following two
statements are equivalent:

(i) Synchronization: There exists an arc length γ ∈
[0, π/2[ such that the closed-loop system (3)-(4) pos-
sesses a locally exponentially stable and unique† syn-
chronized solution t 7→ θ∗(t) ∈ ∆G(γ) for all t ≥ 0;

(ii) Flow Feasibility: The power flow is feasible, i.e.,

Γ , ‖A−1ξ‖∞ < 1. (8)

†Modulo the rotational symmetry inherent in the model.



If the equivalent statements (i) and (ii) hold true, then
the quantities Γ ∈ [0, 1[ and γ ∈ [0, π/2[ are related
uniquely via Γ = sin(γ), the synchronized solution satisfies
θ∗(t) = θ0 + (ωsynct1n) (mod 2π) for some θ0 ∈ ∆G(γ),
where ωsync = ωavg, and the synchronized angular differences
satisfy sin(BT θ∗) = Aξ.

C. Distributed-Averaging PI-control by Simpson-Porco et al.
From Theorem 2.1, the droop controller (4) assures that the

closed-loop system (3)-(4) without secondary-control input
synchronizes to a constant frequency ωsync, given by the
scaled power imbalance (5). The purpose of the secondary-
control input ui in (4) is to enforce ωavg = 0. That is,
the network frequency is maintained at the nominal value.
Equivalently, the secondary-control input needs to transform
the primary-controlled system (3)-(4) into the equivalent
system (6a)-(6b) in a rotating frame.

Together with the primary proportional droop controller
(4), the following distributed-averaging proportional-integral
(DAPI) controller has been proposed by the authors in [10]:

ui = −pi , kiṗi = Diθ̇i −
∑
j∈VI

Lc,ij

(
pi
Di
− pj
Dj

)
. (9)

Here, Lc is the Laplacian matrix of a connected communi-
cation graph between inverters, pi ∈ R is an auxiliary power
variable and ki > 0 is a gain, for each i ∈ VI . The resulting
closed-loop system is then given by

0 = P ∗i − Pe,i(θ) , i ∈ VL , (10a)

Diθ̇i = P ∗i − pi − Pe,i(θ) , i ∈ VI , (10b)

kiṗi = Diθ̇i −
∑
j∈VI

Lc,ij

(
pi
Di
− pj
Dj

)
, i ∈ VI . (10c)

The following result summarizes the stability of the closed-
loop system (10) for an acyclic network [10, Theorem 8].

Theorem 2.2: (Stability of DAPI-Controlled Network).
Consider an acyclic network of droop-controlled inverters
and loads in which the inverters can communicate through
the weighted graph Gc, as described by the closed-loop
system (10) with parameters ki > 0, P ∗i ∈ [0, P i], and
Di > 0 for i ∈ VI , and connected communication Laplacian
Lc ∈ RnI×nI . The following two statements are equivalent:

(i) Stability of Droop Controller: The droop control
stability condition (8) holds;

(ii) Stability of DAPI Controller: There exists an arc
length γ ∈ [0, π/2[ such that the system (10) possesses
a locally exponentially stable and unique† equilibrium(
θ∗, p∗

)
∈ ∆G(γ)× RnI .

If the equivalent statements (i) and (ii) hold true, then the
unique equilibrium is given as in Theorem 2.1 (ii), along with
p∗i = Diωavg for i ∈ VI . Moreover, if the droop coefficients
are selected proportionally, then the DAPI controller (9)
preserves the proportional power sharing property of the
primary droop controller.

In [10], we also show that the DAPI controller (9) is robust
to unmodeled voltage dynamics.

†Modulo the rotational symmetry inherent in the model.

III. POWER FLOW DESIGN USING DROOP COEFFICIENTS

The droop coefficients are conventionally selected in
proportion to the power ratings P i of the inverters, with
this choice leading to a proportional sharing power among
the inverters [10]. This choice of parameters eliminates all
remaining degrees of freedom in the controller, as all droop
coefficients are then determined up to an arbitrary positive
constant.

In this section we focus on primary control and address the
following “controllability” type question: how much can one
influence the steady-state power injections of the inverters
(or the steady-state branch flows of the network) through the
choice of droop coefficients? In particular, given a vector
of desired steady-state power injections P set

I ∈ RnI for the
inverters, when and how can one select the droop coefficients
to generate these injections in steady state? We require the
following standing assumption.

Assumption 1: (Actuation Assumptions).
(i) Nominal Injection: P ∗i = P i for each i ∈ VI .

(ii) Serviceable Load: −∑j∈VI P j <
∑
j∈VL P

∗
j ≤ 0;

From (5), Assumption 1 (i)-(ii) together guarantee that
ωavg 6= 0 (specifically, that ωavg > 0), and hence that the
droop coefficients influence the steady-state inverter power
injections Pe,i = P ∗i −ωavgDi, i ∈ VI . One could formulate
alternate assumptions such that ωavg < 0, and all results
which follow would go through with minor modifications.

Definition 1: (Power Injection Setpoint). A vector
P set ∈ Rn is a power injection set-point if P set ∈ 1⊥n and
P set
i = P ∗i for i ∈ VL.

This is simply that a set-point is a point of power balance,
and that we have no say in the power demand at the loads.

Definition 2: (γ-Feasible Setpoint). Let P set =
(P ∗L, P

set
I )T be a power injection set-point, with ξset ∈ R|E|

being the associated branch flows ξset = B†P set, and let
γ ∈ [0, π/2[. The power injection set-point P set

(i) satisfies the nodal actuation constraint if P set
i < P i ,

i ∈ VI ;
(ii) is γ-feasible if it satisfies the nodal actuation constraint

and ‖A−1ξset‖∞ ≤ sin(γ).
The following result characterizes possible selections of
droop coefficients that lead to a desired set-point.

Theorem 3.1: (Power Injection Set-Point Design). Let
P ∗ ∈ Rn satisfy Assumption 1, let P set be a power injection
set-point, and let γ ∈ [0, π/2[. The following statements are
equivalent:

(i) Coefficient Selection: There exists a selection of
droop coefficients such that the steady-state power
injections satisfy Pe(θ

∗) = P set, with θ∗ ∈ ∆G(γ);
(ii) Set-Point Feasibility: P set is a γ-feasible power in-

jection set-point.
For any β > 0, the choice of droop coefficients

Di = β(P i − P set
i ) > 0 , i ∈ VI , (11)

leads to the desired property of the synchronized steady state.
Proof: (i)⇒(ii): Let {Di}i∈VI be an appropriate se-

lection of droop coefficients, satisfying Di > 0 for each



i ∈ VI . Since Pe ∈ 1⊥n , P set ∈ 1⊥n and hence P set is a
power injection set-point. We first show that P set satisfies
the nodal actuation constraint. In steady state, it holds for
each i ∈ VI that

Pe,i(θ) = P set
i = P i − ωavgDi.

Under Assumption 1, ωavg > 0, and hence P set
i − P ∗i < 0

for each i ∈ VI . Hence, P set satisfies the nodal actuation
constraint. Since θ∗ ∈ ∆G(γ), we have that ‖A−1ξset‖∞ ≤
sin(γ), and hence P set is γ-feasible.
(ii)⇒(i): Suppose now that P set is a γ-feasible power
injection set-point. Then for each i ∈ VI , P i > P set

i . For
β > 0, consider then the selection of droop coefficients
Di = β(P ∗i − P set

i ) > 0. For each i ∈ VI we calculate
that

Pe,i = P ∗i − ωavgDi = P ∗i −
1TnP

∗ · β(P ∗i − P set
i )

β1TnI
(P ∗I − P set

I )

= P ∗i −
(

1TnP
∗

1TnI
P ∗I − 1TnI

P set
I

)(
P ∗i − P set

i

)
= P ∗i −

(
1TnP

∗

1TnP
∗

)(
P ∗i − P set

i

)
= P set

i ,

where we have used the fact that 1TnI
P set
I = −1TnL

P ∗L. Since
Pe,i = P ∗i = P set

i for each i ∈ VL, we have that Pe =
P set. Since P set is γ-feasible, the steady state for the droop-
controlled network is well defined and locally exponentially
stable, and in particular θ∗ ∈ ∆G(γ).

Note that for parallel inverters, designing P set
I is equiva-

lent to designing the branch flows since ξset = B†P set =
P set
I . For general acyclic graphs, the mapping between

nodal power injections and branch flows is one-to-one. As
a consequence, the set of designable branch flows is exactly
the image under B† of the set of γ-feasible power injection
set-points, and no larger.

IV. EXTENSIONS OF SECONDARY CONTROL

A. Distributed-Averaging PI-control by Shafiee et al.
Another secondary distributed PI controller has been pre-

sented in [14]. The proposed secondary-control input ui(t)
to the dynamics (3)-(4) is given by an integral feedback‡ of
the weighted average frequency§ among the inverters:

ui(t) = −pi , kiṗi =

∑
j∈VI Dj θ̇j∑
j∈VI Dj

, (12)

Here, pi ∈ R is again an auxiliary power variable and
ki > 0 is a gain, for each i ∈ VI . By explicit numerical
counter-examples for non-symmetric setups of inverters (e.g.,

‡The controller proposed in [14] also contains a proportional feedback of
the average frequency. We found that such a proportional feedback destroys
the desired proportional power sharing, unless the gains are carefully tuned.
For these reasons and since the resulting closed loop is hardly amenable to
an analytic investigation, we omit the proportional feedback channel here.
§The controller in [14] contains a true arithmetic average with all Di = 1

in (12). Since the synchronization frequency (5) is obtained by a weighted
average, we found the choice (12) more appealing and intuitive. Simulation
studies suggest that any convex combination of the inverter frequencies
yields identical results.

non-identical inverters and non-uniform line admittances in
a parallel topology), it can be shown that the closed-loop
system (3)-(4) with (12) fails to achieve power sharing for
arbitrary values of ki > 0. Hence, the values of ki need to
be carefully chosen. In the following, we suggest the choice

ki = k/Di , i ∈ VI . (13)

where k > 0 is constant. That is, the integral channels have
the time-constants inverse to the proportional droop control
channels (4). In this case, the closed loop is given by

0 = P ∗i − Pe,i(θ) , i ∈ VL , (14a)

Diθ̇i = P ∗i − Pe,i(θ)− pi , i ∈ VI , (14b)

k
ṗi
Di

=

∑
j∈VI Dj θ̇j∑
j∈VI Dj

, i ∈ VI . (14c)

By changing coordinates qi = pi/Di − ωavg for i ∈ VI and

observing that kq̇i =
∑

j∈VI
Dj θ̇j∑

j∈VI
Dj

is identical for all i ∈ VI ,
we can rewrite the closed-loop equations (14) as

0 = P̃i − Pe,i(θ) , i ∈ VL , (15a)

Diθ̇i = P̃i − Pe,i(θ)−Diq , i ∈ VI , (15b)

kq̇ =

∑
j∈VI Dj θ̇j∑
j∈VI Dj

. (15c)

Notice that equation (15c) in the transformed system can be
implemented as a centralized integrator. For these reasons,
we refer to the controller (4), (12) with the choice of
gains (13) as the centralized-averaging proportional- integral
(CAPI) controller. This perspective is not only insightful
and shows the communication complexity of the CAPI
controller (12)-(13), but equations (15) are also convenient
for a stability analysis resulting in the following theorem.

Theorem 4.1: (Stability of CAPI-Controlled Network).
Consider an acyclic network of droop-controlled inverters
and loads in which all inverters can communicate and aver-
age their frequencies, as described by the closed-loop system
(14) with parameters k > 0, P ∗i ∈ [0, P i], and Di > 0 for
i ∈ VI . The following two statements are equivalent:

(i) Stability of Droop Controller: The droop control
stability condition (8) holds;

(ii) Stability of CAPI Controller: There exists an arc
length γ ∈ [0, π/2[ such that the system (14) possesses
a locally exponentially stable and unique† equilibrium(
θ∗, p∗

)
∈ ∆G(γ)× RnI .

If the equivalent statements (i) and (ii) hold true, then the
unique equilibrium is given as in Theorem 2.1 (ii), along with
p∗i = Diωavg for i ∈ VI . Moreover, if the droop coefficients
are selected proportionally, then the CAPI controller (12)-
(13) preserves the proportional power sharing property of
the primary droop controller (4).

Proof: We start by writing the closed loop (15) in
vector form analogous to [10]. Let DI = diag({Di}i∈VI ),
and let Dtot =

∑
i∈VI Di = 1TDI1. Let P̃ = (P̃TL , P̃

T
I )T ,

and accordingly let Pe(θ) = (Pe,L(θ)T , Pe,I(θ)
T )T , where

†Modulo the rotational symmetry inherent in the model.



Pe,I(θ) and Pe,L(θ) are vectors of power injections (2) at the
inverters VI and the loads VL. Let the angles be partitioned
accordingly as θ = (θL, θI). With this notation, the closed-
loop dynamics (15) read in vector form asI 0 0

0 DI 0
0 0 k ·Dtot


︸ ︷︷ ︸

,Q1

 0

θ̇I
q̇

 =

I 0 0
0 I DI1
0 1T Dtot

P̃L − Pe,L(θ)

P̃I − Pe,I(θ)
−q



=

I 0 0
0 DI 0
0 0 1


︸ ︷︷ ︸

,Q2

I 0 0
0 D−1I 1
0 1T Dtot


︸ ︷︷ ︸

,Q3

P̃L − Pe,L(θ)

P̃I − Pe,I(θ)
−q


︸ ︷︷ ︸

,x

. (16)

The matrices Q1 and Q2 are nonsingular. The matrix Q3 is
singular with ker(Q3) = [0 (DI1)T − 1]T corresponding
to decreasing the secondary variable q and increasing all
inverter flows accordingly. On the other hand, we have that
[1T 1T 0]x = 0 due to balanced injections 1T P̃ = 0
and symmetry of the flow 1TPe(θ) = 0. We conclude that
x 6∈ ker(Q3). Thus, possible equilibria of (16) are given by
x = 0, that is, the set of desired equilibria θ∗ from (7) and
q∗ = 0. Equivalently, from Theorem 2.1, the equation x = 0
is solvable for a unique (modulo rotational symmetry) value
θ∗ ∈ ∆G(γ) if and only if the parametric condition (8) holds.

To establish stability of the equilibrium (θ∗, 0), we follow
the proof strategy of [10, Theorem 8]. Recall that the negative
load flow Jacobian −∂/∂θ (P̃ − Pe(θ)) is given by

L(θ∗) = Bdiag({EiEj |Yij | cos(θ∗i − θ∗j )}{i,j}∈E)BT .
For θ∗ ∈ ∆G(γ), γ ∈ [0, π/2[, we have cos(θ∗i − θ∗j ) ≥
cos(γ) > 0. Consequently, L(θ∗) is a positive semidefinite
Laplacian matrix, see [18, Lemma 2]. Thus, the linearization
of the DAE (16) about the regular fixed point (θ∗, 0) and
elimination of the algebraic equations results in the Jacobian

J(θ∗) =

[
I 0
0 (k ·Dtot)

−1

]
︸ ︷︷ ︸

,Q̃1

[
D−1I 1
1T Dtot

]
︸ ︷︷ ︸

,Q̃2

[
−Lred(θ∗) 0

0 −1

]
︸ ︷︷ ︸

,X

,

where Lred(θ∗) is the Schur complement of L(θ∗) with
respect to the entries corresponding to the loads VI . It is
known that Lred(θ∗) is again a positive semidefinite Lapla-
cian matrix [19, Lemma II.1]. The matrix Q̃1 is diagonal
and positive definite, and Q̃2 is positive semidefinite with
ker(Q̃2) = [(DI1)T −1]T . We will proceed via a continuity-
type argument. Consider momentarily the perturbed Jacobian
Jε(θ

∗), where Q̃2 is replaced by the positive definite matrix
Q̃2,ε =

[
D−1

I 1

1T Dtot+ε

]
, where ε > 0. The eigenvalues of Jε(θ∗)

are obtained from Q̃1Q̃2,εXv = λv for some (λ, v) ∈
C× CnI+1. Equivalently, let y = Q̃−11 v, then we obtain

− Q̃2,ε · blkdiag(Lred , 1/(k ·Dtot)) y = λy

By applying the Courant-Fischer Theorem to this generalized
eigenvalue problem, we conclude, for ε > 0 and modulo
rotational symmetry, all eigenvalues λ are real and negative.

Now, consider again the unperturbed case with ε = 0.
Recall that ker(Q̃2) = [(DI1)T −1]T , and the image of the
matrix blkdiag(Lred , 1/(k ·Dtot)) excludes span([1T 0]T ).
It follows that Q̃2,ε · blkdiag(Lred , 1/(k ·Dtot)) y is zero if
only if y ∈ span([1T 0]T ) corresponding to the rotational
symmetry. We conclude that the number of negative real
eigenvalues of Jε(θ∗) does not change as ε↘ 0. Hence, the
equilibrium equilibrium (θ∗, 0) of the DAE (16) is (again,
modulo rotational symmetry) locally exponentially stable.

B. Extension of secondary control to lossy networks

We now study the operation of the DAPI controller when
the network contains transfer conductances – that is, unlike
in Section II, the transmission lines are no longer assumed
to be purely inductive. The admittance matrix Y ∈ Cn×n
is now given by Y = Gij +

√
−1Tij , where G ∈ Rn×n is

the conductance matrix and T ∈ Rn×n is the susceptance
matrix. The conductances are responsible for power losses
in the network. The active electrical power Pe,i ∈ R injected
into the network at node i ∈ {1, . . . , n} is then given by [17]

Pe,i(θ) =
∑n

j=1
EiEj |Yij | sin(θi − θj − φij), (17)

where |Yij |2 = G2
ij + T 2

ij and φij , −arctan(Gij/Tij). In
vector notation, the frequency droop controller is then

Dθ̇ = P ∗ − Pe(θ) , (18)

where D = diag(0|VL|, {Di}i∈VI ). The question of exis-
tence and uniqueness of stable equilibria for the system (17),
(18) is considerably more challenging than in the lossless
case. Due to the lack of simple and sharp existence and
uniqueness conditions for lossy networks, we make use of
assumptions concerning the primary-controlled system (17),
(18) and use these to study the secondary-controlled systems,
DAPI control (10), (17) and CAPI control (14), (17). The
first result shows that both controllers succeed in eliminating
deviations from the rated frequency, assuming they lead to a
synchronized steady state.

Lemma 4.2: (Synchronization Frequency is Zero). If the
frequencies of the inverters in the DAPI-controlled system
(10), (17) and in the CAPI-controlled system (14), (17) are
synchronized, and if the auxiliary power variables p are in
steady state, then the synchronization frequency is zero.

Proof: Assume there exist two solutions (θ̄, p̄) ∈
∆G(γ)×RnI and (θ̃, p̃) ∈ ∆G(γ)×R for the systems (10),
(17) and (14), (17), respectively, such that ˙̄θ = ω̄sync1 ∈
RnI , p̄ = const1, ˙̃

θ = ω̃sync1 ∈ RnI , and p̃ = const1 .
By summing up the equations (10c) in steady state, we

get 0 =
∑
i∈VI ki

˙̄pi =
∑
i∈VI Diω̄sync. Since Di > 0 for all

i ∈ VI , ω̄sync is zero .
For the CAPI, we obtain in steady state 0 = ki ˙̃pi =∑
j∈VI

Dj∑
j∈VI

Dj
ω̃sync for i ∈ VI . Thus, ω̃sync is zero.

We will now characterize possible solutions of the DAPI-
controlled system (10), (17) and the CAPI-controlled system
(14), (17). First, due to the lack of general parametric
conditions, we assume the existence of a solution to the
frequency-droop-controlled system (17), (18).



Note that in the following results, all uniqueness properties
are modulo the rotational symmetry inherent in the model.

Assumption 2: (Existence and uniqueness for the
frequency-droop control system with losses). There exists
an arc length γ ∈ [0, π/2[ such that the closed-loop system
(18) possesses a unique and frequency-synchronized solution
t 7→ θ∗(t) = θ∗0 +

(
ω∗synct1n

)
(mod 2π) ∈ ∆G(γ), with

ω∗sync ∈ R for all t ≥ 0. �
By summing over the equations (18) in steady state, we

obtain the corresponding unique synchronization frequency

ω∗sync =

∑
i∈V P

∗
i −

∑
i∈V Pe,i(θ

∗)∑
i∈VI Di

.

If Assumption 2 holds, then θ∗ is the unique solution in
∆G(γ) of the algebraic equation

P ∗ − Pe(θ)−D
∑
i∈V P

∗
i −

∑
i∈V Pe,i(θ)∑

i∈VI Di
1 = 0 (19)

Theorem 4.3: (Existence and Uniqueness of Sync’d So-
lutions for DAPI-/CAPI- Controlled systems in Lossy
Networks). If Assumption 2 holds, then the unique synchro-
nized solutions for the DAPI-controlled system (10), (17) and
the CAPI-controlled system (14), (17) are given by the pair
(θ, p) = (θ∗, DIω

∗
sync1).

Proof: We have proven in Lemma 4.2 that the only
possible synchronization frequency is 0. Therefore, we only
look for equilibria of the systems (10), (17) and (14), (17).
First consider the DAPI controller (10), (17). The equilibria
of system (10), (17) have to satisfy the equations

0 = P ∗ − Pe(θ)−
[
0|VL|
p

]
, (20a)

0 = −LcD−1I p. (20b)

In order to satisfy (20b), D−1I p must be in the kernel
of Lc and thus have the form c1 with c ∈ R. Therefore,
every p must have the form cDI1. Suppose that (θ, p) =
(θ̄, ω̄syncDI1) ∈ ∆G(γ) × RnI satisfies equations (20). We
have

0 = P ∗ − Pe(θ̄)− ω̄syncD1. (21)

By summing over these equations we get

ω̄sync =

∑
i∈V P

∗ −∑i∈V Pe(θ̄)∑
i∈V Di

. (22)

By inserting (22) in equation (21), we obtain

0 = P ∗ − Pe(θ̄)−D
∑
i∈V P

∗ −∑i∈V Pe(θ̄)∑
i∈V Di

1

which is simply (19). Assumption 2 states that θ∗ is the only
solution in ∆G(γ) of (19). Therefore, θ̄ = θ∗ and ω̄sync =
ω∗sync. It can be verified that the pair (θ∗, ω∗syncDI1) is an
actual equilibrium of (20).

Now, consider the CAPI controller in its transformed
coordinates (15), (17). The equilibria of (15), (17) satisfy

0 = P ∗ −Dω∗sync1− Pe(θ)−Dq1. (23)

Suppose that (θ, q) = (θ̃, ω̃sync) ∈ ∆G(γ) × R satisfies
equations (23). Thus, this pair satisfies the equations

0 = P ∗ − Pe(θ̃)− (ω̃sync + ω∗sync)D1. (24)

Note that (24) is the same as (21). By analogous reasoning,
we obtain that θ̃ = θ and ω̃sync + ω∗sync = ω∗sync. A
transformation back to the original coordinates leads to the
pair (θ∗, DIω

∗
sync1) as the unique equilibrium of (23).

Having established the existence of equilibria for the
secondary-controlled systems, we now study their stability
properties. Simulations of a network of parallel inverters
suggest that exponential stability is maintained independent
of the conductance magnitudes. While it is difficult to find
a general analytic proof for the stability of the equilibria
independent of the conductance magnitudes, we can extend
the stability from the lossless case using a continuity-type
argument for the eigenvalues of the Jacobian.

Theorem 4.4: (Stability of Equilibria for DAPI/CAPI
Controllers in Lossy Networks). Let Assumption 2 hold
and let (θ∗, DIω

∗
sync1) ∈ ∆̄G(γ) × RnI be the unique

synchronized solution of the DAPI-controlled system (10),
(17) and of the CAPI-controlled system (14), (17) with
γ ∈ [0, π/2[. There exists a ε > 0 such that if ‖G‖ < ε, the
equilibrium given by (θ∗, DIω

∗
sync1) is locally exponentially

stable for both systems (10), (17) and (14), (17).
Proof: The lossy DAPI system (10), (17) is a smooth

perturbation of the nominal lossless DAPI system (10), (2).
Recall that the eigenvalues of the Jacobian, resulting from
the linearization of DAE (10) around (θ∗, DIω

∗
sync1) and

the elimination of the algebraic equations, are continuous
function of the conductances Gij . Notice that conductances
do not affect the rotational symmetry, and the Jacobian
maintains its zero eigenvalue and associated eigenvector.
Since the remaining eigenvalues of the nominal system are
in the open left half plane, then – due to continuity and for
sufficiently small conductances – the nonzero eigenvalues of
the lossy system are also in the open left half plane.

It turns out that the proportional power sharing properties
of the closed loop are maintained in the presence of losses
for both the primary- and the secondary-controlled systems.

Theorem 4.5: (Power Sharing in Lossy Networks). Let
Assumption 2 hold and consider a network of droop-
controlled inverters and loads as described by (18).

(i) If we select the droop coefficients and the set points
of the inverters proportionally, meaning that the ratios
Di/P

∗
i and P ∗i /P i are constant for all i ∈ V , then the

inverters share the load PL proportionally according
to their power ratings, that is, Pe,i/P i = Pe,j/P j , for
each i ∈ V .

(ii) The secondary controllers DAPI and CAPI, proposed
in (9) and (12), respectively, preserve power sharing.

Proof: The proof for partial DAPI control (resp. partial
CAPI control) is identical to the proof in the lossless case
of [10, Theorem 7] (resp. Theorem 4.1).

C. Partial DAPI/CAPI Control
The DAPI controller (9) requires a connected communi-

cation network among the inverters. Due to extreme distance



Fig. 1. Schematic of partial secondary control. The red dotted line
represents a communication link.

or other barriers, it may be desirable to have only a subset of
inverters within the network assist in regulating the network
frequency (see Figure 1).

To investigate this scenario, we partition the set of inverters
as VIP ∪ VIS = VI , where the action of the VIP inverters
is restricted to primary droop control, and the VIS invert-
ers perform the secondary DAPI/CAPI control. Under this
partitioning of nodes, the inverter control equations become

Diθ̇i = P ∗i − Pe,i(θ) , i ∈ VIP , (25a)

Diθ̇i = P ∗i − Pe,i(θ) + ui(t) , i ∈ VIS , (25b)

The scaled power imbalance is now defined by

ωpavg ,
∑

j∈V
P ∗i
/(∑

j∈VIS
Di

)
(26)

Theorem 4.6: (Stability of Partial secondary-controlled
Network). Consider an acyclic network of droop-controlled
inverters and loads, as described by the closed-loop system
(3), (25), with parameters P ∗i ∈ [0, P i] and Di > 0 for
i ∈ VI . The secondary-control input ui is defined by either
(9) (DAPI) or (12) (CAPI) for all i ∈ VIS with ki > 0. The
following two statements are equivalent:

(i) Stability of Droop Controller: The droop control
stability condition (8) holds;

(ii) Stability of the Secondary Controllers: There exists
an arc length γ ∈ [0, π/2[ such that the two systems
(3), (25), (9) and (3), (25), (12) possess the same
locally exponentially stable and unique equilibrium(
θ∗, p∗

)
∈ ∆G(γ)× R|VIS |.

If the equivalent statements (i) and (ii) hold true, then the
unique equilibrium is given as in Theorem 2.1 (ii), with
ωavg given by (26) along with p∗i = Diωpavg for i ∈ VIS .
The synchronized solution satisfies θ∗(t) = θ0 + (ωsynct1n)
(mod 2π) for some θ0 ∈ ∆G(γ), where ωsync = ωavg,

Proof: The proof for partial DAPI control (resp. partial
CAPI control) is analogous to the proof of [10, Theorem 8]
(resp. Theorem 4.1), while carefully accounting for the
partition VI = VIP ∪ VIS in the Jacobian matrices.

Theorem 4.6 shows that partial secondary control strate-
gies are able to successfully stabilize the network. We
now investigate the power sharing properties of the partial

DAPI/CAPI control schemes. The steady-state power injec-
tion at the equilibrium (θ∗, p∗) is

Pe,i(θ
∗) = P ∗i , i ∈ VIP ∪ VL ,

Pe,i(θ
∗) = P ∗i −Diωsync, i ∈ VIS .

From the first of these equations, we see that inverters in
VIP are effectively negative loads. Let ṼL = VIP ∪ VL be
the set of loads in steady state and ṼI = VIS be the set of
inverters. Applying [10, Theorem 7] to the modified sets ṼI
and ṼL gives the following result.

Theorem 4.7: (Power Flow Constraints and Power
Sharing). Consider the same setup as in Theorem 4.6, and
define the total load by PL ,

∑
i∈VL P

∗
i . If the droop

coefficients and the set points of the inverters that perform
secondary control are selected proportionally, meaning that
the ratios Di/P

∗
i and P ∗i /P i are constant for all i ∈ VIS ,

then the following two statements are equivalent:
(i) Injection Constraints: 0 ≤ Pe,i(θ∗) ≤ P i ∀i ∈ VI .

(ii) Load and Set Point Constraints:∑
j∈VIP

P ∗j ≤ −PL ≤
∑
j∈VIP

P ∗j +
∑
j∈VIS

P j ,

0 ≤ P ∗i ≤ P̄i ∀i ∈ VIP .
Moreover, the inverters performing secondary control share
the load residual PL−

∑
i∈VIP

P ∗i proportionally according
to their power ratings, i.e., Pe,i/P i=Pe,j/P j for all i ∈ VIS .

V. SIMULATION STUDY

We illustrate a subset of our results by means of a
simulation where two inverters operating in parallel supply
a variable load. Since the DAPI controller (9) is thoroughly
covered in [10], we show the robustness and transient perfor-
mance of the CAPI controller (12)-(13) originally proposed
in [14]. The voltage magnitude at each inverter is controlled
via the quadratic voltage-droop method [20]

τiĖi = −CiEi(Ei − E∗i )−Qi, i ∈ VI , , i ∈ {1, 2},
where E∗i > 0 is the nominal voltage magnitude, Ci > 0
(resp. τi > 0) is the proportional (resp. integral) quadratic
voltage-droop coefficient, and Qe,i ∈ R is the reactive power
injection [17]. The simulation parameters are reported in
Table I, and a time-domain simulation is shown in Figure 2.

TABLE I
PARAMETER VALUES FOR SIMULATION IN FIGURE 2.

Parameter Symbol Value
Nom. Frequency ω∗/2π 60 Hz
Nom. Voltages E∗i [120, 122] V
Output/Line Induc. Li [0.7, 0.5] mH
Output/Line Resist. Ri [0.14, 0.1] Ω
Inv. Ratings (P ) P ∗i = P i [2, 3] kW
Load (P ) P ∗0 (t) P ∗0 ∈ {−2.5,−5}kW
Load (Q) Q∗0(t) Q∗0 ∈ {−.5,−1}kvar
ω–Droop Coeff. Di [4, 6] ×10−4 W · s
Sec. Droop Coeff. ki 10−9 s
Quadratic E–Droop Coeff. Ci [1, 1.5] 10−3 s
Quadratic E–Droop Int. Coeff. τi [5, 5] s

Observe that the CAPI controlled system (14) is robust
and achieves an acceptable transient performance in presence
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Fig. 2. CAPI-controlled closed loop (14) for two inverters supplying a load. The solid (blue) plots correspond to inverter 1, and the dashed (red) plots
correspond to inverter 2. The simulation is initialized at a non-stationary value, and the active and reactive power demand at the load doubles at t = 1s
and then returns to its original vaue at t = 2s.

of lossy lines and unmodeled reactive power and voltage
dynamics. Note that the inverse droop coefficients Di must
be chosen extremely small∗ to achieve an acceptable perfor-
mance for the frequency dynamics. However, this choice also
results in an overly aggressive primary droop controller (4).
If the coefficients Di are selected within a more reasonable
range, then the CAPI integral control is slow and generally
ineffective. Whereas our choice of coefficients in Table I is
certainly not optimal, it illustrates a disadvantage of CAPI
controller (12)-(13) over the DAPI controller (9) (besides
communication complexity): the time constants of the pro-
portional feedback (4) and the integral feedback (12) are
coupled through (13) and cannot be chosen independently if
one wishes to achieve power sharing.

VI. CONCLUSIONS

In this work we have presented several extensions of
primary and secondary control in microgrids. In particular, In
Subsection IV-B we have shown that if the primary controller
succeeds in stabilizing the network, then the DAPI/CAPI
secondary controllers effectively regulate the frequency, even
in the presence of losses. Removing the assumption on small
conductances and subsequently proving exponential stability
is a challenging and open problem.
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