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We consider the problem of optimal coverage with area-
constraints in a mobile multi-agent system. For a planar en-
vironment with an associated density function, this problem
is equivalent to dividing the environment into optimal subre-
gions such that each agent is responsible for the coverage of
its own region. In this paper, we design a continuous-time
distributed policy which allows a team of agents to achieve
a convex area-constrained partition of a convex workspace.
Our work is related to the classic Lloyd algorithm, and
makes use of generalized Voronoi diagrams. We also discuss
practical implementation for real mobile networks. Simula-
tion methods are presented and discussed.

1 Introduction
Problem description and motivation The applications of
multi-agent systems to accomplish complex tasks in a com-
plex environment are vast. They include but are not lim-
ited to tasks such as search and rescue operations, ad-hoc
mobile wireless networks, warehouse management, and en-
vironmental monitoring [1–4]. When working with large
robotic networks, it is often desired to partition the envi-
ronment amongst all agents in an optimal way so that the
workload can be equalized across all agents. For example,
in ocean surveillance the cost of travel is large so it is de-
sirable to survey one contiguous region as opposed to trav-
eling around multiple ones. A partitioning policy is one
in which an environment Q ⊂ Rd is partitioned into n dis-
joint subregions Wi ⊂ Q, i ∈ {1, . . . ,n} whose union is Q.
Given some measure φ, the partitioning policy is equitable if
φ(Wi) = φ(Wj) for all i 6= j. Placement of agents within such
regions is also of importance. In the case of surveillance or
warehouse management, it is desirable to be at the center of
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your region so tasks are more easily serviced. Placing agents
optimally and defining optimal regions simultaneously can
be complicated as the region of an agent and its position are
related to one another. We provide methods to accomplish
this simultaneous operation using generalized Voronoi parti-
tions.

Literature review Partitioning and coverage control is dis-
cussed in detail in [5] along with the application of mul-
ticenter functions to robotic networks. Results on specific
manifestations of generalized Voronoi partitions and parti-
tioning can be found in [6]. Results on the existence of area-
constrained power diagrams along with a method to deter-
mine them are presented in [7]. More detailed results on exis-
tence of generalized Voronoi partitions for arbitrary area con-
straints are presented in [8]. Linear programming is used to
handle generalized Voronoi partitions in [9] for fixed agents,
showing that generalized Voronoi partitions are optimal for a
certain class of multicenter functions. Similar results are ob-
tained in [8], together with a discrete-time algorithm to solve
the problem of optimal deployment of agents, while satisfy-
ing constraints on the areas.

Contributions The contributions of this work are sev-
eral. First, we design a provably correct, spatially-distributed
continuous-time algorithm to compute area-constrained gen-
eralized Voronoi partitions of a convex environment. Our
approach improves upon the work done in [7] for power dia-
grams both in generality and in numerical stability. Second,
we build on work in [8], by introducing a continuous-time
spatially-distributed algorithm to compute centroidal area-
constrained generalized Voronoi partitions of a convex en-
vironment. Although an approximate method is proposed
in [7] to achieve this for power diagrams, here we intro-



duce a simpler generalized method which bridges the gap
between [7] and [8] in that it is the continuous-time ana-
logue to [8]. More precisely, the continuous-time algo-
rithm presented in this paper and the discrete-time algorithm
in [8] both converge to the set of centroidal area-constrained
Voronoi partitions, which shall be formally defined below.
Our proposed continuous-time algorithms are not only of
academic interest in their own right, but also fill applica-
tion gaps where a discrete-time algorithm may fall short.
One such application is in mobile robotic networks, when
there is a need to have continuous adaptive coverage and
the understanding of the region’s underlying density distri-
bution changes frequently. For such cases, in the discrete
time setting it is possible that, before the agents arrive at
their optimal configuration, the optimal configuration has
changed due to a new understanding of the density distri-
bution. Moreover, the path that is taken may cause coverage
cost to increase temporarily, since only the configuration is
optimal not the path taken. In the continuous-time setting,
the agents are always moving in a path that improves their
coverage cost, and a change in the underlying distribution
simply means a correction in their path. Third, we introduce
a practical method for implementation of our algorithms, and
show their performance in simulation. Finally, as theoretical
contributions, we prove that the set of mappings that gen-
erate area-constrained partitions are unique up to translation
and we compute several novel partial derivatives of relevant
operators. Specifically, we generalize a classic result about
multi-center optimization: the partial derivative of the mul-
ticenter function evaluated at area-constrained Voronoi par-
titions has the same direction as the vector connecting the
robot locations to the centroids of their regions.

A preliminary short version of this article is to ap-
pear at the 2013 DSCC conference as [10] and is avail-
able at http://motion.me.ucsb.edu. In compari-
son, this article contains various addenda and updates not
found in [10]. First, we present detailed proofs of theorems
that were presented in [10]. Second, we introduce a new and
better conditioned algorithm to determine area-constrained
partitions. Third, a new policy to determine centroidal area-
constrained partitions is presented. Finally, simulation re-
sults were extended and updated to demonstrate the perfor-
mance of the new policies not present in [10].

Paper organization The paper is organized as follows. In
section 2 we setup preliminary notation, introduce the con-
cept of generalized Voronoi partitions and present our prob-
lem in technical detail. In section 3 we compute some useful
properties of the objective functions of interest. In section 4
we state existence properties of area-constrained generalized
Voronoi partitions and present algorithms to reach the set of
area-constrained Voronoi partitions. In section 5 we state the
main result of our paper on centroidal equitable generalized
Voronoi partitions. In section 7 we discuss the application of
our algorithm to real systems and provide numerical simu-
lations. In the final section we present our conclusions and
future directions for research.

2 Preliminaries and problem statement
Let us have a convex compact set Q⊂R2, endowed with

a density function φ : Q→R≥0, so that the measure (or area)
of a region A⊂ Q is defined as

φ(A) =
∫

A
φ(q)dq,

provided the set A is measurable in the sense of Lebesgue.
Without loss of generality, we assume that Q has unit mea-
sure, that is, φ(Q) =

∫
Q φ(q)dq = 1. Let p1, . . . , pn denote

the positions of n robotic agents in Q. We assume that each
agent is associated with a (measurable) sub-region Wi ⊂ Q,
where {Wi}n

i=1 partitions Q into sets whose interiors are pair-
wise disjoint. A vector can be defined to collect the measures
of the regions of a partition, as φ(W ) = [φ(W1), . . . ,φ(Wn)]

T .
By our assumptions on Q, we have ∑

n
i=1 φ(Wi) = 1. Let

f : R→R be a strictly convex, increasing, and differentiable
function. Then, given n locations p = (p1, . . . , pn) and a par-
tition W = (W1, . . . ,Wn), the multicenter function is defined
by

H (p,W ) =
n

∑
i=1

∫
Wi

f (‖q− pi‖)φ(q)dq.

Our goal in this work is minimizing the function H under
certain constraints, namely, that the areas of each region are
fixed. Specifically, we consider constants ci > 0 for each
agent i ∈ {1, . . . ,n} such that ∑

n
i=1 ci = 1 and we require

φ(Wi) = ci for every i. For brevity, we denote S = {c ∈
Rn
>0 | ∑

n
i=1 ci = 1}.

Problem 1 (Multicenter optimization with area constraint).
Given c ∈ S, determine the locations of the agents p =
(p1, . . . , pn) and the partition W = (W1, . . . ,Wn) solving:

min
p,W

H (p,W )

subject to φ(Wi) = ci, i ∈ {1, . . . ,n−1}.
(1)

Note that the nth constraint φ(Wn) = cn is omitted because it
is redundant.

In order to solve this problem, we introduce a use-
ful partitioning scheme. To begin, we define D := {p ∈
Qn | pi 6= p j, i 6= j} as the set of disjoint positions in Q.
Then, given the function f as above, n distinct locations
p ∈ D , and n scalar weights w = (w1, . . . ,wn), the gener-
alized Voronoi partition of Q is the collection of subsets
V f (p,w) = (V f

1 (p,w), . . . ,V f
n (p,w)) of Q, defined by

V f
i (p,w) = {q ∈ Q | f (‖q− pi‖)−wi

≤ f (‖q− p j‖)−w j, ∀ j 6= i}. (2)

Generalized Voronoi partitions enjoy several important prop-
erties. First, any generalized Voronoi partition of Q is in fact



a partition of Q. Second, the generalized partition gener-
ated by (p,w) is equal to the generalized partition generated
by (p,w+α1n), for any α ∈ R (Here, 1n is the vector in
Rn whose entries are all equal to 1). Finally, as opposed to
Voronoi partitions, for generalized Voronoi partitions we do
not require that pi ∈ V f

i (p,w). Thus, agents need not be lo-
cated in their partition. From here onward, we will refer to
generalized Voronoi partitions simply as Voronoi partitions.
Two important special cases are described below.

Example 1 (Standard Voronoi Diagram). Given p ∈ D and
n scalar weights w = (w1, . . . ,wn), the Standard Voronoi Di-
agram of Q is given by (2) with w = 0. The partition is given
by

V SD
i (p,w) = {q ∈ Q | f (‖q− pi‖)≤ f (‖q− p j‖)},

regardless of the choice of f (x). We call each V SD
i a standard

Voronoi region. These regions are convex and have bound-
aries that are given by straight line segments; moreover, ev-
ery generator pi is contained in its respective region V SD

i .

Example 2 (Power Diagrams). Given p ∈ D and n scalar
weights w = (w1, . . . ,wn), the power diagram of Q is given
by (2) with f (x) = x2. The partition is given by

V PD
i (p,w) = {q ∈ Q | ‖q− pi‖2−wi ≤ ‖q− p j‖2−w j},

and we call each Voronoi region V PD
i a power cell. Note that

Standard Voronoi Diagrams are a special case of Power Dia-
grams, since V PD

i (p,0) =V SD(p). These regions are convex
and their boundaries that are line segments; however, it is
possible that the generators pi are not contained by their re-
spective power cells V PD

i .

We now define the dual graph of a partition {Wi}n
i=1,

which will be useful later: the node set is {1, . . . ,n}, and
there exists an edge {i, j} if the boundary between agents i
and j, denoted ∆i j, has positive measure. In that case, we say
that j is a neighbor of i and we write j ∈ Ni. The dual graph
of the standard Voronoi Partition is known to be the classic
Dirichlet triangulation, as illustrated in Figure 1.

Before we are ready to define a second problem of inter-
est, we first introduce a useful definition. Given n distinct lo-
cations p = (p1, . . . , pn), the set of weights w = (w1, . . . ,wn)
such that every partition has non-zero measure is defined
by U = {w ∈ Rn | φ(V f

i (p,w)) > 0 ∀i}. Since V f (p,w) =
V f (p,w + α1n) for every scalar α, this equivalence rela-
tion naturally defines equivalence classes in U : with a slight
abuse of notation, in what follows we sometimes refer to
such classes as the elements of U . The following problem
is a simplified version of Problem 1.

Problem 2 (Multicenter Voronoi partition optimization with
area constraints). Given c∈ S, determine the locations of the

Fig. 1. The image on the left is the Standard Voronoi Partition gen-
erated by nodes A through E . The image on the right shows the dual
graph for this partition.

agents p ∈D and weights w ∈U solving:

min
p,w

H (p,V f (p,w))

subject to φ(V f
i (p,w)) = ci, i ∈ {1, . . . ,n−1}.

As a preliminary step, we should make sure that this
problem has feasible solutions: this fact is shown in Sec-
tion 4, which also provides a method to find a set of weights
in U for every set of locations. Problems 1 and 2 are known
to be equivalent in the following sense.

Proposition 1 (Proposition V.1 in [8]). Let p ∈ Qn be the
agent locations and w ∈U a weight assignment which satis-
fies the area constraint. Then, the Voronoi partition V f (p,w)
optimizes H (p,W ) among all partitions satisfying the area
constraint.

In order to derive a useful consequence of this fact, we
consider the simpler case when there is only one agent in Q:
then, the multicenter function becomes

p 7→H1
(

p,Q
)

:=
∫

Q
f (‖q− p‖)φ(q)dq. (3)

Since f is strictly convex, H1 is too, and the following holds:
If Q is convex, then there is a unique minimizer of (3), which
we denote by Ce(Q). Moreover, we have that ∂H1(p,Q)

∂p =

0 at p = Ce(Q), where ∂H1(p,Q)
∂p =

∫
Q

∂

∂p f (‖q− p‖)φ(q)dq
from [5]. The Voronoi partition V f (p,w) generated by (p,w)
is said to be centroidal if

Ce[V f
i (p,w)] = pi,

for all i ∈ {1, . . . ,n}. This notation allows us to state the fol-
lowing fact [8]: for every solution (p∗,W ∗) of Problem 1,
there exists a weight assignment w∗ ∈ U such that W ∗ =
V f (p∗,w∗) and p∗i = Ce(W ∗i ) for all i ∈ {1, . . . ,n}. Equiv-
alently, the solutions to Problem 1 are centroidal Voronoi
partitions whose regions have the prescribed areas.



In the rest of this paper, we will go beyond this ab-
stract characterization of the optimal solutions and give an
optimization algorithm which is amenable to practical im-
plementation.

3 Relevant partial derivatives
This section is devoted to compute relevant partial

derivatives of the multicenter function, which shall be used
to solve Problem 2 in the subsequent sections.

Given p∈D , and w∈U , we define the partition of Q by
V f (p,w). It is convenient to define the Voronoi multi-center
function as

(p,w) 7→H (p,w) =
n

∑
i=1

∫
V f

i (p,w)
f (‖q− pi‖)φ(q)dq,

or equivalently H (p,w) = H (p,V f (p,w)). It is also conve-
nient to define the generators-to-areas function as

(p,w) 7→M (p,w) =
[∫

V f
1 (p,w)

φ(q)dq, . . . ,
∫

V f
n (p,w)

φ(q)dq
]T

,

or equivalently M (p,w) = φ(V f (p,w)). In the rest of this
section, we shall compute the gradients of the functions H
and M . In order to state our results, we need some notation.
Let ∆i j(p,w) denote the boundary between the ith and jth
Voronoi region and ~ni j the normal to this boundary, point-
ing towards region Wj. Given locations p ∈ D and weights
w ∈ U , let La(p,w) and Lbk(p,w), k ∈ {1,2}, be the n× n

matrices, whose entries ai j and b(k)i j are defined by

ai j(p,w) =

{
−
∫

∆i j
φ(q)

(
∂q
∂wi
·~ni j

)
dq, if i 6= j,

−∑
n
i=1 ai j, otherwise,

(4)

and

b(k)i j (p,w) =

−
∫

∆i j
φ(q)

(
∂q

∂p(k)i

·~ni j
)
dq, if i 6= j,

−∑
n
i=1 b(k)i j , otherwise,

(5)

where q ∈ R2 has components q(1) and q(2). Clearly, entries
ai j and bi j are zero if ∆i j has zero measure.

We are now ready to state the two main results of
this section, which imply that computing the gradients of
H (p,w) and the M (p,w) is spatially-distributed over the
dual graph of the Voronoi partition.

Proposition 2 (Partial derivatives of the Voronoi multi-cen-
ter function). Given p ∈ D and w ∈U, let p(k)i , k ∈ {1,2},
denote the two components of pi ∈R2, for i∈ {1, . . . ,n}, and

define La and Lbk as in equations (4) and (5). Then, the par-
tial derivatives of H (p,w) are

∂H (p,w)
∂p(k)

=

[∫
V f

i

∂

∂p(k)1

f (‖q− p1‖)φ(q)dq, . . . ,

∫
V f

n

∂

∂p(k)n

f (‖q− pn‖)φ(q)dq
]
+wT Lbk(p,w), (6)

∂H (p,w)
∂w

= wT La(p,w). (7)

Proof. Note that we write V for V f throughout the proof and
everything is done with respect to one component of pi where
pi ∈ R2 (we drop the k from p(k)i for clarity). Differentiating
with respect to pi we see that

∂H
∂pi

=
∫

Vi

∂

∂pi
f (‖q− pi‖)φ(q)dq

+
∫

∂Vi

f (‖q− pi‖)φ(q)
(

∂q
∂pi
·~ni j

)
dq

+ ∑
j∈Ni

∫
∂Vi∩∂V j

f (‖q− p j‖)φ(q)
(

∂q
∂pi
·~n ji

)
dq, (8)

where (8) easily falls out from the conservation law [5,
Proposition 2.23]. The second term on the RHS is defined
as

∫
∂Vi

f (‖q− pi‖)φ(q)
(

∂q
∂pi
·n
)

dq

= ∑
j∈Ni

∫
∆i j

f (‖q− pi‖)φ(q)
(

∂q
∂pi
·~ni j

)
dq

= ∑
j∈Ni

∫
∆i j

( f (‖q− p j‖)+wi−w j)φ(q)
(

∂q
∂pi
·~ni j

)
dq,

where f (‖q− pi‖) = f (‖q− p j‖)+wi−w j holds true along
the boundary ∆i j and is given from the definition of the
Voronoi partition. Therefore, combining the second and third
terms on the RHS of (8) and noting that~ni j =−~n ji, we have

∂H
∂pi

=
∫

Vi

∂

∂pi
f (‖q− pi‖)φ(q)dq

+ ∑
j∈Ni

(wi−w j)
∫

∆i j

φ(q)
(

∂q
∂pi
·~ni j

)
dq. (9)

Writing (9) in vector form gives ∂H (p,w)
∂p as defined in (6),

with matrices whose entries are defined by (5). Similarly the
derivative with respect to wi is given as

∂H
∂wi

= ∑
j∈Ni

(wi−w j)
∫

∆i j

φ(q)
(

∂q
∂wi
·~ni j

)
dq. (10)



The vector form of this equation can easily be seen to be (7)
with the Laplacian matrix La defined by (4).

Proposition 3 (Partial derivatives of the generators-to-areas
function). Given p ∈ D and w ∈U, let p(k)i , k ∈ {1,2}, de-
note the two components of pi ∈ R2, for i ∈ {1, . . . ,n}, and
define La and Lbk as in equations (4) and (5). Then, the par-
tial derivatives of M (p,w) are

∂M (p,w)
∂p(k)

= Lbk(p,w), (11)

∂M (p,w)
∂w

= La(p,w). (12)

Proof. For clarity, we write V for V f throughout the proof.
Looking at the ith component of M (p,w) and differentiating
with respect to wi, by the conservation law [5, Proposition
2.23] we get

∂Mi

∂wi
=

∫
Vi

∂

∂wi
φ(q)dq+

∫
∂Vi

φ(q)
(

∂q
∂wi
·~ni j

)
dq,

= ∑
j∈Ni

∫
∆i j

φ(q)
(

∂q
∂wi
·~ni j

)
dq, (13)

where ∆i j is the boundary between agents i and j. The first
term on the right hand side of (13) is zero since the den-
sity function is not dependent on the weights. Similarly, the
derivative of M j with respect to wi, is given as

∂M j

∂wi
=

∫
V j

∂

∂wi
φ(q)dq+

∫
∂V j

φ(q)
(

∂q
∂wi
·~n ji

)
dq,

=−
∫

∆i j

φ(q)
(

∂q
∂wi
·~ni j

)
dq, (14)

where we note that~ni j =−~n ji. Therefore it is easily seen that
the total gradient of G with respect to the vector of weights
w is given by (12), with La(p,w) defined by (4). Similarly
for p(k)i we get the gradient defined by (11) whose matrix
Lbk(p,w) is given by (5).

The following useful Proposition follows from Proposi-
tion 3 and Proposition IV.1 in [8] and is due to the mono-
tonicity properties of the Voronoi partition.

Proposition 4 (Sign-definiteness of the partial derivatives of
M ). Given p ∈D and w ∈U, then

∂Mi(p,w)
∂wi

> 0 and
∂Mi(p,w)

∂w j
≤ 0, j 6= i,

where the second inequality is strict if and only if ∆i j has
non-zero measure.

Next, consider the dual graph of the Voronoi partition
defined by (p,w) and assign to each edge {i, j} of this graph
the (i, j) entry of La(p,w), which is strictly-negative by
Proposition 4. With this definition, the matrix La(p,w) is the
Laplacian matrix naturally associated to this weighted dual
graph of the Voronoi partition defined by (p,w).

4 Area-constrained Voronoi partitions
In this section, we solve the problem of finding, given

area constraints and locations of the agents, suitable weights
such that the Voronoi partition generated by these locations
and weights satisfies the area constraint. We begin by stating
two useful results.

Proposition 5 (Existence and uniqueness of weights for
area-constrained Voronoi partitions). Define constants c∈ S.
Given p ∈ D , there exists a unique vector w∗ ∈ U, up to
translation, such that {V f

1 (p,w∗), . . . ,V f
n (p,w∗)} satisfies

φ(V f
i ) = ci for all i.

Proof. Existence follows from Proposition IV.4 in [8]. Be-
fore beginning the uniqueness argument, we introduce the
set Vi→ j(w∗,w) as the set of points that move from agent i to
agent j due to a change in weights from w∗ to w. For exam-
ple, if agents i and j are neighbors, w j > w∗j , and wi = w∗i
for all i 6= j, then φ(Vi→ j(w∗,w)) > 0. That is to say that
some region is transferred to agent j due to its weight in-
creasing. With this notation in mind, we begin the proof
with a set of weights, w∗ ∈ U , which define some arbi-
trary partition. Associated with this partition are a set of
non-zero areas, c∗i > 0 for i ∈ {1, . . . ,n}, that correspond
to each agents region. Assume there exists another set of
weights, w 6=w∗, such that M (p,w) =M (p,w∗) = c∗. Since
weights are translation invariant, we can translate w such
that w∗1−w1 = 0. Without loss of generality (wlog), assume
that generator 2 is the neighbor of generator 1 in V f (p,w∗),
and that w2 −w1 < w∗2 −w∗1 (w2 < w∗2, since w 6= w∗) or
equivalently w2−w∗2 < w1−w∗1 = 0. Due to the monotonic-
ity of the weights, w2 < w∗2 implies that part of the region
that was once owned by agent 2 in V f (p,w∗) is either now
owned by agent 1 or by some other agent in the partition
V f (p,w). Thus φ(V2→i(w∗,w)) > 0 for some i 6= 2. This
means that agent 2 in V f (p,w) must own the space of some
other agent (or combination of agents) in order to maintain
its area-constraint. This can only happen if there exists at
least one neighboring agent (wlog; agent 3) whose weight
satisfies the condition w3−w2 < w∗3−w∗2.Thus it must be the
case that w3−w∗3 < w2−w∗2 < w1−w∗1 and w3 < w∗3. Since
every agent has at least one neighbor, we can continue in
this fashion of ordering agents, until we reach agent k such
that w j −w∗j < wk −w∗k , where j > k, cannot be satisfied,

and so φ(V f
k (p,w)) < c∗k . Thus, the set of weights that sat-

isfy the area-constraint for a generalized Voronoi partition
are unique, up to translation.

Given this result, for any given set of area constraints
c ∈ S, we may formally define the map wac : D→U as p 7→



wac(p), such that ∑
n
i=1(wac(p))i = 0 and φ(V f

i (p,wac(p))) =
ci for all i.

Proposition 6 (Smoothness of mapping from positions to
weights). The map p 7→ wac(p) is continuously differen-
tiable.

Proof. The proof makes use of the implicit function theo-
rem in conjunction with a modified mapping of M (p,w),
to be described later, to show continuous differentiabil-
ity of wac(p). Let c ∈ S denote the vector of areas for
the constraint surface. Then given the mapping wac(p),
we have that M (p,wac(p)) = c. Since Voronoi partitions
are translation invariant with respect to weights, w, we
can define any Voronoi partition as a function of n − 1
weights, keeping the nth weight constant at zero. De-
fine w̃ ≡ [w1, . . . ,wn−1]

T , and define the modified map-
ping (p, w̃) 7→ M̃ (p, w̃) ∈ Rn−1 of M (p,w) by M̃ (p, w̃) =[∫

V f
1 (p,w̃) φ(q)dq, . . . ,

∫
V f

n−1(p,w̃) φ(q)dq
]T

. Define the map-

ping p 7→ w̃ac(p) such that M̃ (p, w̃ac(p)) = c̃, where we
set c̃i = ci for i ∈ {1, . . . ,n− 1}. Note that this is suffi-
cient to define the constraint surface since the nth constraint
in M (p,w) and the nth weight wn are both redundant. For
clarity, calculations in the rest of the proof are done with re-
spect to one component of pi, where pi ∈R2. Differentiating
M̃ (p, w̃) = c̃ with respect to w̃ and p we obtain

∂M̃ (p, w̃)
∂w̃

= L̃a(p, w̃),

∂M̃ (p, w̃)
∂p

= L̃b(p, w̃),

where L̃b(p, w̃) is defined as Lb(p,w) with the nth row
removed and L̃a(p, w̃) is defined as the Laplacian ma-
trix La(p,w) with the nth column and row removed (Note
Lb(p,w) is dependent on which component of pi we choose).
Proposition 4 guarantees that the Laplacian of the Voronoi
dual graph is always well-defined, therefore L̃a(p, w̃ac(p)) ∈
Rn−1×n−1 and is full rank [11, Corollary 6.2.27]. Therefore,

since M̃ (p, w̃) is continuously differentiable and ∂M̃ (p,w̃)
∂w̃ is

invertible, then by the implicit function theorem we have
that w̃ac(p) is continuously differentiable. Finally, note that
the mapping wac(p) can be written as [w̃ac(p)T ,wac,n(p)]T ,
where wac,n(p) is a constant value of zero. Since w̃ac(p) and
wac,n(p) are continuously differentiable, so is wac(p).

We now present an algorithm to compute wac(p) for a
specific area-constraint. Given p ∈ D and w ∈U , the area-
constraint cost function for the Voronoi partition generated
by (p,w) is defined as

J (p,w) = n log
(∫

Q
φ(q)dq

)
−

n

∑
i=1

ci log
(∫

V f
i (p,w)

φ(q)dq
)

= n log(φ(Q))−
n

∑
i=1

ci log
(

φ
(
V f

i (p,w)
))

(15)

where ci for i ∈ {1, . . . ,n} are strictly positive constants. The
following result extends [7, Theorem 3.7] to (generalized)
Voronoi partitions, and has the added property of being better
conditioned numerically.

Theorem 7 (Gradient of the area-constraint cost function).
Let ∆i j denote the boundary between the ith and jth Voronoi
region and~ni j the normal vector along that boundary. Define
constants c ∈ S. Given p ∈D and w ∈U, we have

∂

∂wi
J
(

p,w
)
= ∑

j∈Ni

Ξi j
(
c jφ(V

f
i )− ciφ(V

f
j )
)
, (16)

where

Ξi j =
1

φ(V f
i )φ(V

f
j )

∫
∆i j

(
∂q
∂wi
·~ni j

)
φ(q)dq, (17)

so that

(i) every w generating an area-constrained Voronoi parti-
tion is a critical point of the function w 7→ J

(
p,w), and

(ii) every solution to the negative gradient flow

ẇi =−
∂

∂wi
J
(

p,w
)
, (18)

converges asymptotically to wac(p), yielding an area-
constrained Voronoi partition such that φ(V f

i ) = ci.

Proof. Let w 7→ J
(

p,w) be a candidate Lyapunov function.
First, we check that J is continuously differentiable. Using
(13) and (14) from the proof of Proposition 3 and the chain
rule, we quickly have (16) with coefficients defined by (17).
Therefore given p∈D , we have that J is continuously differ-
entiable with respect to the weights w ∈U . Second, we see
with ẇi defined according to (18) that J̇ =∑

n
i=1

∂J
∂wi

ẇi≤ 0. To
determine when J̇ is identically zero, let yi =

1
φ

(
V f

i (p,w)
) , and

rewrite (16) and (17) in vector notation to get the following:

∂

∂w
J
(

p,w
)
= yT diag([c1, . . . ,cn])La(p,w),

where La(p,w) is the Laplacian matrix defined by (4). Let
x = yT diag([c1, . . . ,cn]), then ∂

∂w J
(

p,w
)

is identically zero
when x = α1T

n for any constant α. Given the constraints of
the system this can only happen when yi =

1
ci

, or equivalently

when φ

(
V f

i (p,w)
)
= ci for all i ∈ {1, . . . ,n}. Thus the in-

variant set for (18) is such that for φ

(
V f

i (p,w)
)
= ci all i and

∑
n
i=1 ci = 1. By these observations, we have proved claim (i).

Third, we have to show that trajectories are bounded. From
the gradient descent law (18) we deduce that the measures
of each agent are bounded away from zero. Indeed, if the



measure of an agent’s region were to approach zero, then
the function J would grow unbounded; this is impossible be-
cause we know J is monotonically non-increasing. Notice
that the measures of the agents depend on the weights, and
it is not hard to verify that the sum of weights stays con-
stant. Hence, if a weight were to become very large, another
weight would become arbitrarily small, which would cause a
region to vanish. This contradicts the fact that the measures
are bounded: therefore, the weights must also be bounded.
After these three observations, we can invoke LaSalle Invari-
ance Principle and deduce that the weights converge to the
set of weights w such that φ(V f

i (p,w)) = ci for all i. Ad-
ditionally, since the sum of the weights is constant and the
vector of weights that satisfy the area constraint is unique
by Proposition 5, we conclude that the weights converge to
the vector of weights w∗ such that ∑

n
i=1 w∗i = ∑

n
i=1 wi(0) and

φ(V f
i (p,w∗)) = ci for all i, proving claim (ii).

We now specialize the gradient (18) to the case of Ex-
ample 2.

Example 3 (Gradient flow for equitable power diagrams).
Define the partition of the region Q according to (2) with
f (x) = x2 and let ci =

1
n for all i in (15). From [7] we have

that ∂q
∂wi
·~ni j =

1
‖pi−p j‖ so then the gradient flow (18) is given

by

ẇi =− ∑
j∈Ni

(
1

φ(V PD
j )
− 1

φ(V PD
i )

)∫
∆i j

φ(q)
‖pi− p j‖

dq.

The vector of weights w converges to the value such that
φ
(
V PD

i (p,w)
)
= φ

(
V PD

j (p,w)
)

for all i 6= j.

5 Centroidal area-constrained Voronoi partitions
Given constants c ∈ S, and given p ∈D , it is convenient

to define the area-constrained Voronoi partition generated
by p as

V f
ac(p) =V f (p,wac(p)),

with Voronoi regions V f
ac,i(p), i ∈ {1, . . . ,n} such that

φ

(
V f

ac,i(p)
)
= ci for all i. The associated area-constrained

multicenter function is given by

p 7→H
(

p,V f
ac(p)

)
=

n

∑
i=1

∫
V f

ac,i(p)
f (‖q− pi‖)φ(q)dq,

or equivalently by p 7→H
(

p,wac(p)
)
. We are now ready for

the main result of this section.

Theorem 8 (Gradient of the area-constrained multicenter
function). Given p ∈D ,

∂

∂pi
H
(

p,V f
ac(p)

)
=

∫
V f

ac,i(p)

∂

∂pi
f (‖q− pi‖)φ(q)dq, (19)

so that

(i) every p generating a centroidal area-constrained
Voronoi partition is a critical point of the function p 7→
H
(

p,V f
ac(p)

)
, and

(ii) every solution to the negative gradient flow

ṗi =−
∫

V f
ac,i(p)

∂

∂pi
f (‖q− pi‖)φ(q)dq (20)

converges asymptotically to the set of centroidal area-
constrained Voronoi partitions.

Proof. Let H (p,wac(p)) = H (p,V f (p,wac(p))), the
Voronoi multicenter function restricted to the area-constraint
surface, be our candidate Lyapunov function. By differenti-
ating with respect to p we obtain

∂

∂p
H (p,wac) =

∂H (p,wac)

∂p
+

∂H (p,wac)

∂w
dwac

d p
,

=

([
∂H1(p1,V

f
ac,1(p))

∂p1
, . . . ,

∂H1(pn,V
f

ac,n(p))
∂pn

]

+wT Lb(p,w)
)
+wT La(p,w)

dwac

d p
,

(21)

where La(p,w) and Lb(p,w) are defined by (4) and (5), re-
spectively. Differentiating M (p,wac(p)) = c with respect to
p we obtain

∂M (p,wac(p))
∂p

+
∂M (p,wac(p))

∂w
dwac(p)

d p
= 0,

that is, Lb(p,w) + La(p,w) dwac(p)
d p = 0, therefore

La(p,w) dwac(p)
d p = −Lb(p,w). Substituting this equal-

ity into (21) it follows that ∂

∂p H (p,V f (p,wac)) =

∂

∂p H (p,wac) =

[
∂H1(p1,V

f
ac,1(p))

∂p1
, . . . ,

∂H1(pn,V
f

ac,n(p))
∂pn

]
. There-

fore H (p,V f (p,wac)) is continuously differentiable with
respect to p, and its critical points are characterized, prov-
ing claim (i). For each agent the trajectories under (20)
point towards the centers of their region, and since Q is
convex and compact this gives that the trajectories stay in
Q and are bounded. We must also show that the agents
maintain distinct locations. If two agents i and j have the
same weight (w j = wi), then relative to each other they
generate a Standard Voronoi partition (Example 1) and
the center for each agent stays in the same region as the
agent, therefore the agents can not collide. Now we look
at the case when the weights are different. Without loss of
generality let w j > wi and assume that agent j approaches
agent i. From (2) we have that for q ∈ Q, the region of
agent j satisfies f (‖q− p j‖)−w j +wi ≤ f (‖q− pi‖). If p j



and pi are close enough, all points in a neighborhood of pi
belong to region j. This implies that the measure of region
i is zero; this is impossible since the flow stays along the
area-constraint surface. Therefore, agents can not collide
and agent locations remain distinct along the flow. Under
control law (20) we have that

Ḣ (p,V f (p,wac)) =
n

∑
i=1

∂H1(pi,V
f

ac,i(p))
∂pi

ṗi

=−
n

∑
i=1

(
∂H1(pi,V

f
ac,i(p))

∂pi

)2

.

By LaSalle’s Invariance Principle the positions p converge
to the invariant set of positions such that pi =Ce[V f

ac,i(p)] for
all i. Therefore, the positions converge to the set of centroidal
area-constrained Voronoi partitions and claim (ii) is proved.

There are some interesting points worth noting. First,
assuming that the set of centroidal area-constrained Voronoi
partitions is finite, the positions and weights converge to one
of the partitions in that set. Second, the gradient descent (20)
is not guaranteed to find the global minimum. Finally, the
gradient restricted to the constraint surface is formally the
same as the reduced gradient as defined in nonlinear pro-
gramming [12].

We now specialize the gradient (19) to the case of Ex-
ample 2.

Example 4 (Constrained gradient flow for power diagrams).
Let the partition of the region Q be defined according to (2)
with f (x) = x2. Given any powercell A of Q the center is
given by Ce[A] = 1

φ(A)

∫
A qφ(q)dq. Thus for power diagrams,

Ce is equivalent to the well known expression for center of

mass of a region. From [5] we have that
∂H1

(
p,V PD

eq,i (p)
)

∂pi
=

1
n

(
Ce[V PD

ac,i ]− pi
)
, therefore the (scaled, negative) gradient

flow (20) is given by

ṗi =Ce[V PD
ac,i (p)]− pi.

We easily see that H (p,V PD
ac ) is minimized when pi =

Ce[V PD
ac,i (p)] for all i ∈ {1, . . . ,n}.

6 Simultaneous change of agent positions and weights
The previous gradient descent laws (18) and (20), are de-

signed to find the area-constraint surface and reach the center
of a area-constrained region, respectively. In this section, we
introduce a distributed algorithm which achieves both tasks
simultaneously. As before, for the desired constraint surface
we choose constants c ∈ S. Then, given p ∈ D and w ∈U ,

the simultaneous gradient algorithm is given by

ṗi =−
∫

V f
i (p,w)

∂

∂pi
f (‖q− pi‖)φ(q)dq,

ẇi =− ∑
j∈Ni

Ξi j
(
c jφ(V

f
i )− ciφ(V

f
j )
)
, (22)

where

Ξi j =
1

φ(V f
i )φ(V

f
j )

∫
∆i j

(
∂q
∂wi
·~ni j

)
φ(q)dq.

The proposed control law is a natural combination of
laws (18) and (20). If all the weights are initialized to the
same value w, and if ẇi is set to zero, then (22) reduces to
the continuous-time Lloyd algorithm presented in [5]. Sim-
ulations show that the proposed law does in fact converge
to the set of centroidal area-constrained Voronoi partitions;
however, a proof is not currently available.

We now specialize the gradient (22) to the case of Ex-
ample 2.

Example 5 (Gradient flow for equitable power diagrams).
Define the partition of the region Q according to (2) with
f (x) = x2 and let ci =

1
n for all i in (15). From [5] we have

that
∂H1

(
p,V PD

i (p)
)

∂pi
= 1

n

(
Ce[V PD

i ]− pi
)
, therefore the (scaled,

negative) gradient flow (22) is given by

ṗi =Ce[V PD
i (p)]− pi,

ẇi =− ∑
j∈Ni

(
1

φ(V PD
j )
− 1

φ(V PD
i )

)∫
∆i j

φ(q)
‖pi− p j‖

dq.

We easily see that the stationary set for this system is
achieved when pi = Ce[V PD

ac,i (p)] for all i ∈ {1, . . . ,n} and
the vector of weights w converges to the value such that
φ
(
V PD

i (p,w)
)
= φ

(
V PD

j (p,w)
)

for all i 6= j.

7 Implementation and simulations
In this section, we discuss the practical implementation

of the control law (20) and compare it against the control
law (22) using representative simulation examples. Writing
the area-constrained gradient flow (20), we assume that we
always stay on the constraint surface and thus move along
this surface continuously. In order to put this law into prac-
tice, we would need an explicit formula to instantaneously
compute the weights of the current Voronoi partition, as
functions of the generator locations. Since such a formula
is not available, we instead have to rely on system (18) in or-
der to determine the weights. We then design an implemen-
tation which alternates dynamics (20) and (18). Assuming
that the agents start at a feasible configuration, they move
their locations according to (20) for a small time duration δ,
while keeping the weights fixed. After this amount of time,
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Fig. 2. Simulation of 9 agents partitioning a square environment
with uniform density using the iterative gradient algorithm.

the area constraint is not satisfied: we then let the weights
evolve according to (18), while the locations are fixed, until
we are within the proximity of the area-constraint surface.

Some points in this implementation require attention.
First, if the positions are allowed to move too much, the re-
gions can become undefined (i.e., have measure zero), there-
fore care must be taken to make sure this does not happen
by selecting a sufficiently small δ. Second, care must also
be taken to insure that the agent location do not collide (i.e.,
agent locations must remain distinct). If they do, the step
size δ should be reduced in order to avoid collision. Third,
in order to drive the system exactly back to the constraint
surface, we would need to bring the dynamics of the weights
to convergence, which would take an infinitely long time:
in simulations, convergence is approximated up to trunca-
tion error. In spite of these difficulties, in our simulations
we have found that the algorithm is not sensitive to how
far the agents deviate from the area-constraint surface (pro-
vided measures stay non-zero) during each movement step:
in all our experiments, the algorithm converges to a cen-
troidal area-constrained Voronoi diagram.

An illustrative example of the performance of the algo-
rithm is presented in Figure 2. In the simulation, 10 agents
have been randomly placed in a square region Q, where the
density function φ(x) is constant. The region Q is to be
partitioned according to (2) with f (x) = x2, that is, as a
power diagram. We define area-constraint surface such that
φ(V f

i ) =
i

∑
n
i=1 i φ(Q) for all i ∈ {1, . . . ,10}; which means that

if i < j, then φ(V f
i ) < φ(V f

j ). The gradient (20) is followed
during steps of duration δ = 0.1s. The first panel shows the
initial condition of the system at T = 0, where each agent has
been randomly placed and the corresponding weights which
generate the area-constrained partition determined. In the
second panel, at T = δ, the agents have moved in the gra-
dient direction which causes each region to have a different
area (the agents moved off the constraint surface of equitable
area). The last panel shows the final state of the system at
T = 54.2s. Each agent is at its region’s centroid and the re-
gions have equal measure.

Next we observe the performance of control law (22),
which simultaneously optimizes the weights and the posi-
tions. We set the initial weights of the system to zero, but we
keep the same initial positions and area-constraint require-
ments described above. The first panel of Figure 3 shows
that we do in fact start with the same initial positions as the
previous control algorithm, and since the weights are zero,
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Fig. 3. Simulation of 9 agents partitioning a square environment
with uniform density using the simultaneous gradient algorithm.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Time (s)

A
re

a
 o

f 
R

e
g

io
n

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

Time (s)

||
p

i −
 c

i |
|

Fig. 4. Area (left) and position (right) trajectories for 9 agents parti-
tioning a square environment with uniform density using the simulta-
neous gradient algorithm.

the partition is the Standard Voronoi Diagram; the second
panel shows how the position trajectories evolve over time,
and the final panel shows the system’s final configuration.
Figure 4 shows better how the areas of each agent’s region
evolves over time; the second panel shows how each agent’s
position converges to its regions centroid. It is interesting to
observe that given the same initial conditions, the iterative
algorithm and control law (22) converge to the same config-
uration. In fact, we did not come across a case where this did
not happen.

8 Conclusion
We have studied the problem of how to optimally de-

ploy a set of agents over a convex workspace while each
agent maintains a pre-specified area. We have designed a
provably correct, spatially-distributed continuous-time pol-
icy that solves this optimization problem. We proposed a
method for implementation of the control policy and demon-
strated its effectiveness in simulation. This work leaves var-
ious extensions open for further research. First, our main
approach is based on alternating phases, during which we ei-
ther improve the objective function, or enforce the area con-
straint. In contrast to our main solution, we would like to
prove convergence of the policy in which the agents converge
to the constraint surface while simultaneously optimizing the
coverage problem. So far, the effectiveness of this policy has
been observed in simulations. Second, our policy requires
synchronous and reliable communication along the edges of
the dual graph associated to the Voronoi partition. It would
then be worth to relax this requirement, using asynchronous,
event-based, or unreliable communication: recent works in



this direction include [13] and [14]. Third, our approach is
based on the assumption that the environment we partition
is convex, and finding policies that work over non-convex
environments would be of great practical use: works in this
direction include [15] and [16]. Finally, we assume that the
density function φ is known to the agents, which may be hard
to satisfy in practice; several papers have recently appeared
to overcome this assumption, including [17] and [18].
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