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ABSTRACT

We consider the problem of optimal coverage with area-
constraints in a mobile multi-agent system. For a planar environ-
ment with an associated density function, this problem is equiva-
lent to dividing the environment into optimal subregions such that
each agent is responsible for the coverage of its own region. In
this paper, we design a continuous-time distributed policy which
allows a team of agents to achieve a convex area-constrained
partition of a convex workspace. Our work is related to the clas-
sic Lloyd algorithm, and makes use of generalized Voronoi dia-
grams. We also discuss practical implementation for real mobile
networks. Simulation methods are presented and discussed.

1 Introduction

Problem description and meotivation The applications of
multi-agent systems to accomplish complex tasks in a complex
environment are vast. They include but are not limited to tasks
such as search and rescue operations, ad-hod mobile wireless
networks, warehouse management and environmental monitor-
ing [1-4]. When working with large robotic networks, it is often
desired to partition the environment amongst all agents in an op-
timal way so that the workload can be equalized across all agents.
For example, in ocean surveillance the cost of travel is large so it
is desirable to survey one contiguous region as opposed to trav-
eling around multiple ones. A partitioning policy is one in which
an environment Q C R? is partitioned into n disjoint subregions
W; C Q,i€{l,...,n} whose union is Q. Given some measure ¢,
the partitioning policy is equitable if ¢(W;) = ¢(W;) for all i # j.
Placement of agents within such regions is also of importance.
In the case of surveillance or warehouse management, it is desir-
able to be at the center of your region so tasks are more easily
serviced. Placing agents optimally and defining optimal regions
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simultaneously can be complicated as the region of an agent and
its position are related to one another. We provide methods to ac-
complish this simultaneous operation using generalized Voronoi
partitions.

Literature review Partitioning and coverage control is dis-
cussed in detail in [5] along with the application of multicenter
functions to robotic networks. Results on specific manifestations
of generalized Voronoi partitions and partitioning can be found
in [6]. Results on the existence of area-constrained power di-
agrams along with a method to determine them are presented
in [7]. More detailed results on existence of generalized Voronoi
partitions for arbitrary area constraints are presented in [8]. Lin-
ear programming is used to handle generalized Voronoi parti-
tions in [9] for fixed agents, showing that generalized Voronoi
partitions are optimal for a certain class of multicenter functions.
Similar results are obtained in [8], together with a discrete-time
algorithm to solve the problem of optimal deployment of agents,
while satisfying constraints on the areas.

Contributions The contributions of this work are several.
First, we design a provably correct, spatially distributed con-
tinuous time algorithm to compute area-constrained generalized
Voronoi partitions of a convex environment. The approach builds
on work in [7]. Second, we build on work in [8], by introducing a
continuous time spatially distributed algorithm to compute cen-
troidal area-constrained generalized Voronoi partitions of a con-
vex environment. More precisely, the continuous-time algorithm
presented in this paper and the discrete-time algorithm in [8] both
converge to the set of centroidal area-constrained Voronoi parti-
tions, which shall be formally defined below. Finally, we intro-
duce a practical method for implementation of our algorithms,
and show their performance in simulation. We introduce meth-
ods from nonlinear optimization to achieve our results. Due to



space constraints, all proofs are omitted and will be made avail-
able in a forthcoming full-length paper.

Paper organization The paper is organized as follows. In
section 2 we setup preliminary notation, introduce the concept
of generalized Voronoi partitions and present our problem in
technical detail. In section 3 we state existence properties of
area-constrained generalized Voronoi partitions and present al-
gorithms to reach the set of area-constrained Voronoi partitions.
In section 4 we state the main result of our paper on centroidal
equitable generalized Voronoi partitions. In section 5 we dis-
cuss the application of our algorithm to real systems and provide
numerical simulations. In the final section we present our con-
clusions and future directions for research.

2 Preliminaries and problem statement

Let us have a convex compact set Q C R2, endowed with a
density function ¢ : Q — R, so that the measure (or area) of a
region A C Q is defined as

04) = [ a(a)da. M

provided the set A is measurable in the sense of Lebesgue. With-
out loss of generality, we assume that Q has unit measure, that
is, 0(Q) = Jp0(q)dq = 1. Let py,...,p, denote the positions
of n robotic agents in Q. We assume that each agent is associ-
ated with a (measurable) sub-region W; C Q, where {W;}!_, par-
titions Q into sets whose interiors are pairwise disjoint. A vector
can be defined to collect the measures of the regions of a par-
tition, as (W) = [0(W}),...,0(W,)]T. By our assumptions on
0, we have Y' , 0(W;) = 1. Let £ : R — R be a strictly convex,
increasing, and differentiable function. Then, given n locations
p=(p1,...,pn) and a partition W = (W,...,W,), the multicen-
ter function is defined by

Hp W)=Y [ flla=plotads @

Our goal in this work is minimizing the function H under certain
constraints, namely, that the areas of each region are fixed.

Problem 1 (Multicenter optimization with area constraints).
Given ¢; > 0 for i € {1,...,n} such that Y;c; = 1, determine
the locations of the agents p = (p1,...,pn) and the partition
W= (W,...,W,) solving:

min  H(p,W)
P 3)
subjectto  O(W;) =¢;, i€ {l,...,n—1}.

Note that the nth constraint ¢(W,,) = ¢, is omitted because redun-
dant.

In order to solve this problem, we introduce a useful par-
titioning scheme. Given the function f as above, n distinct lo-
cations p = (p1,...,pn), and n scalar weights w = (wy,...,wy),
the generalized Voronoi partition of Q is the collection of subsets
VI (p,w) = (V{ (p,w),....Vi (p.w)) of Q. defined by

V/(pw)={qeQ | f(lq—pil)—wi
<f(lg—p;l) —w;, Yi#£i}. @

Generalized Voronoi partitions enjoy several important proper-
ties. First, any generalized Voronoi partition of Q is in fact a par-
tition of Q. Second, the generalized partition generated by (p,w)
is equal to the generalized partition generated by (p,w + al,),
for any a € R (Here, 1, is the vector in R"” whose entries are
all equal to 1). From here onwards we will refer to generalized
Voronoi partitions simply as Voronoi partitions. Two important
special cases are described below.

Example 1 (Standard Voronoi Diagram). Given n distinct loca-
tions p = (p1,...,pn) and n scalar weights w = (wy,...,wy), the
Standard Voronoi Diagram of Q is given by (4) with w = 0. The
partition is given by

VP (pw)={q€0Q | f(la—pill) < f(la—p;lD}.

regardless of the choice of f(x). We call each V5P a standard
Voronoi region. These regions are convex and have boundaries
that are given by straight line segments; moreover, every gener-
ator p; is contained in its respective region ViSD .

Example 2 (Power Diagrams). Given n distinct locations p =
(p1,y--.,pn) and n scalar weights w = (wy,...,wy), the power
diagram of Q is given by (4) with f(x) = x*. The partition is
given by

2 2
VPP (p,w)={q€ 0 | lla—pil*> —wi < llg—pjll* —w;},
and we call each Voronoi region VilD D a power cell. Note that
Standard Voronoi Diagrams are a special case of Power Dia-
grams, since VIP (p,0) = V5P (p). These regions are convex and
their boundaries that are line segments; however, it is possible

that the generators p; are not contained by their respective power
cells ViP D,

We are now ready to define a second problem of interest,
which is a simplified version of Problem 1.

Problem 2 (Multicenter Voronoi partition optimization with area
constraints). Given ¢; > 0 fori € {1,...,n} such that ¥;c; =1,
determine the locations of the agents p = (p1,...,pn) and a set
of weights w = (wy,...,w,) solving:

min  H(p,V/ (p,w))
v (5)
subjectto  O(V/ (p,w)) =ci, i€ {l,....n—1}.



Preliminarily, we should make sure that this problem has
feasible solutions: this fact is shown in Section 3, which also
provides a method to find a feasible set of weights for every set
of locations. Problems 1 and 2 are known to be equivalent, in the
following sense.

Proposition 1 (Proposition V.1 in [8]). Let p € Q" be the agent
locations and w € R" a weight assignment which satisfies the
area constraint. Then, the Voronoi partition V1 (p,w) optimizes
H(p,W) among all partitions satisfying the area constraint.

In order to derive a useful consequence of this fact, we con-
sider the simpler case when there is only one agent in Q: then,
the multicenter function becomes

p s Hi(p,0) == /Q F(lla— plo(q)dg. ©)

Since f is strictly convex, #; is too, and the following holds: If
Q is convex, then there is a unique minimizer of (6), which we
denote by Ce(Q). The Voronoi partition V/(p,w) generated by
(p,w) is said to be centroidal if

celV/ (p,w)] = pi,

foralli € {1,...,n}. This notation allows us to state the follow-
ing fact [8]: for every solution (p*,W*) of Problem 1, there ex-
ists a weight assignment w* € R” such that W* = V/(p*,w*) and
pf =Ce(W) foralli € {1,...,n}. Equivalently, the solutions to
Problem 1 are centroidal Voronoi partitions whose regions have
the prescribed areas.

In the rest of this paper, we will go beyond this abstract char-
acterization of the optimal solutions and give an optimization al-
gorithm which is amenable to practical implementation.

3 Area-constrained Voronoi partitions

In this section, we solve the problem of finding, given area
constraints and locations of the agents, suitable weights such that
the Voronoi partition which is generated by these locations and
weights satisfies the area constraint. We begin by stating a useful
result which follows from Proposition IV.1 and Proposition IV.4
in [8].

Proposition 2 (Existence and uniqueness of area-constrained
Voronoi partitions). Define a set of constants c¢; > 0 for i €
{1,...,n} such that Y}, ¢c; = 1. Given n distinct locations p =
(p1,---,pn) in Q, there exists a locally unique vector wy.(p) € R"
(i.e, there exists a neighborhood of weights such that no set of
weights w other than those equivalent by translation to wy(p))
such that {Vlf(p, Wac)y - - - ,an(p,wac)} satisfies (l)(Vl-f) =c¢;forall
ie{l,...,n}.

Based on this result, for any given set of area constraints
{ci}?_,, we define the map p — wyc(p) as the map from p to the

set of points w such that the (])(Vif(p,wac(p))) =c;.

We now present an algorithm to compute wy(p). Given
n distinct locations p = (py,...,p,) and n scalar weights
w = (wi,...,w,), the Voronoi partition generated by the
corresponding weights and locations is defined by V/ =
(Vlf (p,w),...,Vil (p,w)). The energy function for the Voronoi
partition is defined as

n 2

n 02 c?
U , = L = a s 7
= S~ Hav )

where ¢; fori € {1,...,n} are strictly positive constants. The fol-
lowing result extends [7, Theorem 3.7] to (generalized) Voronoi
partitions.

Theorem 3 (Gradient of the weight energy function). Let A;;
denote the boundary between the i and j™ Voronoi region and

7ijj the normal vector along that boundary. Define constants c;
forie{l,...,n} such that ¢; >0 foralliand ¥, c; = 1. Given

n distinct locations p = (p1,...,pn) and n scalar weights w =
(W1,...,wp), we have
U(p,
aW,‘ (p W)
2 2
s (3
J i
o Ml Bvrivie a7y ) 0(q)dg,  (8)
= <¢<vf P ¢<v,f>2) & \wi
so that

(i) every w generating an area-constrained Voronoi partition is
a critical point of the function w ‘Zl(p7 w), and
(ii) every solution to the negative gradient flow

) 0
Wizfaiwi‘u(paw)a 9

converges asymptotically to the vector of weights yielding
an area-constrained Voronoi partition such that q;(v,f ) =ci.

We now specialize the gradient (8) to the case of Example 2.

Example 3 (Gradient flow for equitable power diagrams). De-
fine the partition of the region Q according to (4) with f(x) = x*
and let ¢c; = 1 foralliin (7). From [7] we have that % SHij =

T n

m so then the gradient flow (9) is given by
4 J

o r 1 0(q)
=k <¢(vf0>2 ¢(va>2)/A,-, Tpi— i

JEN;

The vector of weights w converges to the value such that

o (ViPD(va)) =0 (VjPD(p,w)) foralli+# j.



4 Centroidal area-constrained Voronoi partitions

Given constants ¢; fori € {1,...,n} such that ¢; > 0 for all i
and }! | ¢; = 1, and given n distinct locations p = (p1,...,pn),
it is convenient to define the area-constrained Voronoi partition
generated by p as

VL(p) =V (p,wae(p)), (10)

with Voronoi regions VZ. .(p), i € {1,...,n} such that

ac,i

ac,i

0 (Vf (p)) = ¢; for all i. The associated area-constrained mul-

ticenter function is given by

pH}[pa ac

q—Di g (11
=Y., fla=pihotad

We are now ready for the main result of this section.

Theorem 4 (Gradient of the area-constrained multicenter func-

tion). Given n distinct locations p = (p1,...,pn),
d OHi (pi,Viti (P))
87717'[(177 L(p) = o (12)

so that

(i) every p generating a centroidal area-constrained Voronoi
partition is a critical point of the function p —
}[(p,V{;(p)), and

(ii) every solution to the negative gradient flow

A (pi VL)
Pi——a—pi (13)

converges asymptotically to the set of centroidal area-
constrained Voronoi partitions, provided the initial locations
are distinct.

We now specialize the gradient (12) to the case of Exam-
ple 2.

Example 4 (Constrained gradient flow for power diagrams). Let
the partition of the region Q be defined according to (4) with
f(x) = x%. Given any powercell A of Q the center is given by
CelA] = ﬁ J1q9(q)dg. Thus for power diagrams, Ce is equiv-
alent to the well known expression for center of mass of a region.

H,
From [5] we have that M (Ce[VPD]

ac,!

fore the (scaled, negative) gradient flow ( 13) is given by

) there-

=Ce[VD (p)] - pi. (14)

We easily see that }[(P7Va€D) is minimized when p; =
Ce[VFR(p)] foralli€ {1,...,n}.

ac,

5 Implementation and simulations

In this section, we discuss the practical implementation of
the control law (13) and provide a simulation example. Writ-
ing the area-constrained gradient flow (13), we assume that we
always stay on the constraint surface and thus move along this
surface continuously. In order to put this law into practice, we
would need an explicit formula to instantaneously compute the
weights of the current Voronoi partition, as functions of the gen-
erator locations. Since such a formula is not available, we instead
have to rely on system (9) in order to determine the weights. We
then design an implementation which alternates dynamics (13)
and (9). Assuming that the agents start at a feasible configura-
tion, they move their locations according to (13) for a small time
duration §, while keeping the weights fixed. After this amount of
time, the area constraint is not satisfied: we then let the weights
evolve according to (9), while the locations are fixed, until we
are within the proximity of the area-constraint surface.

Some points in this implementation require attention. First,
if the positions are allowed to move too much, the regions can
become undefined (i.e., have measure zero), therefore care must
be taken to make sure this does not happen by selecting a suffi-
ciently small 8. Second, care must also be taken to insure that
the agent location do not collide (i.e., agent locations must re-
main distinct). If they do, the step size & should be reduced
in order to avoid collision. Third, in order to drive the system
exactly back to the constraint surface, we would need to bring
the dynamics of the weights to convergence, which would take
an infinitely long time: in simulations, convergence is approxi-
mated up to truncation error. In spite of these difficulties, in our
simulations we have found that the algorithm is not sensitive to
how far the agents deviate from the area-constraint surface (given
that measures stay non-zero) during each movement step: in all
our experiments, the algorithm converges to a centroidal area-
constrained Voronoi diagram.

An illustrative example of the performance of the algorithm
is presented in Figure 1. In the simulation, 10 agents have been
randomly placed in a convex polygon Q, where the density func-
tion ¢(x) is non-uniform: more precisely, two exponential den-
sity spikes are placed in the polygon. The region Q is to be
partitioned according to (4) with f(x) = x?, that is, as a power
diagram. We define an equitable area-constraint, which is to say
that ¢(Vif) = % for all i € {1,...,10}. The gradient (13) is
followed during steps of duration & = 0.1s. The first panel shows
the initial condition of the system at 7 = 0, where each agent
has been randomly placed and the corresponding weights which
generate a equitable partition determined. In the second panel,
at T = 9, the agents have moved in the gradient direction which
causes each region to have a different area (the agents moved off
the constraint surface of equitable area). The last panel shows
the final state of the system at 7 = 54.2s. Each agent is at its
region’s centroid and the regions have equal measure.



SIMULATION OF 10 AGENTS PARTITIONING A POLYGON
ENVIRONMENT. DOTS ARE AGENTS’ LOCATIONS, AND THE DEN-
SITY FUNCTION IS SHOWN BY THE BACKGROUND COLOR

Figure 1.

6 Conclusion

We have studied the problem of how to optimally deploy a
set of agents over a convex workspace while each agent main-
tains a pre-specified area. We have designed a provably correct,
spatially distributed continuous-time policy that solves this op-
timization problem. We also proposed a method for implemen-
tation of the control policy and demonstrated its effectiveness in
simulation. This work leaves various extensions open for fur-
ther research. First, our approach is based on alternating phases,
during which we either improve the objective function, or en-
force the area constraint. In contrast to our current solution, we
would like to find a policy in which the agents converge to the
constraint surface while simultaneously optimizing the coverage
problem. Second, our policy requires synchronous and reliable
communication along the edges of the dual graph associated to
the Voronoi partition. It would then be worth to relax this re-
quirement, using asynchronous, event-based, or unreliable com-
munication: recent works in this direction include [10] and [11].
Third, our approach is based on the assumption that the envi-
ronment we partition is convex: finding policies that work over
non-convex environments would be of great practical use: works
in this direction include [12] and [13].
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