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Abstract. This paper studies the evolution of self-appraisal, social power, and interpersonal influences
for a group of individuals who discuss and form opinions about a sequence of issues. Our
empirical model combines the averaging rule of DeGroot to describe opinion formation
processes and the reflected appraisal mechanism of Friedkin to describe the dynamics of
individuals’ self-appraisal and social power. Given a set of relative interpersonal weights,
the DeGroot–Friedkin model predicts the evolution of the influence network governing the
opinion formation process. We provide a rigorous mathematical formulation of the influ-
ence network dynamics, characterize its equilibria, and establish its convergence properties
for all possible structures of the relative interpersonal weights and corresponding eigenvec-
tor centrality scores. The model predicts that the social power ranking among individuals
is asymptotically equal to their centrality ranking, that social power tends to accumulate
at the top of the hierarchy, and that an autocratic (resp., democratic) power structure
arises when the centrality scores are maximally nonuniform (resp., uniform).
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1. Introduction. The investigation of social networks has regularly attracted
contributions from applied mathematicians and social scientists over the last several
decades. Graph theory and matrix algebra have natural applications to such inves-
tigations; e.g., see the early monograph by Harary, Norman, and Cartwright [39].
Classic problems of interest include comparative static analyses of social network
structures [75, 24], functional implications of network structures [60], and numerical
taxonomies of nodes [69, 10]. Much ongoing interest is focusing on dynamic models
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of structural change [1, 25, 43, 54, 70] and on a broad range of dynamic processes
unfolding over static networks; examples include the study of social learning [35, 2],
opinion formation [23, 32], and information propagation [60, 57, 25]. The study of
dynamic models directly addresses one of the key problems of the field, which is to
understand the implications of social structures for relevant dynamical states of the
network. As Newman [60, p. 224] notes, “. . . the ultimate goal of the study of the
structure of networks is to understand and explain the workings of systems built upon
those networks.”

Many of the research problems of the field, which may be addressed with dynamic
models, are old ones that remain unsettled. A core set of these problems is defined
on social networks of individuals and their interpersonal relations. For such networks,
which may or may not be static, the literature features an accelerating number of pro-
posals of dynamic models for (a) mechanisms of network formation and transformation
(e.g., see [68, 42]) and (b) mechanisms by which individuals’ attitudes, opinions, and
behaviors toward particular objects (specific issues, events, institutions, leaders) are
modified by the displayed attitudes, opinions, and behaviors of other individuals to-
ward the same object (e.g., see [22, 40, 11, 2]). Research on these mechanisms is
now being rapidly advanced by an influx of investigators into the sociology field from
the natural and engineering sciences. The online social networks enabled by internet
and cell phone technologies provide accessible data for the investigation of social net-
work dynamics, and investigations of these data are being encouraged by large scale
corporate and government investments. This work is now appearing regularly in the
premier journals of science.

Opinion Dynamics in Networks. Inquiries into opinion dynamics draw on a
large preexisting empirical literature in experimental social psychology, i.e., the dis-
cipline of science devoted to the study of how individuals’ thoughts, feelings, and
behaviors are influenced by the actual, imagined, or implied presence of others [4]. It
should not be surprising that the accumulated findings of this discipline have a useful
bearing on formulations of opinion formation mechanisms. These findings point to
the social cognition foundations of interpersonal influence systems and the impor-
tance of individuals’ automatic-heuristic responses to objects. Individuals’ attitudes
toward objects, i.e., signed evaluative orientations of particular strengths, are often
automatically generated without conscious effort [7], and these attitudes are impor-
tant antecedents of displayed cognitive and behavioral orientations toward objects [3].
Automatically activated heuristic mechanisms of the mind appear to be more gener-
ally important bases of displayed opinions than rational calculations [46]. See [29, 32]
for reviews of these and other relevant lines of work in experimental social psychology.
The available empirical evidence is also consistent with the assumption that individ-
uals update their opinions as convex combinations of their own and others’ displayed
opinions, based on weights that are automatically generated by individuals in their
responses to the displayed opinions of other individuals. This specification appeared
in the literature on opinion dynamics in the early works by French [27], Harary [38],
and DeGroot [23]. Anderson’s information integration theory [5] is seminal in its effort
to secure the convex combination mechanism as a fundamental “cognitive algebra” of
the mind’s synthesis of heterogeneous information. Thus, interpersonal influence net-
works are social cognition structures assembled by individuals who are dealing with
a common issue.

In summary, independent work by investigators from different disciplines has
formulated a social influence network as a weight matrix W = [wij ] satisfying wij ∈
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[0, 1] for all i and j and
∑

j wij = 1 for all i (that is, W is row-stochastic). Each

edge of this network i
wij−−→ j, including loops i

wii−−→ i, represents the influence and
weight accorded by agent i to agent j. Representing the individuals’ opinions with a
real-valued vector y, the classic DeGroot model [23] is

(1.1) y(t+ 1) = Wy(t), t = 0, 1, 2, . . . .

According to the recent empirical data and comparative analysis in [18], the DeGroot
model outperforms Bayesian methods in describing social learning processes. An
attractive generalization of this model, proposed by Friedkin and Johnsen [31, 32], is
based on the introduction of a positive diagonal matrix Λ quantifying the extent to
which each individual is open to the influence of others rather than anchored to her
initial opinion:

(1.2) y(t+ 1) = ΛWy(t) + (In − Λ)y(0), t = 0, 1, 2, . . . .

Starting from these classic models, there is a developing line of work on convex com-
binations of real-valued opinions as a model for opinion dynamics in social networks.
In bounded-confidence models, each individual interacts with only those individu-
als whose opinions are close enough to its own: synchronous [40, 52, 11, 58] as well
as pairwise asynchronous [22, 74] updates have been studied. Significant attention
[35, 2, 8, 76, 59] has focused on opinion dynamic processes with exogenous inputs as
models for Bayesian and non-Bayesian learning in networks. Large societies have been
modeled as probability distributions over the opinion space in [9, 15]. The convex av-
eraging model is related to the study of Markov chains [65] and is relevant in several
other fields, including politics and economics [70], multiagent dynamical systems [44],
flocking models in biophysics [71], and behavioral ecology [64].

A separate line of work on opinion formation (e.g., see [63, 36, 72, 17]) focuses
on the development of binary-response threshold models and on social influence in
collective decision making. Central problems in these models are how individuals in a
society make (binary) decisions under the influence of others, and how individual de-
cisions aggregate under such influence. Many of these models are also constructed on
the assumption of a row-stochastic influence networkW , which, with binary responses,
presents the proportions of individuals’ neighbors who have adopted a particular po-
sition on an issue.

Evolving Influence Networks over Issue Sequences. This article studies the
evolution of an influence network in a group of individuals who form opinions on a
sequence of issues. Small groups within firms, deliberative bodies of government, and
other associations of individuals may be assembled ad hoc to deal with one issue,
or they may be constituted to deal with sequences of issues within particular issue
domains. For the latter enduring groups, their repetitive engagement with issues
opens the possibility of an evolution of the group’s influence network over an issue
sequence. Any of the existing models for opinion dynamics (over a single issue) may be
modified and extended to deal with the evolution of interpersonal influence structures
over a sequence of issues. Here we elaborate on the seminal DeGroot model

y(s, t+ 1) = W (s)y(s, t), s = 0, 1, 2, . . . , t = 0, 1, 2, . . . ,

where y(s, t) ∈ Rn and W (s) is static during t = 0, 1, 2, . . . . Our inquiry deals
with the evolution of the influence network over repetitions of the opinion formation
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process, that is, the evolution of W (s) over a sequence of issues s = 0, 1, 2, . . . . The
literature on opinion dynamics includes models for influence networks altering during
the discussion of a single issue, e.g., see the bounded-confidence models cited above.
Apart from Friedkin’s work [30], we have found no prior investigation on the evolution
of social power and influence networks across issues, even though groups that deal
with issue sequences are a prevalent feature of social organizations. Considering issue
sequences leads to new forms of network evolution that are of potential importance
in the fields of social organization and social psychology.

Our analysis of issue sequences and our proposed formalization of this evolution
is motivated by the sociological hypothesis of reflected appraisals; see the seminal
work by Cooley [21]. The general hypothesis is that individuals’ self-appraisals on
some dimension (e.g., self-confidence, self-esteem, self-efficacy) are influenced by the
appraisals by other individuals of them. This classic hypothesis is widely accepted and
empirically validated; e.g., see [33, 66, 77]. In the context of social influence networks,
the hypothesis is empirically supported by our empirical findings [30] that individuals’
self-reported self-weights, i.e., the values on the main diagonal of the weight matrix
W (s), s = 1, 2, . . . , are elevated or dampened in correspondence with individuals’
relative net control over the outcome of the previous issues discussed by the group.
In the context of the DeGroot model, self-weights correspond to individuals’ levels of
closure-openness to influence, and the relative control of an individual over an issue
outcome is naturally defined to be the average effect of that individual’s opinion on the
final opinions of all other individuals. In the language of Cartwright [16], individual
power is the ability to control outcomes of interest in social systems. Accordingly, we
adopt the term social power as a synonym for relative control over issue outcomes in
this paper.

Based on these empirical observations, this article combines DeGroot’s model (1.1)
of opinion dynamics, in which the influence network for a particular issue is fixed, with
Friedkin’s [30] formalization of the evolution of interpersonal influences in an issue se-
quence. We refer to the resulting dynamical process as the DeGroot–Friedkin model.
This dynamical model explains via a reflected appraisal mechanism the evolution of
individuals’ self-weights, that is, the evolution of the diagonal elements of the weight
matrix. Following the original study [30], we adopt the simplest possible assumption
on the off-diagonal values corresponding to the interpersonal weights. Consistent with
the unit row-sum constraint, we assume that each interpersonal weight wij(s), i ̸= j,
satisfies wij(s) = (1−wii(s))cij , where the relative interpersonal weights cij are static
and issue independent. A row-stochastic matrix [cij ] results by assuming zero diago-
nal elements. The assumption of static relative interpersonal weights may be relaxed
with an additional specification of a mechanism that also alters them across issues,
but we do not do so here.

As our treatment reveals, this static constraint structure plays an important role
in the evolution of self-weights solely through its eigenvector centrality. Eigenvector
centrality was first proposed by Bonacich [12] and has since been widely adopted to
determine the relative importance of an individual in a social influence network. Other
applications of eigenvector centrality and its variations include the ranking of college
football teams [48], the measure of producer status in a market [61], the prediction of
social mobility in a biological network [62], and the spread of behaviors (e.g., obesity,
smoking cessation, and happiness) in social networks [19, 20, 26]. Recent work [53]
details how localization and accumulation of centrality in power-law networks may be
undesirable; these features, however, appear as natural phenomena in our proposed
model. Theoretical approaches to centrality have recently become exceptionally useful
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in Google’s PageRank algorithm [13]. We refer the reader to [34] for a recent extensive
survey of eigenvector centrality, related notions, and applications. In its seminal ap-
plication to social networks, eigenvector centrality posits that individuals’ centralities
are a function of the centralities of other individuals adjacent to them. This paper
contributes a new perspective on eigenvector centrality as the ultimate unique driver
of an individual’s self-appraisal and social power in sequences of opinion formation
processes.

Contributions. We propose and analyze the DeGroot–Friedkin model for the
evolution of social influence networks subject to reflected appraisal. As a first step,
we provide an explicit and concise mathematical formulation of the reflected appraisal
mechanism for network evolution as a discrete-time nonlinear system defined over a
simplex. The state of this dynamical system is the measure of self-weight and social
power of the individuals. We show that the only parameter in the network dynamics is
the dominant left eigenvector of the row-stochastic matrix [cij ] describing the relative
interpersonal weights. As a second and extensive set of contributions, we characterize
the equilibria and the asymptotic convergence properties of this nonlinear dynamical
system. We provide a complete mathematical analysis under various assumptions on
the structural properties of the relative interpersonal weights; we allow the matrix
representation of these weights to be doubly stochastic, to have star topology, and
to be irreducible or reducible with globally reachable nodes (we review these notions
below). Finally, we examine our results numerically by applying the DeGroot–Friedkin
model to networks with different numbers of nodes, varying from a few dozen to a few
thousand, and to networks of different types, varying from highly clustered networks to
Erdős–Rényi networks. In particular, we illustrate the results on four social networks
observed in field settings.

The DeGroot–Friedkin model predicts the final asymptotic values for self-weight
and social power for each individual along the sequence of opinion formation processes.
These final values of self-weight and social power are independent of the correspond-
ing initial values and depend uniquely upon the relative interpersonal weights cij
accorded among individuals or, more precisely, upon the eigenvector centrality scores
defined by these weights. The final values have the following interpretations: (i) the
social power ranking among individuals is asymptotically equal to their eigenvector
centrality ranking; (ii) social power tends to accumulate in the hands of the top tier of
individuals at the expense of the individuals with lower eigenvector centrality scores;
and (iii) an autocratic (resp., democratic) power structure arises when the eigen-
vector centrality scores are maximally nonuniform (resp., uniform). An autocratic
power structure features an autocratic individual, who is maximally closed to inter-
personal influence, and n− 1 accommodative individuals, who are maximally open to
interpersonal influence. A democratic power structure features n individuals equally
contributing to the final opinion outcome.

These findings are of sociological interest in their advancement of the dynami-
cal foundations of power concentration in social groups. Our rigorous results for the
DeGroot–Friedkin model and the more pronounced simulation-based results for the
Friedkin–Johnsen model [30] suggest that influence networks evolve toward a concen-
tration of social power over issue outcomes, consistent with Michels’ [56] important
postulate of the existence of an “iron law of oligarchy” in social organizations. These
findings also more generally contribute to the rapidly growing literature on coevolu-
tionary networks, that is, networks in which feedback loops link structure and dy-
namics. We refer the interested reader to the survey by Gross and Blasius [37]. The
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work is also related to the literature on social network formation and coordination
games [42, 68] and, more broadly, to the study of complex networks and evolutionary
rules [6, 73].

Organization. The rest of the paper is organized as follows. Section 2 features
the DeGroot–Friedkin model and the notion of eigenvector centrality. Section 3
presents the analysis results for the two meaningful scenarios in which the relative
interpersonal influences either are doubly stochastic or have star topology. These sce-
narios correspond to the uniform centrality and the maximally nonuniform centrality
situations, respectively. The DeGroot–Friedkin model with general irreducible inter-
personal influences is characterized in section 4. Section 5 completes our analysis by
considering reducible relative interactions. Section 6 contains our conclusions and all
proofs are presented in the appendices.

Notation. For a vector x ∈ Rn, we let x ≥ 0 and x > 0 denote component-wise
inequalities. We adopt the shorthands n = [1, . . . , 1]T and n = [0, . . . , 0]T . For
i ∈ {1, . . . , n}, we let i be the ith basis vector with all entries equal to 0 except for
the ith entry equal to 1. Given x = [x1, . . . , xn]T ∈ Rn, we let diag(x) denote the
diagonal n×n matrix whose diagonal entries are x1, . . . , xn. The n-simplex ∆n is the
set {x ∈ Rn | x ≥ 0, T

nx = 1}; recall that the vertices of the simplex are the vectors
{ 1, . . . , n}. A nonnegative matrix is row-stochastic (resp., doubly stochastic) if all
its row sums are equal to 1 (resp., all its row and column sums are equal to 1). For a
nonnegative matrix M = {mij}i,j∈{1,...,n}, the associated digraph G(M) of M is the
directed graph with node set {1, . . . , n} and with edge set defined as follows: (i, j)
is a directed edge if and only if mij > 0. A nonnegative matrix M is irreducible if
its associated digraph is strongly connected; a nonnegative matrix is reducible if it is
not irreducible. An irreducible matrix M is aperiodic if it has only one eigenvalue of
maximum modulus. A vertex of a digraph is globally reachable if it can be reached
from any other vertex by traversing a directed path.

2. The DeGroot–Friedkin Model. In this section we incrementally introduce
and motivate the dynamical model for the evolution of the social influence network
and, in particular, of the self-weights. This model combines the DeGroot model for
the dynamics of opinions over a single issue and the Friedkin model for the dynamics
of self-weight and social power over a sequence of issues.

2.1. Origins and Model Derivation. We consider a group of n ≥ 2 individuals
who discuss a sequence of issues s ∈ Z≥0 according to a DeGroot opinion formation
model with issue-dependent influence matrices. Specifically, we assume the individu-
als’ opinions about each issue s are described by a trajectory t '→ y(s, t) ∈ Rn that is
determined by the DeGroot averaging model

(2.1) y(s, t+ 1) = W (s)y(s, t),

with given initial conditions yi(s, 0) for each individual i. Here, each influence matrix
in the sequence {W (s)}s∈Z≥0 is row-stochastic, i.e., for each issue s, each entry of
W (s) is nonnegative and each row sum of W (s) equals 1. On the discussion of issue
s, each individual i updates her opinion according to the convex combination

(2.2) yi(s, t+ 1) = wii(s)yi(s, t) +
∑n

j=1,j ̸=i
wij(s)yj(s, t),

in which, from a psychological viewpoint, the diagonal and the off-diagonal entries
of an influence matrix play conceptually distinct roles. Specifically, the diagonal
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self-weight wii(s) is the individual’s self-appraisal (e.g., self-confidence, self-esteem,
self-worth) and corresponds to the extent of closure-openness to the interpersonal
influence of the ith individual. The off-diagonal entries wij(s), j ̸= i, are interpersonal
weights accorded by each individual i to particular individual j based on j’s displayed
opinions.

The central object studied in this paper is the set of self-weights of the individuals.
For simplicity of notation, we adopt the shorthand xi(s) ∈ [0, 1] to denote the self-
weightwii(s) of the ith individual. Because 1−xi is the aggregated allocation of weight
to other individuals, we decompose the off-diagonal entries as wij(s) = (1− xi(s))cij ,
where the coefficients cij are the relative interpersonal weights that the ith individual
accords to other individuals. With cii = 0, the matrix C, which we refer to as the
relative interaction matrix, is row-stochastic with zero diagonal. This construction
assumes that, while the self-weights s '→ x(s) are issue-dependent, the matrix C is
issue-independent, that is, constant. With these notations and assumptions, each
influence matrix in the sequence is written as

W (x(s)) = diag(x(s)) + (In − diag(x(s)))C,(2.3)

and the opinion dynamic process (2.1) is equivalently rewritten as

(2.4) y(s, t+ 1) = W (x(s))y(s, t).

Now, for simplicity of exposition, we assume that the relative interaction matrix
C is irreducible or, equivalently, that its associated digraph is strongly connected. (A
more general treatment is possible and partly discussed in section 5.) Based on this
assumption and on some simple calculations reported in Appendix A, the Perron–
Frobenius Theorem for nonnegative matrices implies that the influence matrix W (x)
admits a unique left eigenvector w(x)T ≥ 0 associated with the eigenvalue 1, with
nonnegative entries and normalized to have unit sum so that T

nw(x) = 1. In other
words, w(x) ∈ ∆n. We refer to the row vector w(x)T as the dominant left eigenvector
of W (x) and we know it satisfies

lim
t→∞

W (x)t = nw(x)
T

for a broad range of self-weight vectors x specified below. According to this limit, the
DeGroot process (2.4) results in the well-understood opinion consensus

(2.5) lim
t→∞

y(s, t) =
(

lim
t→∞

W (x)t
)
y(s) =

(
w(x)T y(s)

)
n,

that is, the individuals’ opinions converge to a consensus value w(x)T y(s) equal to
a convex combination of their initial opinions y(s). The convex combination coef-
ficients w(x) mathematically describe the relative control of each individual. Note
that relative control in influence networks, i.e., the ability to control issue outcomes,
is precisely a manifestation of individual power, as defined in the seminal work by
Cartwright [16]. Alternative mechanisms and other forms of power exist (e.g., see
the concept of situational power in [67]), but in this paper we focus on power that is
based on interpersonal influence networks and sequences of issues. For this scenario,
we equivalently refer to wi(x) as both the relative control over discussion outcomes
as well as the social power of the ith individual.

Finally, our model is completed by prescribing how the self-weights s '→ x(s)
evolve from issue to issue. We adopt the psychological mechanism of reflected ap-
praisal, as reviewed in the introduction and mathematized by [30]. In this straight-
forward model, the self-weight of an individual is updated after each issue discussion

D
ow

nl
oa

de
d 

08
/3

1/
15

 to
 1

69
.2

31
.1

42
.1

05
. R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

374 P. JIA, A. MIRTABATABAEI, N. E. FRIEDKIN, AND F. BULLO

self-appraisal

reflected appraisal mechanism

x(s+ 1) = w(x(s))

x(s) W (x(s)) w(x(s))

influence network social power

Fig. 1 The dynamic feedback nature of the DeGroot–Friedkin model.

and is set equal to the relative control that the individual exerted over the prior issue
outcome. In short, the reflected appraisal mechanism “self-weight := relative control
over prior issue,” as illustrated in Figure 1, is written as

(2.6) x(s+ 1) = w(x(s)),

where w(x(s))T is the dominant left eigenvector for the influence matrix W (x(s)).
Notice that, for issue s ≥ 1, the self-weight vector x(s) necessarily takes values inside
∆n. It is therefore natural to assume that the self-weight vector takes values in ∆n

for all issues.
We conclude this modeling discussion with a summary definition.
Definition 2.1 (DeGroot–Friedkin model for the evolution of social influence

networks). Consider a group of n ≥ 2 individuals discussing a sequence of issues
s ∈ Z≥0. Let the row-stochastic zero-diagonal irreducible matrix C be the relative
interaction matrix encoding the relative interpersonal weights among the individuals.
The DeGroot–Friedkin model for the evolution of the self-weights s '→ x(s) ∈ ∆n is

x(s+ 1) = w(x(s)),

where w(x(s)) ∈ ∆n and w(x(s))T is the dominant left eigenvector of the influence
matrix

W (x(s)) = diag(x(s)) + (In − diag(x(s)))C.

From a sociological viewpoint, it is interesting to note that the evolution and
limiting values of the self-weights depend only upon the network structure and network
parameters as embodied in the relative interaction matrix C: the DeGroot–Friedkin
model is therefore a mechanistic explanation of how the social structure affects the
evolution of individuals’ extents of closure-openness to interpersonal influences and
relative control over group outcomes.

Generally speaking, the DeGroot–Friedkin model belongs to a class of coevolu-
tionary networks where the DeGroot dynamics describe the evolution of opinions over
a possibly constant influence network and the reflected appraisal mechanism describes
how the influence network evolves. In this paper, for simplicity, we assume that the
timescales for the two processes are separate: the opinion dynamics are faster than
the reflected appraisal dynamics in the influence network. In other words, opinion
consensus is achieved before individual self-weights are updated. We leave to future
work the study of scenarios in which the two processes take place over comparable
timescales.
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2.2. The Scope of the Model. A fundamental implicit assumption present in
the DeGroot–Friedkin model is that each individual perceives her relative control over
discussion outcomes. This assumption is well justified in two distinct settings. First,
for small and moderate size social groups, we argue that individuals are typically able
to directly perceive who shaped the discussion and whose opinion had an impact in
the final decisions. Such groups, composed of a few to a hundred individuals, include
deliberative assemblies, boards of directors, judiciary bodies (e.g., the U.S. Supreme
Court), policy making groups (e.g., the U.S. Senate), and faculty committees, to name
a few. These small and moderate size deliberative assemblies play an extraordinarily
important role in modern society.

Second, we believe our model is relevant even in large social groups, provided that
the individuals in those groups deals with a common issue sequence. While it is less
plausible for individuals to directly perceive their relative control over the outcomes
of these common issues, we propose here a natural dynamical process that allows
each individual to accurately estimate her perceived power. The dynamical process is
distributed in the sense that each individual only needs to interact with her influenced
neighbors (i.e., those who accord positive interpersonal weights to the individual). By
assuming that she is aware of the direct interpersonal weights accorded to her and the
perceived powers of her influenced neighbors, each individual updates her perceived
power as a convex combination of her own and her influenced neighbors’ perceived
powers. That is, in the discussion of each issue s, each individual i estimates her
perceived power pi(s, t) according to

(2.7) pi(s, t+ 1) = wii(s)pi(s, t) +
∑n

j=1,j ̸=i
wji(s)pj(s, t),

or, equivalently, p(s, t+ 1) = W (s)T p(s, t), where W (s) represents the influence ma-
trix associated to issue s. Following the same analysis leading to (2.5), we know that
limt→∞ p(s, t) = w(s) for all initial states p(s, 0) such that T

np(s, 0) = 1, where w(s)T

is the dominant left eigenvector of W (s). That is, for each issue s, the equilibrium
individual perceived power p∗i (s) := limt→∞ pi(s, t) obtained via the dynamical sys-
tem (2.7) is equal to the individual relative control wi(s) manifested in the DeGroot
process (2.5). In summary, we argue that even in large networks the relative control
over discussion outcomes can be perceived by individuals via the natural dynam-
ics (2.7), so long as the individuals are dealing with a common sequence of issues.

2.3. Problem Statement. We are now able to ask several interesting questions.
For example, we seek an explicit formulation of the DeGroot–Friedkin dynamics in
Definition 2.1. More importantly, we are interested in characterizing the existence,
stability, and region of attraction of the equilibria for the DeGroot–Friedkin model.
We begin by defining two specific vectors of self-weights that correspond to power
configurations of sociological interest.

First, suppose that at some issue s the vector of self-weights x(s) is equal to i,
for some individual i. Recall that i is a vertex in the simplex, where the self-weight
of agent i is maximal. Then one can show that, independent of the relative interaction
matrix C, the social power of the individual at issue s is also maximal: w( i) = i.
In other words, each i is an equilibrium of the DeGroot–Friedkin model. We refer
to this configuration of self-weights and corresponding social power as an autocratic
configuration with the ith individual being the autocrat. Autocracy is an equilibrium
point of the DeGroot–Friedkin model.
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Second, we call x = 1
n n the democratic configuration, whereby each individual

has an identical self-weight. One can show that 1
n n is an equilibrium of the DeGroot–

Friedkin model if and only if the relative interaction matrix C is doubly stochastic. In
other words, precisely when C is doubly stochastic, the model admits the democracy
configuration as an equilibrium, whereby the self-weight and social power of each
individual is equal to 1/n. In this case, the influence matrix is doubly stochastic and
the final opinion in (2.5) is the exact average of the initial opinions. If such structures
are unusual, then so is a democratic equilibrium.

In summary, this paper will address the following relevant questions: (i) Given an
arbitrary relative interaction matrix C, when is autocracy attractive? (ii) Is democ-
racy attractive when C is doubly stochastic, and what is its region of attraction? (iii)
Do equilibrium configurations exist that are similar to democracy for general matrices
C, and are they attractive?

2.4. Explicit Mathematical Modeling and Eigenvector Centrality. In this sub-
section we provide an explicit expression for the evolution of the DeGroot–Friedkin
model and establish some preliminary properties. Given a relative interaction matrix
C (row-stochastic with zero diagonal) that is irreducible, let cT = [c1, . . . , cn] be its
dominant left eigenvector, i.e., the left eigenvector associated with the eigenvalue 1,
with positive entries and normalized so that T

n c = 1. The existence and uniqueness
of this vector follow from the Perron–Frobenius theorem for nonnegative irreducible
matrices. (For simplicity we call c dominant, even if this wording is a slight abuse of
notation for irreducible matrices C that are periodic.)

Lemma 2.2 (explicit formulation of the DeGroot–Friedkin model). For n ≥ 2,
let cT be the dominant left eigenvector of the relative interaction matrix C ∈ Rn×n

that is row-stochastic, zero-diagonal, and irreducible. The DeGroot–Friedkin model is
equivalent to x(s+1) = F (x(s)), where F : ∆n → ∆n is a continuous map defined by

(2.8)

F (x) =

⎧
⎪⎨

⎪⎩

i if x = i for all i ∈ {1, . . . , n},
( c1
1− x1

, . . . ,
cn

1− xn

)T/ n∑

i=1

ci
1− xi

otherwise.

The result of Lemma 2.2 has several consequences. First, the map F defined
in Lemma 2.2 is continuous. This property is very convenient as it will allow us to
establish the existence and stability of certain critical points via a fixed-point theorem
and Lyapunov analysis, respectively. (The theory of Lyapunov functions for discrete-
time systems is discussed in [47], [49, Exercises 4.62–68], and [14, section 1.3].) Second,
Lemma 2.2 implies that the dominant left eigenvector cT of the relative interaction
matrix C plays a key role in the definition and analysis of the DeGroot–Friedkin
model. Specifically, the relative interaction matrix C plays no direct role and the
only parameter appearing in the DeGroot–Friedkin dynamic model is c ∈ ∆n.

In the language of [12], the entries of c are the eigenvector centrality scores for
the weighted digraph with adjacency matrix CT . In our setup, if one regards the row-
stochastic matrix C as an adjacency matrix, then its dominant right eigenvector n is
not informative, whereas it is precisely the left dominant eigenvector c that measures
the influence of a node on all others. In what follows, we refer to ci as the eigenvector
centrality score of the ith individual and we refer to the individual with the largest
entry of c, if it is unique, as the eigenvector center.

Motivated by the importance of the dominant left eigenvector, we briefly charac-
terize the eigenvector centrality scores associated to a row-stochastic, zero-diagonal,
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and irreducible matrix. If C is doubly stochastic, then we know c is maximally uniform
in the sense that all its entries are identical to 1/n. It is useful to study the case when
the entries of c are maximally nonuniform in some sense. Let G(C) be the digraph
associated to C. The digraph G(C) has star topology if there exists a node i, called
the center node, such that all directed edges of G(C) are either from or to node i.

Lemma 2.3 (eigenvector centrality for a digraph with star topology). For n ≥ 3,
let C be row-stochastic, irreducible, and zero-diagonal. Let cT be its dominant left
eigenvector and G(C) be its associated digraph. Then

(i) the centrality score of each node is at most 1/2, and
(ii) the centrality score of the ith node is 1/2 and is strictly larger than that for

every other node if and only if the digraph G(C) has star topology with center
node i.

For example, consider the star digraph in Figure 2 with row-stochastic adjacency
matrix

C =

⎡

⎣
0 1 0
1/2 0 1/2
0 1 0

⎤

⎦ .

As predicted, the dominant left eigenvector of C is cT = [1/4, 1/2, 1/4] and the
center node in the star topology is also the eigenvector center.

1 1

1/2 1/2

1 2 3

Fig. 2 Star topology with center node 2.

3. Influence Dynamics in Two Special Scenarios. In this section we begin the
mathematical analysis of the asymptotic behavior of DeGroot–Friedkin model. We
consider the two meaningful and extreme situations where the relative interaction
matrix C is doubly stochastic and where the digraph associated to C has star topology.
In the first situation, convergence to a uniform self-weight configuration is observed
from almost all initial conditions and a democratic power structure is achieved across
issues. The second situation instead leads to the emergence of an autocratic power
structure with a single leader from all initial conditions.

3.1. Doubly Stochastic Interactions and Democratic Influence Networks.
Consider the first case where the relative interaction matrix C is doubly stochastic,
i.e., each of its rows and columns sums to 1. Then its dominant left eigenvector is
T
n/n and so the DeGroot–Friedkin map simplifies to

F (x) =

⎧
⎪⎨

⎪⎩

i if x = i for all i ∈ {1, . . . , n},
( 1

1− x1
, . . . ,

1

1− xn

)T/ n∑

i=1

1

1− xi
otherwise.

Note that if n = 2, then C is always doubly stochastic and that, for any (x1, x2) ∈ ∆2

with strictly positive components, F satisfies F (x1, x2) = (x1, x2). We therefore
discard the trivial case n = 2. If n ≥ 3 and C is doubly stochastic, then the digraph
associated to C cannot have star topology.
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Lemma 3.1 (DeGroot–Friedkin model with doubly stochastic interactions). For
n ≥ 3, consider the DeGroot–Friedkin dynamical system x(s + 1) = F (x(s)) defined
by a relative interaction matrix C ∈ Rn×n that is row-stochastic, irreducible, and has
zero diagonal. If C is doubly stochastic, then

(i) (Equilibria:) the equilibrium points of F are the autocratic vertices { 1, . . . , n}
and the democratic configuration 1

n n.
(ii) (Convergence property:) for all nonautocratic initial conditions x(0) ∈ ∆n \

{ 1, . . . , n}, the self-weights x(s) and the social power w(x(s)) converge to
the democratic configuration 1

n n as s → ∞.

Some remarks are in order. First, property (ii) implies that the DeGroot pro-
cesses (2.4) result in opinion consensus on each issue along the sequence of issues,
where consensus opinions are equal to the average of the initial opinions. In other
words, a doubly stochastic relative interaction matrix C leads to a doubly stochastic
influence matrix W (x(s)) as s → ∞. A doubly stochastic influence matrix indicates a
democratic system where the social power of each individual is uniform. Second, let us
mention that the lemma follows from a Lyapunov function analysis: one can show that,
whenever x(0) ̸= n/n, the function s '→ max{x1(s), . . . , xn(s)}/min{x1(s), . . . , xn(s)}
is strictly decreasing and converges to 1 as s → ∞. In other words, the self-weight
difference between the two individuals with maximum self-weight and minimum self-
weight is monotonic and vanishes asymptotically (see Figure 3). Along the same
lines, one can show a monotonicity property: if the self-weight of the ith individual is
greater than that of the jth individual at the initial issue, then it will remain so for
all issues. In short, xi(0) > xj(0) implies xi(s) > xj(s) for all s ∈ Z≥0.

issue 0 issue 1 issue 3 . . . issue 7

Fig. 3 Emergence of democratic configurations: a trajectory for the DeGroot–Friedkin system with
eight nodes and a doubly stochastic C. The size of the nodes is proportional to the individual
self-weights x(s) and the width of the edges is proportional to the off-diagonal entries of the
influence matrix W (x(s)).

We present some example simulations in dimension n = 3. Trajectories of the
DeGroot–Friedkin dynamics with a doubly stochastic C are depicted in Figure 4. As
predicted, all trajectories converge to the democratic configuration 3/3.

3.2. Interactions with Star Topology and Autocratic Influence Networks.
Having characterized doubly stochastic and democratic structures, we now consider a
diametrically opposite scenario in which the digraph associated to the relative inter-
action matrix has star topology. We assume n ≥ 3 because the case n = 2 is trivial
(where C is necessarily symmetric and doubly stochastic).

Lemma 3.2 (DeGroot–Friedkin model with star topology). For n ≥ 3, consider
the DeGroot–Friedkin dynamical system x(s + 1) = F (x(s)) defined by a relative
interaction matrix C ∈ Rn×n that is row-stochastic, irreducible, and has zero diagonal.
If C has star topology with center node 1, then
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0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x1x2

x3

Fig. 4 DeGroot–Friedkin dynamics with a doubly stochastic C: every self-weight trajectory starting
from arbitrary initial states in ∆3 \ { 1, 2, 3} converges to the democratic configuration
3/3.

issue 0 issue 1 issue 2 . . . issue 13

Fig. 5 Emergence of autocratic configurations: a trajectory for the DeGroot–Friedkin system with
eight nodes and star topology. The size of the nodes is proportional to the individual self-
weights x(s) and the width of the edges is proportional to the off-diagonal entries of the
influence matrix W (x(s)).

(i) (Equilibria:) the equilibrium points of F are the autocratic vertices { 1, . . . , n}.
(ii) (Convergence property:) for all nonautocratic initial conditions x(0) ∈ ∆n \

{ 1, . . . , n}, the self-weights x(s) and the social power w(x(s)) converge to
the autocratic configuration 1 as s → ∞.

The result is interpreted as follows: for a DeGroot–Friedkin model with star
topology, the autocrat is predicted to appear on the center node along the sequence of
opinion formation processes, independent of the initial values in most scenarios (except
those autocratic states corresponding to the equilibrium points of F ); see Figure 5.
The proof of the lemma is based on a Lyapunov function argument: the social power
of the center individual is strictly increasing across issues and, asymptotically, the
opinion consensus resulting from the DeGroot process is equal to the initial opinion
of the autocrat individual.

For the relative interaction matrix of the digraph in Figure 2, Lemma 3.2 es-
tablishes that the vertices { 1, 2, 3} are the only equilibria and that all trajectories
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0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

x3

x1x2

Fig. 6 DeGroot–Friedkin dynamics with star topology as shown in Figure 2: every state trajectory
starting from several sample initial states in ∆3 \ { 1, 2, 3} converges to the vertex 2.

starting away from the equilibria converge to 2; these statements are illustrated by
Figure 6.

4. Influence Dynamics with Irreducible Relative Interactions. We now con-
sider the fairly general situation of a DeGroot–Friedkin dynamical system associated
with an irreducible relative interaction matrix C.

Theorem 4.1 (DeGroot–Friedkin model with row-stochastic interactions). For
n ≥ 3, consider the DeGroot–Friedkin dynamical system x(s + 1) = F (x(s)) defined
by a relative interaction matrix C ∈ Rn×n that is row-stochastic, irreducible, and has
zero diagonal. Assume the digraph associated to C does not have star topology and
let cT be the dominant left eigenvector of C. Then

(i) (Equilibria:) the set of equilibrium points of F is { 1, . . . , n, x∗}, where x∗

lies in the interior of the simplex ∆n and the ordering of the entries of x∗ is
equal to the ordering of the eigenvector centrality scores c.

(ii) (Convergence property:) for all nonautocratic initial conditions x(0) ∈ ∆n \
{ 1, . . . , n}, the self-weights x(s) and the social power w(x(s)) converge to
the equilibrium configuration x∗ as s → ∞.

According to this result, for a general C (i.e., an irreducible row-stochastic matrix
that is not necessarily column-stochastic nor has star topology), the vector of self-
weights x(s) converges to a unique equilibrium value x∗ from all initial conditions,
except the autocratic states. This equilibrium value x∗ is uniquely determined by
the eigenvector centrality score c. The entries of x∗ are strictly positive and have the
same ordering as that of c, that is, if the centrality scores satisfy ci > cj , then the
equilibrium social power x∗ satisfies x∗

i > x∗
j , and if ci = cj , then x∗

i = x∗
j . Our model

exhibits an additional interesting phenomenon, formally stated as follows.
Proposition 4.2 (social power accumulation). Under the same assumptions as

in Theorem 4.1, there exists a unique threshold cthrshld := 1 − (
∑n

i=1
ci

1−x∗
i
)−1 ∈ [0, 1]

such that
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(i) if cthrshld < 0.5, then every individual with centrality above the threshold (ci >
cthrshld) has social power larger than centrality (x∗

i > ci) and, conversely,
every individual with centrality below the threshold (ci < cthrshld) has social
power smaller than centrality (x∗

i < ci); moreover, individuals with ci =
cthrshld satisfy x∗

i = ci;
(ii) if cthrshld ≥ 0.5, then there exists only one individual with social power larger

than centrality x∗
i > ci and all other individuals have x∗

i < ci.
In other words, individuals with the large centrality scores have an equilibrium

social power that is larger than their respective centrality scores; in turn, the individ-
ual with the lowest centrality score has a lower equilibrium social power. There is an
accumulation of social power in the central nodes of the network. The accumulation
phenomenon is most evident for the star topology case (studied in Lemma 3.2): the
center individual with ci = 0.5 has a self-weight of 1, and all other individuals have
zero social powers even though they may have strictly positive centrality scores.

An Example Application to the Reduced Krackhardt’s Advice Network. In
[50] Krackhardt presents data about an advice network (partly illustrated in Figure 7)
in a manufacturing organization on the West Coast of the United States. The organi-
zation has 21 managers and the directed advice network C characterizes who sought
advice from whom. If individual i asks for advice from ni different individuals, then
we assume, as done, for example, in [43], that cij = 1/ni for j in these ni individuals,
and cik = 0 for all other individuals k. Moreover, self-weighting is not considered in
C, that is, cii = 0 for all i ∈ {1, . . . , 21}.

The complete Krackhardt’s network includes four managers (i.e., individuals 6,
13, 16, and 17) from whom no other individual requests advice. We will analyze the
case of reducible relative interaction matrices in the next section; for now, in this
section, we simulate a reduced Krackhardt’s advice network (as shown in Figure 7)
without these four source nodes (i.e., the nodes with zero in-degree and positive out-
degree) in the digraph associated to C. The complete Krackhardt’s advice network
will be analyzed in section 5 after the DeGroot–Friedkin influence dynamics with
reducible relative interactions are considered.

The reduced matrix C has a unique dominant left eigenvector

cT = [0.0609, 0.1302, 0.0383, 0.0547, 0.0022, 0.1378, 0.0078, 0.0141, 0.0239, . . . ,

0.0521, 0.0498, 0.0699, 0.0141, 0.0997, 0.0066, 0.0360, 0.2018].

We simulate the DeGroot–Friedkin model on this reduced Krackhardt’s advice net-
work with various initial states x(0) ∈ ∆17. The simulations show that all dynamical
trajectories converge to a unique equilibrium self-weight vector x∗ given by

x∗ = [0.0441, 0.1339, 0.0355, 0.048, 0.0018, 0.1473, 0.0062, 0.0134, 0.0215, . . . ,

0.049, 0.047, 0.0668, 0.0134, 0.1039, 0.0018, 0.0374, 0.229]T .

Comparing these two vectors c and x∗, it is clear that the ordering of the vector
components of x∗ is consistent with that of c, that is, x∗

i > x∗
j if and only if ci > cj for

i, j ∈ {1, . . . , 17}. This observation verifies statement (i) of Theorem 4.1. Meanwhile,
we can calculate cthrshld = 0.1183. In Figure 8, the social power accumulation is
observed such that ci > cthrshld implies x∗

i > ci, and ci < cthrshld implies x∗
i < ci, for

all i ∈ {1, . . . , 17}. This is consistent with Proposition 4.2.
The dynamical trajectories of the self-weights in the reduced Krackhardt’s advice

network generated by the DeGroot–Friedkin model are illustrated in Figure 9. Indi-
vidual 5 has the minimal eigenvector centrality score and her equilibrium self-weight
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Fig. 7 Reduced Krackhardt’s advice network
with 17 nodes: source nodes 6, 13, 16,
and 17 are excluded. This and all fol-
lowing network layouts are obtained via
the graph drawing algorithm described
in [41]. The grayscale of the nodes rep-
resents ci.
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Fig. 8 Comparison between eigenvector cen-
trality scores and DeGroot–Friedkin
equilibrium self-weights for the reduced
Krackhardt’s advice network: we com-
pute cthrshld = 0.1183 and verify ci >
cthrshld implies x∗

i > ci and ci <
cthrshld implies x∗

i < ci.
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Fig. 9 DeGroot–Friedkin self-weight dynamics for the reduced Krackhardt’s advice network: we
simulate the dynamics for ten distinct initial conditions and we display the trajectories of
six nodes under these ten initial conditions. The ten distinct initial states converge to a
unique self-weight configuration x∗ with the properties that x∗ is strictly positive and ci > cj
implies x∗

i > x∗
j .

(social power) is the minimum; individual 19 has the second smallest score and her
equilibrium social power is the second smallest; individual 8 advises only one neighbor
but her score is not the smallest, hence her social power is not the smallest; individual
2 advises the most neighbors but her score is not the largest, nor is her equilibrium
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social power; individual 7, the head of the organization, has the second largest score,
and her social power in the equilibrium is also the second largest; individual 21 has
the maximal score and indeed has the maximum equilibrium social power.

Further Discussion on the Convergence Behaviors. In the following numeri-
cal examples we illustrate the dynamical behaviors of the DeGroot–Friedkin model
on three social influence networks, including a discussion and advice network of a
commercial organization (for which the unpublished data were collected by Fried-
kin), a research relation network of Biological Sciences faculty at the University of
Chicago (circa 1978) [28], and a Facebook circle network [55]. The first two moderate
size networks contain 101 and 141 individuals, respectively, and the third relatively
large network has 4031 individuals. Just like the reduced Krackhardt’s advice net-
work, the relative errors of self-weights (with respect to the equilibria) are reduced
to O(10−8) in 4 or 5 iterations on all three networks. As shown in Figure 10, the
trajectory convergence rates of the DeGroot–Friedkin dynamical systems are essen-
tially independent of network size and initial self-weights, and there are no obvious
fluctuations along the trajectories. Additionally, we simulated our model extensively
over various network sizes composed of three to thousands of nodes and over differ-
ent types of networks, e.g., highly clustered networks or Erdős–Rényi networks. In
all our numerical experiments the DeGroot–Friedkin dynamical trajectories starting
from x(0) ∈ ∆n \ { 1, . . . , n} converge to sufficiently small neighborhoods of the
equilibria in only a few iterations. Moreover, in most numerical experiments we have
observed monotonic trajectories for all self-weights.
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Fig. 10 Three social networks: The images in the left column, middle column, and right column
represent the influence evolution on a commercial organization network with 101 nodes, a
faculty network with 141 nodes, and a Facebook circle network with 4031 nodes, respectively.
The top images illustrate two distinct trajectories (drawn with different colors) converging
to the unique equilibrium. In each network, ten nodes are randomly picked for easy reading.
The bottom images illustrate the relative errors between the self-weight trajectories and the
self-weight equilibria of all nodes.
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5. Influence Dynamics with Reducible Relative Interactions. The analysis in
the previous sections relies on the assumption that the relative interaction matrix
C is irreducible, i.e., the associated digraph is strongly connected. This assumption
does not always hold (e.g., in Krackhardt’s advice network): when C is reducible, the
social influence network is not strongly connected. In this section we assume that the
matrix C is reducible and its associated digraph has one or multiple globally reachable
nodes. In this case, the matrix C admits a dominant left eigenvector, the DeGroot
opinion dynamics (2.1) is always convergent, and the analysis of the DeGroot–Friedkin
model is essentially similar to that for an irreducible C. We leave for future work the
complete study of reducible cases.

We generalize Theorem 4.1 to the setting of reducible relative interaction matrices
C with globally reachable nodes. Without loss of generality, assume the globally
reachable nodes are {1, . . . ,m} for m ≤ n and let G(Cm) be the subgraph induced by
the globally reachable nodes. One can show that there exists no row-stochastic matrix
C with zero diagonal and a unique globally reachable node; we therefore assume
m ≥ 2. For simplicity of analysis, we assume that the subgraph G(Cm) is aperiodic
(otherwise, the dynamics of opinions about a single issue may exhibit oscillations
and not converge). Under these assumptions the DeGroot opinion dynamics is always
convergent. Indeed, the matrix C admits a unique dominant left eigenvector c with the
property that c1, . . . , cm are strictly positive and cm+1, . . . , cn are zero. Moreover, if
x ∈ ∆n\{ 1, . . . , n}, then we can show that there exists a unique w(x) ∈ ∆n such that
w(x)TW (x) = w(x)T , wm+1(x) = · · · = wn(x) = 0, and limt→∞ W (x)t = nw(x)T .
In other words, opinion consensus is always achieved and the individuals who are
not globally reachable in G(C) have no influence on the final opinion. Consequently,
there exists a unique nonautocratic equilibrium point x∗ such that x∗

1, . . . , x
∗
m are

strictly positive and x∗
m+1, . . . , x

∗
n are zero, and x(s) converges to x∗ asymptotically

as s → ∞ for all nonautocratic initial states x(0). This implies that the individuals
who are not globally reachable in G(C) have zero social power in the equilibrium
influence networks. Moreover, as for irreducible matrices C, social power accumulation
is observed in this case: there exists a threshold cthrshld := 1−(

∑n
i=1

ci
1−x∗

i
)−1 such that

any individual i with ci greater than cthrshld has more social power than that predicted
by the eigenvector centrality. In summary, the properties specified in Theorem 4.1
and Proposition 4.2 for irreducible matrices can be naturally adapted and remain
mostly unchanged for reducible matrices C with globally reachable nodes.

An Example Application to the Krackhardt’s Advice Network. The original
Krackhardt’s advice network (as illustrated in Figure 11 and introduced in [50]) is
connected and reducible with 17 globally reachable nodes. The associated matrix C
has a unique dominant left eigenvector

cT = [0.0470, 0.1320, 0.0388, 0.0516, 0.0022, 0, 0.1434, 0.0074, 0.0143, 0.0237, . . . ,

0.0528, 0.0512, 0, 0.0716, 0.0143, 0, 0, 0.1012, 0.0065, 0.0366, 0.2053].(5.1)

As predicted, the four source nodes {6, 13, 16, 17} in the digraph associated to C have
zero eigenvector centrality scores. We simulate the DeGroot–Friedkin model on this
Krackhardt’s advice network with 27000 randomly selected initial states x(0) ∈ ∆21.
The simulations show that all dynamical trajectories converge to a unique equilibrium
self-weight vector x∗ given by

x∗ = [0.0432, 0.1339, 0.0354, 0.0476, 0.0020, 0, 0.1478, 0.0065, 0.0128, 0.0212, . . . ,

0.0487, 0.0472, 0, 0.0674, 0.0127, 0, 0, 0.0987, 0.0058, 0.0332, 0.2360]T .(5.2)
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Fig. 11 Krackhardt’s advice network with
21 nodes: the four source nodes
{6, 13, 16, 17} are included and they
have zero eigenvector centrality
scores.
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Fig. 12 Comparison between eigenvector cen-
trality scores and DeGroot–Friedkin
equilibrium self-weights for the Krack-
hardt’s advice network: we compute
cthrshld = 0.1216 and verify ci > cthrshld
implies x∗

i > ci and 0 < ci < cthrshld
implies 0 < x∗

i < ci.

Comparing the two vectors c and x∗ given in (5.1) and (5.2), the ordering of the entries
of x∗ is consistent with that of c, that is, x∗

i > x∗
j if and only if ci > cj for i, j ∈

{1, . . . , 21}. Moreover, we can calculate cthrshld = 0.1216 and observe social power
accumulation in Figure 12, whereby ci > cthrshld implies x∗

i > ci and 0 < ci < cthrshld
implies 0 < x∗

i < ci for all i ∈ {1, . . . , 21}. This numerical example validates our claim
that Theorem 4.1 and Proposition 4.2 essentially hold true for the DeGroot–Friedkin
dynamical system associated with a reducible matrix C and with globally reachable
nodes.

6. Conclusion. This article studies the dynamics of opinions and influence rela-
tionships over a sequence of issues and, in doing so, extends and generalizes existing
models that focus on opinion dynamics over a single issue. Issue sequences are nat-
ural phenomena for enduring groups, and their occurrence raises the possibility of
the evolution of influence network typology across issues. Such evolution is poorly
understood. Our investigation is focused on one such evolutionary process, that is,
the adjustments of individuals’ levels of closure-openness to influence and their effect
on the content of the consensus that is generated by the DeGroot process [23] in a
sequence of issues. Our influence network evolution model is based on a natural “re-
flected appraisal” mechanism [30] that is well accepted in sociology. A fundamental
implicit assumption in this novel model is that individuals perceive their social power,
“know their place” in a social group, and adjust their levels of closure-openness and
accommodation accordingly. As we have discussed, we believe that this assumption
may hold not only for small and moderate size social groups, but also for large groups
that are dealing with a common issue sequence.

We have presented several novel results on the modeling and analysis of the dy-
namic evolution of influence networks via reflected appraisal. Based upon the classic
DeGroot averaging model for opinion dynamics and the recently proposed model of
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reflected appraisal, we have derived a concise explicit dynamical model for DeGroot–
Friedkin evolution and characterized completely its asymptotic properties. Our anal-
ysis leads to several important properties of the asymptotic influence network as a
function of an appropriately defined eigenvector centrality score: (i) there exists a
unique, invariant self-weight configuration associated with the eigenvector centrality
score vector; (ii) for all nontrivial (i.e., nonvertex) initial conditions, the individuals’
self-weights converge asymptotically to this unique equilibrium; (iii) the equilibrium
self-weights have the same ordering as that of the eigenvector centrality scores; and
(iv) the equilibrium self-weights (i.e., the social power) of the individuals with the
largest centrality scores are larger than their centrality scores. In other words, our
model predicts a tendency to accumulation of social power in the individual(s) with the
largest centrality score(s), except for the implausible special case of doubly stochastic
relative interaction matrices. Moreover, the proposed mechanism encourages autoc-
racy, because the mechanism dampens protest movements assembled by individuals
with low levels of relative control.

This paper presents only an introduction to social power and interpersonal influ-
ence evolution models and much work remains to be done in order to understand the
robustness of our formulation and its results. First, it would be valuable to extend
our analysis to opinion formation processes such as the Friedkin–Johnsen model (1.2),
where individuals have a tendency to anchor their evolving opinion in their initial val-
ues. For this case, the simulation-based results in [30] indicated a more pronounced
tendency to autocracy than what is predicted by our DeGroot–Friedkin model. On
the other hand, there may be conditions for which this tendency is less pronounced.
At the present time, we cannot assert robustness.

Second, interesting unexplored variations on our analysis include ones in which
the process of opinion dynamics and the process of reflected appraisal take place
over comparable timescales (that is, the individual self-weight xi is set equal to the
individual perceived power pi in (2.7) right after each opinion discussion iteration),
and under specifications that allow heterogeneous individual closure responses to rel-
ative control. A large literature exists in social psychology on conditions that may
affect individuals’ closure-openness to influence. We believe there are opportunities
for an investigative debate on useful alternative mechanisms that adjust the extents
of closure-openness to influence across issue sequences. Nevertheless, these extensions
may not be critical to our present results as some preliminary analysis on these mod-
ified models indicates that their asymptotic convergence behaviors and equilibria are
identical to those in the DeGroot–Friedkin model.

Third and finally, an assessment of the validity of the model has just begun. The
experiment reported by Friedkin [30] supports the postulated linkage for small groups
and short issue sequences. The strength of tendency for larger groups and longer
issue sequences is presently unknown. Future research will be directed at validating
the assumptions upon which our present work depends.

Appendix A. Properties of the Influence Matrix.
Lemma A.1. Given a self-weight vector x ∈ ∆n and a relative interaction (row-

stochastic and zero-diagonal) matrix C ∈ Rn×n that is irreducible, the following state-
ments hold:

(i) the influence matrix W (x), as defined in the decomposition (2.3), is nonneg-
ative and row-stochastic;

(ii) for all x ∈ ∆n, there exists a unique vector w(x) ∈ ∆n such that w(x)TW (x) =
w(x)T and limt→∞ W (x)t = nw(x)T ;
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(iii) if x ∈ ∆n \ { 1, . . . , n}, then W (x) is irreducible, the digraph associated to
W (x) is strongly connected, and w(x) > 0;

(iv) if x = i for some i ∈ {1, . . . , n}, then W ( i) is reducible, the node i is the
only globally reachable node in the digraph associated to W ( i), and w(x) = i;
and

(v) w( n/n) = n/n if and only if C is doubly stochastic.
Proof. Statement (i) is an immediate consequence of C being row-stochastic.

Moreover, if x ∈ ∆n\{ 1, . . . , n}, then the diagonal matrix In−diag(x) = diag( n−x)
has all diagonal elements strictly positive. Hence, the matrix (In −diag(x))C has the
same pattern of zero and positive entries as C. Because C is irreducible, W (x) is irre-
ducible. Hence, the existence, uniqueness, and other properties of the left eigenvector
w(x) are a restatement of the Perron–Frobenius theorem for irreducible matrices,
whereby the eigenvector w(x) is referred to as the Perron vector for W (x)T . This
completes the proof of statement (ii) for x ∈ ∆n \ { 1, . . . , n} and of statement (iii).

Next, regarding statement (iv), assume x = i for some i ∈ {1, . . . , n}. Without
loss of generality, let i = 1. Let C{2,...,n} be the (n − 1) × n matrix obtained by
removing the first row from C. Simple calculations show

W ( 1) = diag(1, 0, . . . , 0) + diag(0, 1, . . . , 1)C =

[
T
1

C{2,...,n}

]
,

which is a reducible matrix. In the strongly connected digraph associated to the
irreducible C, there exists a directed path from any node to node 1. Identical directed
paths exist in the digraph associated to W ( 1). Therefore, the node 1 is globally
reachable and, since it has no out-edge, it is the only globally reachable node in the
digraph associated to W ( 1). These assumptions are known to imply w( 1) = 1 and
limt→∞ W ( 1)t = n

T
1 .

Finally, regarding statement (v), let us compute

W ( n/n) = diag( n/n) + (In − diag( n/n))C = In/n+ (n− 1)C/n.

If C is doubly stochastic, then T
nW ( n/n) = T

n/n + (n − 1) T
n/n = T

n , which
implies W ( n/n) is doubly stochastic and w( n/n) = n/n. On the other hand, if
w( n/n) = n/n, then T

nW ( n/n) = T
n = T

n/n+(n−1) T
nC/n, which is equivalent

to T
nC = T

n ; that is, C is doubly stochastic, as claimed.

Appendix B. Proof of Lemma 2.2. Given the self-weight x(s) ∈ ∆n at issue
s, the subsequent self-weight vector is defined by W (x(s))T x(s + 1) = x(s + 1) and
x(s+ 1) ∈ ∆n. We are therefore interested in the equality

(
diag(x(s)) + (In − diag(x(s)))C

)T
x(s+ 1) = x(s+ 1).

Straightforward manipulation leads to
(
In −CT

)
diag

(
n − x(s)

)
x(s+ 1) = n. This

equality implies

(B.1) diag
(

n − x(s)
)
x(s+ 1) = CT diag

(
n − x(s)

)
x(s+ 1),

which implies that the vector xT (s + 1) diag
(

n − x(s)
)
is a left eigenvector of C

associated with eigenvalue 1. Therefore, x(s+1) ∈ ∆n satisfies diag
(

n − x(s)
)
x(s+

1) = α(s)c, where the scaling coefficient α(x) = 1/
∑n

i=1
ci

1−xi
is computed so that

T
nx(s + 1) = 1. In other words, we have (1 − xj(s))xj(s + 1) = α(s)cj for all

j ∈ {1, . . . , n}. If x(s) = i for some i ∈ {1, . . . , n}, we have proved that x(s+1) = i
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in Lemma A.1. If instead x(s) is not a vertex of the simplex, then xi(s) < 1 for all i

so that α(s) ̸= 0 and, therefore, xi(s+ 1) = α(s)ci
1−xi(s)

, or equivalently

x(s+ 1) = α(s)
( c1
1− x1(s)

, . . . ,
cn

1− xn(s)

)T
.

In other words, x(s + 1) = F (x(s)) as claimed in (2.8). Note that c > 0 as C is
irreducible. It remains to prove that the map F is continuous. By definition, F is
an analytic function on the domain ∆n \ { 1, . . . , n} and, therefore, it is continuous
in ∆n \ { 1, . . . , n}. Next, we show that the function F is locally Lipschitz at the
vertex i for each i ∈ {1, . . . , n}. For all x ∈ ∆n \ { i}, we write x = (1 − δ) i + δz,
where δ = (1 − xi) > 0 and z = (x − xi i)/δ is a point on the simplex and is
perpendicular to i. Note that x − i = ((1 − δ) i + δz) − i = −δ i + δz, hence
∥x − i∥ = δ∥z − i∥ > δ. We restrict our attention to a neighborhood of i where
δ < 1/2 so that we have minj∈{1,...,n}(1− δzj) > 1/2. As a result,

∥F (x)− F ( i)∥ =

∥∥∥∥∥∥∥

(
c1

1−δz1
, . . . ,

∑n
j=1,j ̸=i

−cj
1−δzj

, . . . , cn
1−δzn

)T

∑n
j=1,j ̸=i

cj
1−δzj

+ ci
δ

∥∥∥∥∥∥∥

<

∥∥∥∥∥∥∥

⎛

⎝ c1
1− δz1

, . . . ,
n∑

j=1,j ̸=i

−cj
1− δzj

, . . . ,
cn

1− δzn

⎞

⎠
T
/(ci

δ

)
∥∥∥∥∥∥∥

<
δ

ci minj∈{1,...,n}(1− δzj)
∥(c1, . . . , (ci − 1), . . . , cn)

T ∥

<
2δ

ci
∥c− i∥ <

2
√
2

ci
δ <

2
√
2

ci
∥x− i∥.

This inequality shows that F is locally Lipschitz continuous at i with Lipschitz
constant 2

√
2/ci for all i ∈ {1, . . . , n}. Therefore, F is continuous on ∆n.

Appendix C. Proof of Lemma 2.3. From the definition of the dominant left
eigenvector, ci =

∑
j∈{1,...,n}\{i} cjCji for all i ∈ {1, . . . , n}. Since C is row-stochastic,

Cij ∈ [0, 1] for all i, j ∈ {1, . . . , n}, so that

ci =
∑

j∈{1,...,n}\{i}

cjCji ≤
∑

j∈{1,...,n}\{i}

cj = 1− ci.

That implies max{c1, . . . , cn} ≤ 0.5. As C is irreducible, c > 0 implies that there
exists i ∈ {1, . . . , n} such that

∑
j∈{1,...,n}\{i} cjCji =

∑
j∈{1,...,n}\{i} cj if and only if

Cji = 1 for all j ∈ {1, . . . , n} \ {i}. That is to say, the corresponding G(C) has star
topology.

Appendix D. Proof of Lemma 3.1. Suppose C is doubly stochastic. Since
ci = cj for all i, j ∈ {1, . . . , n}, we have x∗

i = x∗
j directly from Theorem 4.1 (i) and,

therefore, x∗ = c = n/n. The remaining statements are simply the special case of
Theorem 4.1.

Appendix E. Proof of Lemma 3.2. Regarding statement (i), the equilibria of
the DeGroot–Friedkin dynamical system are the fixed points of the map F defined by
(2.8). It is easy to see that the vertices of ∆n are always fixed points. It remains to
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show that there does not exist an equilibrium in ∆n \ { 1, . . . , n} for G(C) with star
topology. By contradiction, assume there exists a vector x ∈ ∆n \ { 1, . . . , n} such
that x = F (x). The fixed-point equation x = F (x) implies xi(1 − xi) = ciα(x) > 0

for all i ∈ {1, . . . , n}, where the quantity α(x) =
(∑n

i=1 ci/(1 − xi)
)−1

is well-posed
because xi < 1 for all i ∈ {1, . . . , n} and ci is positive. Hence, xi > 0 for all i ∈
{1, . . . , n}. Because 1 = c1 +

∑n
j=2 cj and c1 = 0.5,

(E.1)
n∑

j=2

xj(1− xj) = (1− c1)α(x) = c1α(x) = x1(1− x1).

Note that n ≥ 3 and xj > 0 for j ∈ {2, . . . , n} together imply
xj

1− x1
< 1. Also note

that f(z) = z(1 − z) is a concave function for z ∈ [0, 1] so that f(az) > af(z) for all
0 < a < 1. Therefore, for a = xj

1−x1
< 1 and z = 1− x1, we have, for j ∈ {2, . . . , n},

f(az) = xj(1− xj) >
xj

1− x1
(1− x1)x1 = af(z).

In other words,
∑n

j=2 xj(1− xj) >
∑n

j=2
xj

1−x1
(1− x1)x1 = x1(1− x1), which contra-

dicts (E.1).
Regarding statement (ii), consider an initial state x ∈ ∆n \ { 1, . . . , n}. As

x1 ̸= 1, x1−F1(x) = x1−α(x)c1/(1−x1), where F1(x) is the first component of F (x)
and α(x) = (c1/(1− x1) +

∑n
j=2 cj/(1− xj))−1. If x1 = 0, then F1(x) = α(x)c1 > 0,

and hence x1 − F1(x) < 0. If x1 > 0, we claim that c1 = 0.5 implies

(E.2)
n∑

j=2

cj
1− xj

<
c1
x1

.

To show this claim we consider two possibilities: (1) if there exists k ∈ {2, . . . , n} such
that 1− xk = x1, then

n∑

j=2

cj
1− xj

=
ck

1− xk
+

n∑

j=2,j ̸=k

cj =
ck
x1

+ (c1 − ck) =
(1− x1)ck + x1c1

x1
<

c1
x1

,

where the last inequality follows from c1 > ck; (2) otherwise, if two or more entries
xj are strictly positive, then 1 − xj > x1 and

∑n
j=2

cj
1−xj

< 1
x1

∑n
j=2 cj = c1

x1
. This

establishes our claim.
Now, (E.2) implies

n∑

j=2

cj
1− xj

+
c1

1− x1
<

c1
x1

+
c1

1− x1
=

c1
(1− x1)x1

,

which is equivalent to α(x) > (1 − x1)x1/c1. Hence, x1 − F1(x) = c1
1−x1

( (1−x1)x1

c1
−

α(x)) < 0 for all x1 ̸= 1 and x1 − F1(x) = 0 for x1 = 1 by definition (2.8).
Define a Lyapunov function candidate V (x) = 1 − x1 for x ∈ ∆n. A sublevel

set of V is defined as {x | V (x) ≤ β} for a given constant β. It is clear that (1) any
sublevel set of V is compact and invariant, (2) V is strictly decreasing anywhere in
∆n \ { 1, . . . , n}, and (3) V and F are continuous. Consider now a sublevel set Wϵ

of V with β = 1− ϵ for small ϵ. Then, by the LaSalle Invariance Principle as stated
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in [14, Theorem 1.19], every trajectory starting in Wϵ converges asymptotically to
the equilibrium point 1. Moreover, by property (2), any initial condition x(0) /∈
{ 2, . . . , n} will satisfy V (F (x(0))) < 1. Therefore, by selecting 1− ϵ > V (F (x(0))),
we prove that every trajectory starting in ∆n \ { 2, . . . , n} converges asymptotically
to the equilibrium point 1.

Finally, given lims→∞ x(s) = 1 and given the definition of W (x) in (2.3),

lim
s→∞

W (x(s)) = W ( 1) =

[
T
1

C{2,...,n}

]
.

It is clear that T
1 W ( 1) = T

1 . Moreover, since the dominant left eigenvector of W (x)
is an analytic function of x near 1 (see [51]), we conclude lims→∞ w(x(s)) = 1.

Appendix F. Proof of Theorem 4.1. We start by proving statement (i) on the
existence and uniqueness of the equilibria. The vertices of ∆n are always fixed points
of the map F by (2.8). If there exists x ∈ ∆n \ { 1, . . . , n} with the property that
x = F (x) for nonstar G(C), then α(x) > 0 by definition. This implies that xi > 0 for
all i ∈ {1, . . . , n}. Therefore, no other point on the boundary of ∆n is a fixed point.

Regarding the existence of a nonvertex fixed point x∗, we introduce a positive
number r ≪ 1 and define the set A = {x ∈ ∆n | 1− r ≥ xi ≥ 0 for all i ∈ {1, . . . , n}}.
We claim that F (A) ⊂ A. For any x ∈ A and j ∈ {1, . . . , n}, we compute

Fj(x) =
α(x)cj
1 − xj

=
1

1 +
∑

k ̸=j ck/(1−xk)

cj/(1−xj)

≤ 1

1 +
∑

k ̸=j
ckr

cj(1−xk)

.

Because G(C) does not have star topology, Lemma 2.3 implies cj < 0.5 and, in turn,

∑

k ̸=j

ck
cj(1− xk)

>

∑
k ̸=j ck

cj
> 1,

which implies that there exists a sufficiently small r ≪ 1 such that

( ∑
k ̸=j ck

cj(1− xk)
− 1

)
r −

∑
k ̸=j ck

cj(1− xk)
r2 > 0

⇐⇒ 1

1 +
∑

k ̸=j ckr

cj(1−xk)

< 1− r ⇐⇒ Fj(x) < 1− r.

This fact establishes our claim that F (A) ⊂ A. Next, since F is a continuous map
on the compact set A, the Brouwer fixed-point theorem implies the existence of at
least one fixed point x∗ ∈ A. Moreover, since A ⊂ ∆n \ { 1, . . . , n} and there
is no other fixed point on the boundary of ∆n besides all vertices, then we know
x∗ ∈ interior(∆n).

In the following we first prove that the entry ordering of x∗ is consistent with that
of c on which the uniqueness of x∗ is built. If ci > cj, it is clear that x∗

i (1 − x∗
i ) >

x∗
j (1 − x∗

j ). Since 0 < x∗
i + x∗

j ≤ 1, we obtain x∗
i − x∗

j > 0 and x∗
i + x∗

j < 1, that is,
ci > cj implies that x∗

i > x∗
j for all i, j ∈ {1, . . . , n}. Moreover, if ci = cj, we know

x∗
i (1 − x∗

i ) = x∗
j (1− x∗

j ),(F.1)

which means x∗
i = x∗

j or x∗
i = 1 − x∗

j . Since all components of x∗ are nonzero and
n ≥ 3, it is clear that x∗

i < 1− x∗
j . Hence, the only solution of (F.1) is x∗

i = x∗
j .
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Regarding the uniqueness of x∗, if there exist two vectors x, z ∈ ∆n \ { 1, . . . , n}
with the property that x = F (x) and z = F (z), then, without loss of generality, we
can write xi(1− xi) = γzi(1− zi) for all i ∈ {1, . . . , n} and for some 0 < γ ≤ 1.

If γ = 1, then xi(1−xi) = zi(1−zi) for all i ∈ {1, . . . , n}. This implies that xi = zi
or xi = 1 − zi. If there exists at least one xj = 1 − zj ̸= zj for some j ∈ {1, . . . , n},
then

(F.2) 1 =
n∑

i=1

xi =
n∑

i=1,i̸=j

xi + xj =
n∑

i=1,i̸=j

xj +
n∑

i=1,i̸=j

zj .

For the remaining individuals, two cases may arise: First, if there exists another
individual k ̸= j such that xk = 1− zk, then

∑n
i=1,i̸=j xj +

∑n
i=1,i̸=j zj > 1, which is

a contradiction. Second, if all other i ∈ {1, . . . , n}, i ̸= j, satisfy xi = zi, then (F.2)
implies

1 = 2(1− zj) ⇐⇒ zj = 1− zj = 0.5,

which is another contradiction. Therefore, if γ = 1, then x = z.
If γ < 1, by assuming that c1 = max{c1, . . . , cn} we have x1 = max{x1, . . . , xn}

and z1 = max{z1, . . . , zn} from the consistent ordering statement above, which imply
xj < 0.5 and zj < 0.5, or equivalently xj + zj < 1 for all j ∈ {2, . . . , n}.

Since xj(1 − xj) = γzj(1 − zj) < zj(1 − zj) for γ < 1 and xj + zj < 1, we have
xj < zj for all j ∈ {2, . . . , n}, and, hence, x1 > z1. Moreover, for any j ∈ {2, . . . , n},

xj

x1
<

zj
z1

=⇒
∑n

i=2,i̸=j xi

x1
<

∑n
i=2,i̸=j zi

z1
(F.3)

⇐⇒
x1 +

∑n
i=2,i̸=j xi

x1
<

z1 +
∑n

i=2,i̸=j zi

z1

⇐⇒ 1− xj

x1
<

1− zj
z1

⇐⇒ 1− xj

1 − zj
<

x1

z1
.

From xj(1 − xj) = γzj(1 − zj) and the inequality (F.3), we obtain xjx1 > γzjz1 for
all j ∈ {2, . . . , n}, and

∑n
j=2 xjx1 > γ

∑n
j=2 zjz1, i.e., x1(1−x1) > γz1(1− z1), which

is a contradiction to x1(1−x1) = γz1(1− z1). Therefore, there exists a unique x such
that x = F (x) and x ∈ ∆n \ { 1, . . . , n}.

Next, we prove statement (ii) on the convergence analysis of the influence dy-
namics. We claim that for all initial conditions x(0) ∈ ∆n \ { 1, . . . , n}, the solution
{x(s)}s∈Z≥0 has the following properties:

(ii.1) if imax = argmaxk∈{1,...,n} xk(0)/x∗
k and imin = argmink∈{1,...,n} xk(0)/x∗

k,
then imax = argmaxk∈{1,...,n} xk(s)/x∗

k and imin = argmink∈{1,...,n} xk(s)/x∗
k

for all future issues s ∈ Z≥0;

(ii.2) if x(0) ̸= x∗, the function s '→ maxj∈{1,...,n} xj(s)/x
∗
j

minj∈{1,...,n} xj(s)/x∗
j
, for s ≥ 1 is bounded and

strictly decreasing;
(ii.3) lims→∞ x(s) = x∗; and
(ii.4) W (x(s)) converges to W (x∗) and w(x(s)) converges to x∗.
Given the equilibrium x∗ ∈ interior(∆n), we define the shorthands x̄i(s) =

xi(s)/x∗
i , x̄max(s) = maxj∈{1,...,n}{x̄j(s)}, and x̄min(s) = minj∈{1,...,n}{x̄j(s)}. The

properties of the trajectories x̄i(s) are given in Lemmas F.1 and F.2. Based upon
Lemma F.2, the proof of property (ii.1) follows if we can show that the inequalities
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1−xk(s)
1−ximax (s)

≥ 1−x∗
k

1−x∗
imax

and
1−ximin(s)

1−xk(s)
≥ 1−x∗

imin
1−x∗

k
hold for all k ∈ {1, . . . , n}. Indeed,

these inequalities are a direct result of Lemma F.1 (iii). Therefore, if x̄i(0) = x̄max(0),
then x̄i(s) = x̄max(s) for all s ∈ Z≥0. Similarly, we can show x̄j(s) = x̄min(s) for all
s ∈ Z≥0 if x̄j(0) = x̄min(0).

Regarding property (ii.2), without loss of generality, we assume x̄i(s) = x̄max(s)
and x̄j(s) = x̄min(s) for some i, j ∈ {1, . . . , n} and for s ≥ 1. One may check x(s) ∈
interior(∆n) for all s ≥ 1 and for all initial states x(0) ∈ ∆n \ { 1, . . . , n}, which
implies x̄min(s) > 0 when s ≥ 1. If x̄max(s) ̸= x̄min(s), then i ̸= j and

(F.4) x̄i(s) =
xi(s)

x∗
i

≥ 1− xj(s)

1− x∗
j

and x̄j(s) =
xj(s)

x∗
j

≤ 1− xi(s)

1− x∗
i

from Lemma F.1 (ii). Moreover, for n ≥ 3, we can show that the two inequalities

in (F.4) cannot hold as equalities at the same time: If both x̄i(s) = 1−xj(s)
1−x∗

j
and

x̄j(s) =
1−xi(s)
1−x∗

i
, we compute

x̄i(s) =
1− xj(s)

1− x∗
j

=
1− xj(s)− xi(s)

1− x∗
j − x∗

i

and x̄j(s) =
1− xi(s)

1− x∗
i

=
1− xj(s)− xi(s)

1− x∗
j − x∗

i

,

which means x̄i(s) = x̄j(s) and x̄max(s) = x̄min(s), which is a contradiction. There-
fore,

xi(s)

x∗
i

1− xi(s)

1− x∗
i

>
xj(s)

x∗
j

1− xj(s)

1− x∗
j

⇐⇒
xi(s)(1−xi(s))

ci
x∗
i (1−x∗

i )
ci

>

xj(s)(1−xj(s))
cj

x∗
j (1−x∗

j )

cj

(F.5)

⇐⇒ xi(s)(1 − xi(s))

ci
>

xj(s)(1 − xj(s))

cj

⇐⇒ xi(s)

xj(s)
>

ci(1 − xj(s))

cj(1− xi(s))
=

xi(s+ 1)

xj(s+ 1)
,

since x∗
i (1−x∗

i )
ci

=
x∗
j (1−x∗

j )

cj
. As a result of inequality (F.5), for x̄max(s) > x̄min(s) we

have

xi(s)

xj(s)
>

xi(s+ 1)

xj(s+ 1)
⇐⇒ xi(s)/x∗

i

xj(s)/x∗
j

>
xi(s+ 1)/x∗

i

xj(s+ 1)/x∗
j

⇐⇒ x̄max(s)

x̄min(s)
>

x̄max(s+ 1)

x̄min(s+ 1)
.

It is also clear that x̄max(s)
x̄min(s)

= x̄max(s+1)
x̄min(s+1) if and only if x̄max(s) = x̄min(s), or equivalently

x(s) = x∗, since x∗ is unique. Given an initial state x(0) ∈ ∆n \ { 1, . . . , n}, the
boundedness of x̄max(s)/x̄min(s) is obvious from nonzero unique x∗ and positive x(s)
for s ≥ 1.

Regarding property (ii.3), define the Lyapunov function candidate V (x(s)) =
x̄max(s)
x̄min(s)

and note that (1) any sublevel set of V is compact and invariant, (2) V is

strictly decreasing anywhere in interior(∆n) \ {x∗}, and (3) the function V and the
map F are continuous. Consider now a sublevel set Wβ = {x | V (x) ≤ β} of V for
β ≥ 1. Then, by the LaSalle Invariance Principle as stated in [14, Theorem 1.19],
every trajectory starting in Wβ converges asymptotically to the equilibrium point x∗.
Moreover, any initial condition x(0) ∈ ∆n\{ 1, . . . , n} will satisfy V (F (x(0))) ≤ ϵ for
some ϵ ≥ 1 depending upon x(0). Therefore, by selecting β = ϵ, we prove that every
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trajectory starting in ∆n \ { 1, . . . , n} converges asymptotically to the equilibrium
point x∗.

Finally, we prove statement (ii.4) on the convergence of influence matrices across
issues. Given lims→∞ x(s) = x∗ and given the definition of W (x) in (2.3), we have

lim
s→∞

W (x(s)) = W (x∗) = diag(x∗) + diag( n − x∗)C.

Since x∗T diag( n−x∗) is the dominant left eigenvector of C (see (B.1)), we compute

x∗TW (x∗) = x∗T diag(x∗) + x∗T diag( n − x∗)C

= x∗T diag(x∗) + x∗T diag( n − x∗) = x∗T .

Moreover, since the dominant left eigenvector of W (x) is an analytic function of x
near x∗ (see [51]), we conclude lims→∞ w(x(s)) = x∗.

Properties of xi(s)/x∗
i . Consider a DeGroot–Friedkin dynamical system x(s+

1) = F (x(s)). If there exists a unique equilibrium x∗ ∈ interior(∆n) such that
x∗ = F (x∗), then we denote x̄i(s) = xi(s)/x∗

i , x̄max(s) = maxi∈{1,...,n}{x̄i(s)}, and
x̄min(s) = mini∈{1,...,n}{x̄i(s)}.

Lemma F.1. For x(s) ∈ ∆n \ { 1, . . . , n}, if x̄i(s) = x̄max(s), then the following
statements hold true:

(i) x̄i(s) ≥ (1 − xi(s))/(1 − x∗
i ) and x̄i(s) ≥ 1, and, moreover, x̄i(s) > (1 −

xi(s))/(1 − x∗
i ) and x̄i(s) > 1 for x̄max(s) ̸= x̄min(s);

(ii) x̄i(s) ≥ (1 − xk(s))/(1− x∗
k) for all k ∈ {1, . . . , n};

(iii) (1 − xk(s))/(1 − x∗
k) ≥ (1 − xi(s))/(1 − x∗

i ) for all k ∈ {1, . . . , n}, and,
moreover, (1− xk(s))/(1 − x∗

k) > (1− xi(s))/(1 − x∗
i ) for x̄max(s) ̸= x̄min(s)

and i ̸= k.
Similarly, if x̄j(s) = x̄min(s), then the reverse properties of (i)–(iii) hold for x̄j(s) and
xj(s).

Proof. Regarding statement (i), since x̄i(s) = x̄max(s), for any k ∈ {1, . . . , n},

xi(s)/x
∗
i ≥ xk(s)/x

∗
k ⇐⇒ xi(s)x

∗
k/x

∗
i ≥ xk(s)

⇐⇒
∑

k∈{1,...,n}

xi(s)x
∗
k/x

∗
i ≥

∑

k∈{1,...,n}

xk(s) ⇐⇒ xi(s)/x
∗
i ≥ 1

⇐⇒ x̄i ≥ 1 ⇐⇒ xi(s)/x
∗
i ≥ (1− xi(s))/(1 − x∗

i ).

Moreover, if x̄max(s) ̸= x̄min(s), there exists at least one individual j, x̄j(s) = x̄min(s),
such that xi(s)x∗

j/x
∗
i > xj(s). Therefore,

∑

k∈{1,...,n}

xi(s)x
∗
k/x

∗
i >

∑

k∈{1,...,n}

xk(s) ⇐⇒ x̄i > 1

⇐⇒ xi(s)/x
∗
i > (1− xi(s))/(1 − x∗

i ).

Regarding statement (ii),

xi(s)/x
∗
i ≥ xk(s)/x

∗
k ∀k ∈ {1, . . . , n} ⇐⇒

∑

l ̸=k

xi(s)x
∗
ℓ/x

∗
i ≥

∑

l ̸=k

xℓ(s)

⇐⇒ xi(s)/x
∗
i ≥ (1− xk(s))/(1− x∗

k).
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Regarding statement (iii),

xi(s)− xk(s)

x∗
i − x∗

k

≥ xi(s)

x∗
i

≥ 1− xi(s)

1− x∗
i

⇐⇒ 1− xi(s) + xi(s)− xk(s)

1− x∗
i + x∗

i − x∗
k

≥ 1− xi(s)

1− x∗
i

⇐⇒ 1− xk(s)

1− x∗
k

≥ 1− xi(s)

1− x∗
i

.

Moreover, if x̄max(s) ̸= x̄min(s), based upon the results in statement (i), we have
xi(s)
x∗
i

> 1−xi(s)
1−x∗

i
, which implies that 1−xj(s)

1−x∗
j

> 1−xi(s)
1−x∗

i
.

The discussion of x̄min(s) is similar.
Lemma F.2. For any i, j ∈ {1, . . . , n} and x(s) ∈ ∆n \ { 1, . . . , n}, either

(1) if 1−xj(s)
1−xi(s)

≥ 1−x∗
j

1−x∗
i
, then x̄i(s + 1) ≥ x̄j(s + 1); or (2) if 1−xj(s)

1−xi(s)
<

1−x∗
j

1−x∗
i
, then

x̄i(s+ 1) < x̄j(s+ 1).
Proof. Since xi(s+ 1) = α(s)ci/(1− xi(s)) and x∗

i = α∗ci/(1− x∗
i ), we have

x̄i(s+ 1)

x̄j(s+ 1)
=

x∗
jxi(s+ 1)

x∗
i xj(s+ 1)

=
(1− x∗

i )(1− xj(s))

(1− x∗
j )(1− xi(s))

,

which implies the lemma statement immediately.

Appendix G. Proof of Proposition 4.2. Denote α∗ = 1/(
∑n

i=1
ci

1−x∗
i
). cthrshld =

1−α∗, or equivalently 1
1−cthrshld

=
∑n

i=1
ci

1−x∗
i
, which implies that min{x∗

1, . . . , x
∗
n} <

cthrshld < max{x∗
1, . . . , x

∗
n} for a non-doubly-stochastic C. Moreover, since F (x∗) =

x∗, for all i ∈ {1, . . . , n},

x∗
i (1− x∗

i )/ci = α∗ = cthrshld(1 − cthrshld)/cthrshld.(G.1)

For cthrshld < 0.5: First, if ci > cthrshld, then x∗
i (1 − x∗

i ) > ci(1 − ci). Since
ci < 0.5, it is clear that x∗

i > ci. Second, if ci < cthrshld, then x∗
i (1− x∗

i ) < ci(1− ci),
which implies x∗

i < ci or x∗
i > 1− ci > 0.5. Furthermore, since cthrshld < 0.5, we can

show cthrshld < max{c1, . . . , cn} (otherwise, if 0.5 > cthrshld ≥ max{c1, . . . , cn}, then
by statement (i) of Theorem 4.1 and (G.1) we can show cthrshld ≥ max{x∗

1, . . . , x
∗
n},

which is a contradiction). Thus, there exists another individual j such that cj > ci,
which by statement (i) of Theorem 4.1 implies x∗

j > x∗
i . Therefore, x∗

i < ci for
ci < cthrshld, otherwise, x∗

j > x∗
i > 0.5 contradicts the fact that x∗

j + x∗
i < 1. Third, if

ci = cthrshld, then x∗
i (1−x∗

i ) = ci(1− ci) from (G.1). Similarly, we can show x∗
i < 0.5

and hence x∗
i = ci.

For cthrshld ≥ 0.5: Denote x∗
max = max{x∗

1, . . . , x
∗
n} and cmax = max{c1, . . . , cn}.

By statement (i) of Theorem 4.1 and the fact that 0.5 ≤ cthrshld < x∗
max, there

exists only one individual denoted by imax associated with cmax and her equilibrium
self-weight is x∗

max. Since cthrshld < x∗
imax

, (G.1) implies cimax < x∗
imax

. For any other
individual j ̸= imax, we have cj < 0.5 ≤ cthrshld, which implies x∗

j (1−x∗
j ) < cthrshld(1−

cthrshld) from (G.1). As cthrshld + x∗
j < x∗

imax
+ x∗

j < 1, we obtain x∗
j < 0.5 ≤ cthrshld

and hence x∗
j < cj from (G.1).
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