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Abstract—A central question in the analysis and operation of
power networks is feasibility of the power flow equations subject
to security constraints. For large-scale networks the solution of
the nonlinear AC power flow equations can be constructed only
numerically or approximated through the linear DC power flow.
The latter serves as well-used approximation to obtain the phase
angle differences near an acceptable operating point, but the
accuracy of the DC approximation drops in a stressed grid.
Here, we propose a modified DC approximation that applies
to lossless networks with parametric uncertainties and with
voltage magnitudes bounded within security constraints. We show
that the phase angle differences can xbe well approximated by
the solution to a set of linear and interval-valued equations
reminiscent of the DC power flow equations. Our proposed
approximation improves upon the standard DC approximation, is
computationally attractive and provably exact for a broad range
of network topologies and parameters. We validate the accuracy
of our approximation through standard power network test cases
with randomized power demand at the loads.

I. INTRODUCTION

THE power flow equations are the basic mathematical
model underpinning the analysis, operation and planning

of power networks. A central question is “under which condi-
tions on the network parameters and topology and the load and
generation profile, does there exist an optimal [1], stable [2]–
[4], and robust [5]–[9] synchronous operating point”. A more
general concern is whether the power flow equations admit
any solution [10], [11] or an existing solution vanishes in a
saddle node bifurcation [12], [13]. Various security indices
have been proposed to quantify the robustness margin of
a particular operating condition [14]. The assessment of an
acceptable synchronous operating point and the quantification
of its robustness margin will become more and more important
in an increasingly complex, volatile, and stressed grid.

In general, analytic answers to the above questions are
known only for radial (acyclic) networks [1], [10], [14], only
loose conditions are known for arbitrary networks [5], [7],
[8], and various puzzling examples are known [6]. For more
complex networks, the above questions can be answered only
through numerical computation [15]. For large-scale networks,
a numerical treatment of the coupled active and reactive power
flow equations quickly becomes computationally expensive
and unfeasible. Hence, the DC power flow is the only viable
alternative [16] in large-scale systems. Furthermore, for many
applications, such as real-time contingency screening, security
assessment, and transmission planning, various parametric sce-
narios have to be examined which adds upon the computational
complexity, even in the DC case. One of the well-known
drawbacks of the DC power flow is that it is an accurate
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approximation only near an operating point with small phase
angle differences and nearly unit voltage magnitudes.

In this article, we leverage recent results in synchronization
theory [17] to improve upon the standard DC power flow
approximation. In particular, we are interested in the phase
angle differences obtained as solutions to the power flow
equations. We show that the angle differences can be well
approximated by the solution to a set of linear and interval-
valued equations reminiscent of the DC power flow equations.

As a first contribution, we propose a modified DC ap-
proximation to the lossless active power flow equations with
constant voltage magnitudes. Our proposed approximation is
computationally attractive, and is either provably exact or
satisfied with inequality and high accuracy for a broad range
of network topologies and parameters, including the cases
of small angle differences, bipolar angles, acyclic topologies,
complete topologies, small cycles, and combinations of these
networks. We validate our proposed approximation with a set
of randomized power network test cases, and we demonstrate
that it improves upon the accuracy obtained by the standard
DC approximation. As a second contribution, we construct
a set of interval-valued DC power flow equations to over-
approximate voltage variations and parametric uncertainties in
the coupled active and reactive power flow equations. We show
that solutions of the power flow equations can be efficiently
bounded by extremal solutions of the interval-valued DC
power flow equations. This interval-valued approach together
with our modified DC approximation is a powerful tool
for contingency screening and uncertainty analysis, and we
validate its accuracy for a set of randomized test cases.

The paper is organized as follows. Section II reviews the AC
power flow equations and their DC approximation. Section III
presents our modified DC approximation for constant and vari-
able voltages and parameters. Finally, Section IV concludes
the paper and suggests a few interesting applications.

II. REVIEW OF THE AC AND DC POWER FLOW

A. Review of the Lossless AC Power Flow Equations

For our purposes, a power network is a connected, undi-
rected, and complex-weighted graph G(V, E , Y ) (or equiva-
lently a linear circuit) with node set (or buses) V = {1, . . . , n},
edge set (or branches) E ⊂ V × V , and symmetric weights
(or admittances) Yij = Yji ∈ C for every undirected edge
{i, j} ∈ E . With every node i ∈ V , we associate the power
injection Si = Pi +

√
−1 · Qi ∈ C and the phasor variable

Vie
√−1·θi corresponding to the magnitude and the phase shift

of a harmonic solution to the AC circuit equations. In a high-
voltage transmission network, the lines are typically lossless
and inductive, that is, Yij ≈ −

√
−1 · Bij , where Bij > 0 is

the susceptance of the line {i, j} ∈ E . For a lossless network,



2

the power flow equations are obtained in polar coordinates as

Pi =
∑n

j=1
BijViVj sin(θi − θj) , i ∈ {1, . . . , n} , (1a)

Qi = −
∑n

j=1
BijViVj cos(θi − θj) , i ∈ {1, . . . , n}. (1b)

The variables of the power flow equations (1) are (θi, Vi) for
PQ-buses and (θi, Qi) for PV-buses. The power flow equations
(1) constitute a set of 2n coupled equations with trigonometric
and polynomial nonlinearities, and the solution space admits
a rich and complex phenomenology [6], [13]. For practical
power network operation, the solutions (θ∗, V ∗) of the power
flow equations (1) of interest satisfy the security constraints

|θ∗i − θ∗j | ≤ γij , {i, j} ∈ E , (2a)

0 < Vi ≤ V ∗i ≤ Vi , i ∈ {1, . . . , n} . (2b)

The security constraints limit the branch power flows and
prevent instabilities, and they typically range within γij ∈
[5◦, 25◦], Vi ≈ 0.95, and Vi ≈ 1.05 in per unit (p.u.) system.
In this paper, we are primarily interested in angular differences
over transmission lines, θi−θj for {i, j} ∈ E , which govern the
active flow and are responsible for rotor angle synchronism.

We do not assume the (mathematically convenient but phys-
ically doubtful) presence of a slack bus. Instead, we maintain
the rotational symmetry of the power flow, that is, if θ∗ is a
solution to the power flow equations (1), then a rigid rotation
of all angles yields another solution. A necessary condition for
solvability of the power flow equations (1) is

∑n
i=1 Pi = 0,

that is, that the active power injections must be balanced1.

B. Review of the DC Power Flow Equations
Due to local voltage control, due to adequate reactive

power support, or due to the classic power flow decoupling
assumption, all voltage magnitudes Vi in the active power
flow equations (1a) are of roughly unit value near an accept-
able operating point. Under the assumption Vi = 1 for all
i ∈ {1, . . . , n}, the active power flow equations (1a) reduce to

Pi =
∑n

j=1
Bij sin(θi − θj) , i ∈ {1, . . . , n} . (3)

Under nominal operating conditions, the angular distances over
transmission lines are “small”, and the equations (3) are com-
monly approximated by the DC power flow equations [16]:

Pi =
∑n

j=1
Bij , (δi − δj) , i ∈ {1, . . . , n} . (4)

Since the DC power flow (4) equations are sparse and linear,
they can be solved efficiently with reliable and non-iterative
methods and with minimal network data. The DC power flow
(4) can be conveniently rewritten in vector form as

P = Lδ , (5)

where δ = (δ1, . . . , δn), P = (P1, . . . , Pn), and L =
√
−1 ·

Y ∈ Rn×n is the Laplacian matrix (or susceptance matrix)
defined component-wise as Lij =−Bij for off-diagonal ele-
ments and Lii=

∑n
j=1Bij for diagonal elements. The solution

to the DC power flow equations (5) is uniquely determined up

1If
∑n

i=1 Pi 6= 0, then by summing over all equations (1a), we arrive at
the contradiction

∑n
i=1 Pi = 0, and the equations (1) are inconsistent.

to a rigid translation of all angles δ as δ∗ = L†P , where L† is
the Moore-Penrose pseudo-inverse of the Laplacian matrixL.

A standard Taylor series expansion yields that the phase
differences obtained by the DC power flow (4) approximate
those obtained by the AC power flow (3) for sufficiently small
angular differences |θ∗i − θ∗j | � 1 for all {i, j} ∈ E :

DC approximation: For the active power flow equations
(3) with solution θ∗ and the DC power flow equations (4)
with solution δ∗ = L†P , consider the approximation

θ∗i − θ∗j ≈ δ∗i − δ∗j for all {i, j} ∈ E . (6)

The DC approximation (6) is computationally attractive,
reasonably accurate, and well used in practice [16], but it may
perform poorly in volatile operating conditions. Unfortunately,
even when the accuracy of the DC approximation (6) is
doubtful, there is often no viable alternative in computationally
intensive applications such as large-scale power flow optimiza-
tion, contingency screening, and transmission planning.

III. ANALYTIC AND STATISTICAL RESULTS

In this section, we leverage our recent results [17] to
improve upon the DC approximation. The three subsections
consider the cases of constant voltage magnitudes, variable
voltage magnitudes, and uncertain network parameters.

A. Analytic Results for Constant Voltage Magnitudes

In this subsection, we assume constant voltage magnitudes,
and we improve upon the standard approximation of the active
power flow equations (3) via the DC power flow equations (4).
We propose the following modified DC approximation:

Modified DC approximation: For the active power flow
equations (3) with solution θ∗ and the DC power flow (4)
with solution δ∗ = L†P , consider the approximation

θ∗i − θ∗j ≈ arcsin(δ∗i − δ∗j ) for all {i, j} ∈ E . (7)

The approximation (7) can be nicely motivated in a cycle-
free network. In this case, a direct calculation shows that the
approximation (7) is exact since we can recover θ∗ from δ∗:

Pi =
∑n

j=1
Bij sin(θ

∗
i − θ∗j )

=
∑n

j=1
Bij sin(arcsin(δ

∗
i − δ∗j ))

=
∑n

j=1
Bij (δ

∗
i − δ∗j ) = Pi , i ∈ {1, . . . , n} .

On the other hand, if the network features cycles, then all
angular differences θ∗i − θ∗j (respectively δ∗i − δ∗j ) around a
cycle must sum to zero, whereas the corresponding terms
arcsin(δ∗i −δ∗j ) do not necessarily sum to zero. In this case, the
approximation (7) does not hold with exact equality. Finally,
notice that the proposed approximation (7) has no additional
computational cost compared to the DC approximation (6).

Whereas the standard DC power flow approximation (6) is
a first-order approximation for infinitesimally small difference
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angles, our modified DC approximation (7) can be derived as a
first-order approximation of the solution θ∗ in the cut-set space
of the network, where cycle constraints are neglected, see the
appendix of [17]. We showed in [17] that for a broad range of
topologies and parameters, the approximation (7) is exact and
holds with equality, or it holds at least with inequality, that is,

|θ∗i − θ∗j | ≤ arcsin(|δ∗i − δ∗j |) for all {i, j} ∈ E . (8)

In particular, for networks with extremal topologies and pa-
rameters, we have that the approximation (7) holds

1) with equality for the sparsest graphs (acyclic),
2) with inequality for the densest graphs (complete graphs

with homogeneous weights),
3) with equality for sufficiently aligned angles δ∗i ≈ δ∗j

for all {i, j} ∈ E (corresponding to small active power
flows | sin(θ∗i − θ∗j )| � 1 for all {i, j} ∈ E), and

4) with equality for bipolar angles δ∗i ∈ {+c,−c} for
some c ∈ [0, 1/2] and i ∈ {1, . . . , n} (corresponding to
bipolar active power flows sin(θ∗i −θj) ∈ {0,± sin(2c)}
for all {i, j} ∈ E).

Besides the extremal graphs 1) – 4), we also showed analyti-
cally that the approximation (7) holds

5) with inequality for small cycle graphs with cycles of
lengths 3 and 4,

6) with equality for arbitrary cycle graphs with symmetric
angles, where the histogram of the entries of δ∗ is
symmetric, and

7) with inequality for arbitrary one-connected combinations
of weighted graphs each satisfying properties 1)-6).

We also showed that the inequality condition (8) is statistically
correct [17] for a broad range of random networks of various
sizes, with different random graph topologies, with random-
ized weights Bij , and with randomized power injections Pi.
The precise mathematical statements can be found in [17].

It is well-known that many results and conjectures about the
solutions θ∗ to the power flow equations (3) fail to hold for
sufficiently large isolated cycles [1], [6], [10], [14]. Indeed, we
were able to construct a family of counter-examples consisting
of cycles of length 5 or larger, where inequality (8) fails with
an error of order 0.05. We remark that these examples are at
the boundary of the admissible parameter space (equations (3)
are feasible only with extremal power flows sin(θ∗i −θ∗j ) = ±1
for some lines) and do not seem to occur in generic networks.

B. Numerical Results for Constant Voltage Magnitudes

Obviously, real-world power networks are carefully engi-
neered, they cannot be represented by random graph models,
and they do not match the extremal graphs in 1) – 7). Hence, to
validate our approximation (7), we test its accuracy for various
power system test cases. In particular, we use the following test
cases found in found in [18]: 9 bus system by Chow, IEEE 14,
IEEE 30, IEEE 39 (New England), IEEE 57, IEEE 118, and
the Polish 2383 bus system (Winter 1999-2000 configuration).

In order to obtain a large pool of representative samples
under volatile operating conditions, we start from the above
test cases (with optimal generation and fixed voltage magni-
tudes) and modify them as follows: 1) We assume fluctuating
demand and randomize 50% of all loads to deviate from their

forecast with Gaussian statistics (with standard deviation 0.3
p.u.). 2) We assume that the grid is penetrated by renewables,
and we randomize 33% of all generating units to deviate
from the nominal generation with Gaussian statistics (with
standard deviation 0.3 p.u.). 3) To mitigate these fluctuations,
we assume that the grid is equipped with 10% fast-ramping
generation and 10% controllable loads, and the active power
imbalance (caused by fluctuating demand and generation) is
uniformly dispatched among these adjustable sources/sinks.

Since the above modifications are quite severe, they result
in heavily stressed grids with possibly unrealistically large
power flows. Thus, if a sample results in unrealistically high
difference angles, |θ∗i −θ∗j | ≥ π/4 = 45◦ for some {i, j} ∈ E ,
then it is discarded, and a new sample is constructed. The
statistical properties of the samples are reported in the second
and third column of Table I. It can be observed that the sampled
networks are stressed and feature large angle differences.

For each test case, we construct 1000 random realizations
of the scenario 1), 2), and 3) described above, we numerically
solve the active power flow equations (1a) and the DC power
flow equations (4). To evaluate the performance of the stan-
dard DC approximation (6) and our proposed modified DC
approximation (7), we define the worst-case errors2

eDC = max
{i,j}∈E

∣∣(θ∗i − θ∗j )− (δ∗i − δ∗j )∣∣ ,
emod-DC = max

{i,j}∈E

∣∣(θ∗i − θ∗j )− arcsin
(
δ∗i − δ∗j

)∣∣ . (9)

For each sample, we calculate the worst-case errors (9) and
then evaluate their statistics over all samples. Our findings are
reported in Table I. Observe that the proposed approximation
(7) is always at least as accurate as the standard DC approx-
imation (6). Both errors are comparable for the IEEE 57 and
the Polish grid. For all other cases the proposed approximation
(7) is more accurate, sometimes even by an entire order of
magnitude. An exemplary error distribution is shown in Fig. 1.
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Fig. 1. Histogram of the worst-case errors (9) for the IEEE 118 bus system.
Since the angular differences are limited to at most π/4, the DC approxi-
mation (6) is quite accurate on average, but the error distribution has long
and fat tails. In comparison, the proposed modified DC approximation (7) is
significantly more accurate and the error distribution has short and thin tails.

C. Analytic Results for Variable Voltage Magnitudes
Even under nominal operating conditions, the voltage mag-

nitudes are not constant, they may vary slowly, or they may be
known only with a certain degree of accuracy. To extend the

2Since for most lines the angular differences are small (see the mean values
in Table I), the two approximations (6) and (7) are identical for these lines.
Hence, we examine worst-case `∞ errors rather than `1 or `2 error norms.
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TABLE I
Properties of power system test cases with randomized loads and generation, statistics of the errors (9), and validation of the approximations (6) and (7).

randomized test case mean
1000 it.

max
1000 it.

mean accuracy variance accuracy worst accuracy

(all units are in [rad]) max
{i,j}∈E

|θ∗i −θ∗j | max
{i,j}∈E

|θ∗i −θ∗j | mean
1000 it.

eDC mean
1000 it.

emod-DC var
1000 it.

eDC var
1000 it.

emod-DC max
1000 it.

eDC max
1000 it.

emod-DC

Chow 9 bus system 0.1294 0.3208 4.101 · 10−4
∣∣ 5.243 · 10−5 1.698 · 10−7

∣∣ 6.627 · 10−9 4.460 · 10−3
∣∣ 1.067 · 10−3

IEEE 14 bus system 0.1641 0.3382 5.559 · 10−4
∣∣ 2.749 · 10−4 1.655 · 10−7

∣∣ 2.242 · 10−8 4.972 · 10−3
∣∣ 1.523 · 10−3

IEEE 30 bus system 0.1489 0.5123 7.457 · 10−4
∣∣ 1.652 · 10−4 1.741 · 10−6

∣∣ 7.765 · 10−8 2.212 · 10−2
∣∣ 3.506 · 10−3

New England 39 0.1683 0.1941 7.592 · 10−4
∣∣ 1.572 · 10−4 4.708 · 10−9

∣∣ 7.790 · 10−10 1.055 · 10−3
∣∣ 2.753 · 10−4

IEEE 57 bus system 0.2782 0.7632 1.392 · 10−2
∣∣ 1.556 · 10−2 2.413 · 10−3

∣∣ 3.531 · 10−3 6.575 · 10−1
∣∣ 6.585 · 10−1

IEEE 118 bus system 0.2318 0.3331 1.590 · 10−3
∣∣ 6.479 · 10−4 2.638 · 10−7

∣∣ 5.749 · 10−8 4.840 · 10−3
∣∣ 1.769 · 10−3

Polish 2383 bus system 0.2524 0.3878 1.592 · 10−3
∣∣ 1.404 · 10−3 6.002 · 10−7

∣∣ 6.192 · 10−7 1.423 · 10−2
∣∣ 1.449 · 10−2

results of the previous subsection to the unmodeled reactive
power flow equations (1b), we need to account for variable
voltage magnitudes Vi. In order to do so, we assume that each
voltage magnitude Vi can vary within pre-specified upper and
lower bounds as in (2b). Given the bounds (2b), the maximal
active power flows aij , BijViVj in (1) are bounded within

aij = Bij · Vi · Vj and aij = Bij · Vi · Vj , {i, j} ∈ E .

Next, we over-approximate the coupled power flow equations
(1) by the interval-valued active power flow equations

Pi =
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} , (10)

where aij ∈ [aj , aj ]. Notice that every solution θ∗ resulting
from the coupled active and reactive power flow equations (1)
can also be produced by the interval-valued active power flow
(10). Accordingly, define the interval-valued DC power flow

Pi =
∑n

j=1
aij (δi − δj) , i ∈ {1, . . . , n} . (11)

Based on classic circuit theory and interval-valued analysis, we
showed in [17] that extremal solutions δ∗ of the interval-valued
equations (11) are obtained for extremal parameter values, i.e,

min
aij∈[aj , aj ]

(
δ∗i − δ∗j

)
= min

aij∈{aj , aj}

(
δ∗i − δ∗j

)
, pmin

ij , (12a)

max
aij∈[aj , aj ]

(
δ∗i − δ∗j

)
= max

aij∈{aj , aj}

(
δ∗i − δ∗j

)
, pmax

ij . (12b)

Based on the bounds (12) and the results in Subsection III-A,
we propose the following approximation:

Modified interval-valued DC approximation: For the
power flow equations (1) with solution (θ∗, V ∗) satisfying
the voltage bounds (2b) and the interval-valued DC power
flow equations (4) with solutions δ∗ satisfying the bounds
(12), consider for all {i, j} ∈ E the approximation

arcsin(pmin
ij ) ≤ |θ∗i − θ∗j | ≤ arcsin(pmax

ij ). (13)

The exact evaluation of the approximation (13) is compu-
tationally expensive since all vertices of the parameter-space
aij ∈ [aj , aj ] need to be sampled in a combinatorial way to
obtain the quantities (12a)-(12b). In practice, we found that
randomized Monte Carlo sampling methods or simplex-type
algorithms perform well in practice and quickly deliver an
accurate estimate of the quantities (12a)-(12b). For certain
topologies, such as acyclic ones, it is also possible to ana-
lytically determine the maximizing vertices beforehand, and
the combinatorial quantities (12a)-(12b) reduce to scalar ones.

As a final remark, once the critical quantities (12a)-(12b)
are computed, the proposed approximation (13) can also be
replaced by the standard DC power flow approximation (6) as

pmin
ij ≤ |θ∗i − θ∗j | ≤ pmax

ij . (14)

D. Analytic Results for Parametric Network Uncertainties
The results in the previous subsection can also be extended

to parametric uncertainties, such as unknown or uncertain ac-
tive power demands or line characteristics. Hence, we consider
the power flow equations (1) subject to the variations

Pi ≤ Pi ≤ Pi , i ∈ {1, . . . , n} , (15a)

0 < Bij ≤ Bij ≤ Bij , {i, j} ∈ E . (15b)

If the voltage magnitudes satisfy the bounds (2b), then the
maximal active power flows aij , BijViVj are bounded within

aij = Bij · Vi · Vj and aij = Bij · Vi · Vj , {i, j} ∈ E .

Again, we consider the interval-valued active power flow (10)
and the associated interval-valued DC power flow (11) subject
to the voltage bounds (2b) and the parametric variations (10)
and (15). Analogously, we then obtain the extreme values

min

aij∈[aj , aj ] , Pi∈[Pi , Pi]

(
δ∗i − δ∗j

)
= min

aij∈{aj , aj} , Pi∈{Pi , Pi}

(
δ∗i − δ∗j

)
, pmin

ij ,

max

aij∈[aj , aj ] , Pi∈[Pi , Pi]

(
δ∗i − δ∗j

)
= max

aij∈{aj , aj} , Pi∈{Pi , Pi}

(
δ∗i − δ∗j

)
, pmax

ij .
(16)

With these estimates we can apply either of the approximations
(13) or (14) to obtain bounds on the angular differences.

E. Numerical Results for Variable Voltages and Injections
Similar to Subsection III-B, we evaluate the accuracy of

the proposed approximation (13) through randomized power
network test cases. We consider the same set of test cases as in
Subsection III-B. In comparison to Subsection III-B, we do not
assume fixed voltage magnitudes and rather solve the coupled
active and reactive power flow equations (1). We make the
following modifications for each test case: 1) We randomize
50% of all loads with Gaussian statistics with nominal reactive
power demands as mean and standard deviation 0.2 p.u.. The
active power demand is not modified. 2) For the modified
loads, we resolve optimal generator dispatch problem. Thus,
we obtain 1000 samples for each test case, where each sample
has different voltage magnitudes at all buses, different reactive
power demand at the loads, and different injections at the
generators. The statistical properties of these samples are
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TABLE II
Properties of power system test cases with randomized loads and optimal generation, statistics of the errors (17), and validation of the approximation (13).

randomized test case mean
i∈{1,...,n}

max
i∈{1,...,n}

mean
i∈{1,...,n}

max
i∈{1,...,n}

mean accuracy variance accuracy worst accuracy

(all units are in [rad]) max
1000 it.

Pi− min
1000 it.

Pi max
1000 it.

Pi− min
1000 it.

Pi max
1000 it.

Vi− min
1000 it.

Vi max
1000 it.

Vi− min
1000 it.

Vi mean

1000 it.,{i,j}∈E

e
(i,j)
mod-DC var

1000 it.,{i,j}∈E

e
(i,j)
mod-DC max

1000 it.,{i,j}∈E

e
(i,j)
mod-DC

Chow 9 bus system 8.751 · 10−9 3.887 · 10−8 0.0525 0.0812 2.063 · 10−2 9.523 · 10−14 1.007 · 10−1

IEEE 14 bus system 0.4797 2.6232 0.2000 0.2735 1.124 · 10−1 1.332 · 10−8 4.084 · 10−1

IEEE 30 bus system 0.1491 0.9908 0.3335 0.3823 5.434 · 10−2 5.451 · 10−8 2.947 · 10−1

New England 39 0.3787 4.3915 0.0305 0.0517 5.079 · 10−2 1.238 · 10−9 1.661 · 10−1

IEEE 57 bus system 0.3623 5.7588 0.4928 0.5988 1.656 · 10−1 3.233 · 10−7 8.757 · 10−1

IEEE 118 bus system 0.4703 5.2713 0.0592 0.1178 1.023 · 10−1 1.391 · 10−12 6.351 · 10−1

Polish 2383 bus system 0.1269 24.000 0.5352 0.7506 2.573 · 10−2 1.342 · 10−8 4.836 · 10−1

reported in Table II. Observe that the injections and voltage
magnitudes fluctuate severely, especially for large networks.

We use these 1000 samples to numerically evaluate the
accuracy of the approximations (13) and (14) for variable
voltages and parameter values, where pmin

ij and pmax
ij are com-

puted as in (16). Given the solution (θ∗, V ∗) of the power flow
equations (1), define the approximation errors for each branch:

e
(i,j)
mod-DC=max

{∣∣(θ∗i − θ∗j )− arcsin(pmin
ij )
∣∣ ,∣∣(θ∗i − θ∗j )− arcsin(pmax

ij )
∣∣} , (17)

e
(i,j)
DC =max

{∣∣(θ∗i − θ∗j )−pmin
ij

∣∣, ∣∣(θ∗i − θ∗j )−pmax
ij

∣∣}.
For each branch {i, j} ∈ E and each sample, we calculate
the errors (17), and then evaluate their statistics. Our findings
are reported in Table II and an exemplary error distribution
is shown in Fig. 2. Notice that Table II contains only the
approximation error emod-DC and not eDC. The reason is that
both errors are identical within an accuracy of 10−2 since all
networks have small phase differences. Observe that, despite
severe variations in generator power injections and voltage
magnitudes, the proposed approximation (13) is extremely
accurate in the mean. However, the worst-case values may
be up to a factor 10 larger and can be of the same magnitude
as the phase differences in Table II. We conclude that the
proposed approximation (13) is very accurate on average, but
for certain rare values of network parameters and voltage
magnitudes its accuracy drops and the results are conservative.
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Fig. 2. Histogram of all errors (17) for 1000 samples of the Polish grid. Since
the sampled networks have small angular differences, we obtain arcsin(δ∗i −
δ∗j ) ≈ δ∗i −δ∗j , and the two approximation errors in (17) are nearly identical.

IV. CONCLUSIONS

In this paper, we proposed a modified DC power flow
approximation, which is not necessarily restricted to small
angles, constant voltage magnitudes, and certain parameters.
Our results are provably exact for various interesting cases, and

we validated their accuracy with randomized power system test
cases. We envision that our modified DC approximation can
be used in various applications, such as security constrained
power flow optimization, transmission line planning, real-time
contingency screening, and online security assessment.
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