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Abstract

The emergence of synchronization in a network of coupled oscillators is a fascinating subject of multidisciplinary research.
This survey reviews the vast literature on the theory and the applications of complex oscillator networks. We focus on phase
oscillator models that are widespread in real-world synchronization phenomena, that generalize the celebrated Kuramoto
model, and that feature a rich phenomenology. We review the history and the countless applications of this model throughout
science and engineering. We justify the importance of the widespread coupled oscillator model as a locally canonical model
and describe some selected applications relevant to control scientists, including vehicle coordination, electric power networks,
and clock synchronization. We introduce the reader to several synchronization notions and performance estimates. We propose
analysis approaches to phase and frequency synchronization, phase balancing, pattern formation, and partial synchronization.
We present the sharpest known results about synchronization in networks of homogeneous and heterogeneous oscillators, with
complete or sparse interconnection topologies, and in finite-dimensional and infinite-dimensional settings. We conclude by
summarizing the limitations of existing analysis methods and by highlighting some directions for future research.

1 Introduction

Synchronization in networks of coupled oscillators is a
pervasive topic in various scientific disciplines ranging
from biology, physics, and chemistry to social networks
and technological applications. A coupled oscillator net-
work is characterized by a population of heterogeneous
oscillators and a graph describing the interaction among
the oscillators. These two ingredients give rise to a rich
dynamic behavior that keeps on fascinating the scientific
community.

Within the rich modeling phenomenology on synchro-
nization among coupled oscillators, this article focuses
on the widely adapted model of a continuous-time and
periodic limit-cycle oscillator network with continuous,
bidirectional, and antisymmetric coupling. We consider
a system of n oscillators, each characterized by a phase
angle θi ∈ S1 and a natural rotation frequency ωi ∈ R.
The dynamics of each isolated oscillator are thus θ̇i = ωi
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for i ∈ {1, . . . , n}. The interaction topology and coupling
strength among the oscillators are modeled by a con-
nected, undirected, and weighted graph G = (V, E , A)
with nodes V = {1, . . . , n}, edges E ⊂ V×V, and positive
weights aij = aji > 0 for each undirected edge {i, j} ∈ E .
The interaction between neighboring oscillators is as-
sumed to be additive, anti-symmetric, diffusive, 1 and
proportional to the coupling strengths aij . In this case,
the simplest 2π-periodic interaction function between
neighboring oscillators {i, j} ∈ E is aij sin(θi − θj), and
the overall model of coupled phase oscillators reads as

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} . (1)

Despite its apparent simplicity, this coupled oscillator
model gives rise to rich dynamic behavior, and it is en-
countered in many scientific disciplines ranging from
natural and life sciences to engineering. This article sur-
veys recent results and applications of the coupled oscil-
lator model (1) and of its variations.

The motivations for this survey are manifold. Recent

1 The interaction between two oscillators is diffusive if its
strength depends on the corresponding phase difference; such
interactions arise for example in the discretization of the
Laplace operator in diffusive partial differential equations.
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years have witnessed much theoretical progress and
novel applications, which are not covered in existing
surveys (Strogatz, 2000; Acebrón et al., 2005; Arenas
et al., 2008; Dorogovtsev et al., 2008) published in the
physics literature. Indeed, control scientists have shown
an increasing interest in complex networks of coupled
oscillators and have recently contributed many novel
approaches and results. Much of this interest has fo-
cused on (i) synchronization rather than more complex
dynamic phenomena, (ii) finite numbers of oscillators
with a non-trivial interaction topology, and (iii) con-
nections with graph theory and multi-agent systems. It
is therefore timely to provide a comprehensive review
in a unified control-theoretical language of the best
known results in this area. With this aim, this survey
provides a systems and control perspective to coupled
oscillator networks, focusing on quantitative results and
control-relevant applications in sciences and technology.

1.1 Mechanical Analog and Basic Phenomenology

A mechanical analog of the coupled oscillator model (1)
is the spring network shown in Fig. 1. This network
consists of a group of particles constrained to move on
a unit circle and assumed to move without colliding.
Each particle is characterized by its angle θi ∈ S1 and
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Fig. 1. Mechanical analog of a coupled oscillator network

frequency θ̇i ∈ R, and its inertial and damping coef-
ficients are Mi > 0 and Di > 0. Pairs of interacting
particles i and j are coupled through a linear-elastic
spring with stiffness kij > 0. The external forces and
torques acting on each particle are a viscous damping
force Diθ̇i opposing the direction of motion, an external
driving torque τi ∈ R, and an elastic restoring torque
kij sin(θi − θj) between pairs of interacting particles.
The overall spring network is modeled by a graph, whose
nodes are the particles, whose edges are the linear-elastic
springs, and whose edge weights are the positive stiff-
ness coefficients kij = kji. Under these assumptions, it
can be shown (Dörfler et al., 2013) that the system of
spring-interconnected particles obeys the dynamics

Miθ̈i+Diθ̇i = τi−
∑n

j=1
kij sin(θi−θj) , i ∈ {1, . . . , n}.

(2)

In the limit of small masses Mi and uniformly-high vis-
cous damping D = Di, that is, Mi/D ≈ 0, we recover
the coupled oscillator dynamics (1) from its mechanical
analog (2) with natural rotation frequencies ωi = τi/D
and with coupling strenghts aij = kij/D.

The mechanical analog in Fig. 1 illustrates the basic phe-
nomenology displayed by the oscillator network (1). The
spring-interconnected particles are subject to a compe-
tition between the external driving forces ωi and the in-
ternal restoring torques aij sin(θi−θj). Hence, the inter-
esting coupled oscillator dynamics (1) arise from a trade-
off between each oscillator’s tendency to align with its
natural frequency ωi and the synchronization-enforcing
coupling aij sin(θi − θj) with its neighbors. Intuitively,
a weakly coupled and strongly heterogeneous (i.e., with
strongly dissimilar natural frequencies) network does not
display any coherent behavior, whereas a strongly cou-
pled and sufficiently homogeneous network is amenable
to synchronization, where all frequencies θ̇i(t) or even
all phases θi(t) become aligned.

1.2 History, Related Applications, and Theoretical De-
velopments:

A brief history of synchronization: The scientific in-
terest in synchronization of coupled oscillators can be
traced back to the work by Huygens (1893) on “an odd
kind of sympathy” between coupled pendulum clocks,
locking phenomena in circuits and radio technology (Ap-
pleton, 1922; Van Der Pol, 1927; Adler, 1946), mutual
influence of organ pipes (Rayleigh, 1896), the analysis of
brain waves and self-organizing systems (Wiener, 1948,
1958), and it still fascinates the scientific community
nowadays (Winfree, 2001; Strogatz, 2003). We refer to
Pikovsky et al. (2003) and Blekhman (1988) for a de-
tailed historical account of synchronization studies.

A variation of the considered coupled oscillator
model (1) was first proposed by Winfree (1967). Winfree
considered general (not necessarily sinusoidal) interac-
tions among the oscillators. He discovered a phase tran-
sition from incoherent behavior with dispersed phases
to synchrony with aligned frequencies and coherent (i.e.,
nearby) phases. Winfree found that this phase transi-
tion depends on the trade-off between the heterogeneity
of the oscillator population and the strength of the mu-
tual coupling, which he could formulate by parametric
thresholds. However, Winfree’s model was too general to
be analytically tractable. Inspired by these works, Ku-
ramoto (1975) simplified Winfree’s model and arrived
at the coupled oscillator dynamics (1) with a complete
interaction graph and uniform weights aij = K/n:

θ̇i = ωi−
K

n

∑n

j=1
sin(θi−θj) , i ∈ {1, . . . , n} . (3)

In an ingenious analysis, Kuramoto (1975, 1984a)
showed that synchronization occurs in the model (3) if
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the coupling gain K exceeds a certain threshold Kcritical

function of the distribution of the natural frequencies ωi.
The dynamics (3) are nowadays known as the Kuramoto
model of coupled oscillators, and Kuramoto’s original
work initiated a broad stream of research. A compelling
historical perspective is offered by Strogatz (2000). We
also recommend the surveys by Acebrón et al. (2005),
Dorogovtsev et al. (2008), and Arenas et al. (2008).

Canonical model and prototypical example:
Diffusively-coupled phase oscillators appear to be quite
specific at first glance, but they are locally canonical
models for weakly coupled and periodic limit-cycle oscil-
lators (Hoppensteadt and Izhikevich, 1997). This fact is
established in work by the computational neuroscience
community which has developed different approaches
(Ermentrout and Kopell, 1984, 1991; Hoppensteadt
and Izhikevich, 1997; Izhikevich and Kuramoto, 2006;
Izhikevich, 2007) to reduce general periodic limit-cycle
oscillators and weak interaction models to diffusively-
coupled phase oscillator networks of the form

θ̇i = ωi +
∑n

j=1
hij(θi − θj) , (4)

where hij : S1 → R are 2π-periodic coupling functions.
Among such phase oscillators networks, the often en-
countered and most thoroughly studied case is that of
anti-symmetric coupling without higher-order harmon-
ics, that is, the oscillator network (1) with sinusoidal cou-
pling. Moreover, the coupled oscillator model (1) serves
as the prototypical example for synchronization in com-
plex networks (Strogatz, 2001; Boccaletti et al., 2006;
Osipov et al., 2007; Suykens and Osipov, 2008; Arenas
et al., 2008), and its linearization is the well-known con-
sensus protocol studied in networked control, see the
surveys and monographs (Olfati-Saber et al., 2007; Ren
et al., 2007; Bullo et al., 2009; Garin and Schenato, 2010;
Mesbahi and Egerstedt, 2010). Indeed, numerous control
scientists explored the coupled oscillator model (1) as a
nonlinear generalization of the consensus protocol (Jad-
babaie et al., 2004; Moreau, 2005; Scardovi et al., 2007;
Olfati-Saber, 2006; Lin et al., 2007; Chopra and Spong,
2009; Sarlette and Sepulchre, 2009; Sepulchre, 2011).

The importance of phase oscillator networks does not
stem only from their importance as local canonical mod-
els. Often they are naturally encountered in applications
by first-principle modeling, as phenomenological models,
or as a result of control design. In the following, we review
a set of selected applications in sciences and technology.

Applications in sciences: The coupled oscillator
model (1) and its generalization (4) appear in the study
of biological synchronization and rhythmic phenomena.
Example systems include pacemaker cells in the heart
(Michaels et al., 1987), circadian cells in the brain (Liu
et al., 1997), coupled cortical neurons (Crook et al.,
1997), Hodgkin-Huxley neurons (Brown et al., 2003),

brain networks (Varela et al., 2001), yeast cells (Ghosh
et al., 1971), flashing fireflies (Buck, 1988; Ermentrout,
1991), chirping crickets (Walker, 1969), central pattern
generators for animal locomotion (Kopell and Ermen-
trout, 1988), particle models mimicking animal flock-
ing behavior (Ha et al., 2010b, 2011), and fish schools
(Paley et al., 2007), among others. The coupled oscil-
lator model (1) also appears in physics and chemistry
in modeling and analysis of spin glass models (Daido,
1992; Jongen et al., 2001), flavor evolution of neutri-
nos (Pantaleone, 1998), coupled Josephson junctions
(Wiesenfeld et al., 1998), coupled metronomes (Pantale-
one, 2002), Huygen’s coupled pendulum clocks (Bennett
et al., 2002; Kapitaniak et al., 2012), micromechanical
oscillators with optical (Zhang et al., 2012) or mechan-
ical (Shim et al., 2007) coupling, and in the analysis
of chemical oscillations (Kuramoto, 1984a; Kiss et al.,
2002). Finally, oscillator networks of the form (1) also
serve as phenomenological models for synchronization
phenomena in social networks, such as rhythmic ap-
plause (Néda et al., 2000), opinion dynamics (Pluchino
et al., 2006a,b), pedestrian crowd synchrony on Lon-
don’s Millennium bridge (Strogatz et al., 2005), and
decision making in animal groups (Leonard et al., 2012).

Applications in engineering: Technological applica-
tions of the coupled oscillator model (1) and its general-
ization (4) include deep brain stimulation (Tass, 2003;
Nabi and Moehlis, 2011; Franci et al., 2012), locking
in solid-state circuit oscillators (Abidi and Chua, 1979;
Mirzaei et al., 2007), planar vehicle coordination (Paley
et al., 2007; Sepulchre et al., 2007, 2008; Klein, 2008;
Klein et al., 2008), carrier synchronization without
phase-locked loops (Rahman et al., 2011), synchroniza-
tion in semiconductor laser arrays (Kozyreff et al., 2000),
and microwave oscillator arrays (York and Compton,
2002). Since alternating current (AC) circuits are natu-
rally modeled by equations similar to (1), some electric
applications are found in structure-preserving (Bergen
and Hill, 1981; Sauer and Pai, 1998) and network-
reduced power system models (Chiang et al., 1995;
Dörfler and Bullo, 2012b), and droop-controlled invert-
ers in microgrids (Simpson-Porco et al., 2013). Algo-
rithmic applications of the coupled oscillator model (1)
include limit-cycle estimation through particle filters
(Tilton et al., 2012), clock synchronization in decentral-
ized computing networks (Simeone et al., 2008; Baldoni
et al., 2010; Wang et al., 2013), central pattern gener-
ators for robotic locomotion (Aoi and Tsuchiya, 2005;
Righetti and Ijspeert, 2006; Ijspeert, 2008), decentral-
ized maximum likelihood estimation (Barbarossa and
Scutari, 2007), and human-robot interaction (Mizumoto
et al., 2010). Further envisioned applications of oscilla-
tor networks obeying equations similar to (1) include
generating music (Huepe et al., 2012), signal process-
ing (Shim et al., 2007), pattern recognition (Vassilieva
et al., 2011), and neuro-computing through microme-
chanical (Hoppensteadt and Izhikevich, 2001) or laser
(Hoppensteadt and Izhikevich, 2000; Wang and Ghosh,
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2007) oscillators.

Theoretical investigations: Coupled oscillator mod-
els of the form (1) are studied from a purely theoreti-
cal perspective in the physics, dynamical systems, and
control communities. At the heart of the coupled oscilla-
tor dynamics is the transition from incoherence to syn-
chrony. In this article we will be particularly interested
in the notion of frequency synchronization, that is, in the
property of certain solutions to reach equal frequencies
θ̇i(t) among all oscillators. For infinitely many oscilla-
tors this notion can be relaxed to a subset of oscillators
reaching frequency synchronization. We will also study
conditions under which the angles θi(t) themselves syn-
chronize, or they are tightly clustered (in a single or mul-
tiple groups), or they are spread evenly in regular pat-
terns over the circle. We refer to the surveys and tuto-
rials (Kuramoto, 1984b; Strogatz, 2000, 2001; Acebrón
et al., 2005; Boccaletti et al., 2006; Arenas et al., 2008;
Dorogovtsev et al., 2008; Dörfler and Bullo, 2011; Sar-
lette and Sepulchre, 2011; Mauroy et al., 2012; Francis,
2015) for an incomplete set of recent theoretic research
activities. We will review and attribute relevant theoret-
ical results throughout the course of this article.

1.3 Contributions and Contents:

This paper surveys the literature on synchronization in
networks of coupled oscillators from a unified control-
theoretical perspective. We present some selected appli-
cations relevant to control systems, we discuss a sam-
ple of important analysis methods based on control-
theoretical concepts, and we provide a comprehensive
review of the most-recent and sharpest results available
for complex oscillator networks. For the sake of a clear
and streamlined presentation, we present some selected
applications, analysis methods, and results in detail, and
only list the corresponding references otherwise. Due to
the limited space, we can review only a selected subset
of the expansive literature on this subject.

In Section 2, we review some selected technological ap-
plications of the coupled oscillator model (1) which are
relevant to control systems. We present in some detail
various problems in vehicle coordination, electric power
networks, and clock synchronization, and we justify the
importance of the phase oscillator networks (4) as canon-
ical models of weakly coupled limit-cycle oscillators.

Prompted by these applications, Section 3 introduces
the reader to different synchronization notions, including
frequency and phase synchronization, phase balancing,
pattern formation, and partial synchronization. These
notions are defined for finite and infinite oscillator popu-
lations, connected through complete or sparsely-coupled
networks. We illustrate these concepts with a simple yet
rich example that nicely explains the basic phenomenol-
ogy in coupled oscillator networks.

Section 4 presents a few basic results and useful analysis
methods, including studies on the Jacobian linearization
of the dynamics (1), appropriate Lyapunov functions,
and (incremental) boundedness. These basic results will
be exploited throughout the rest of the paper.

Section 5 surveys a set of important results for networks
of identical oscillators. In particular, we cover phase syn-
chronization, phase balancing, and pattern formation.
We highlight contraction properties and potential func-
tion arguments as powerful analysis methods.

Section 6 is devoted to complete and uniformly-weighted
networks of heterogeneous oscillators, that is, the classic
Kuramoto model (3). We cover both finite-dimensional
as well as infinite-dimensional populations and present
a set of necessary, sufficient, implicit, and explicit con-
ditions on the critical coupling strength Kcritical. In this
effort, we collect contributions from several references
and arrive at novel results within a unified perspective.

Section 7 surveys synchronization metrics, results, and
analysis methods for sparse networks of heterogeneous
oscillators. We present two sufficient conditions for syn-
chronization. The first condition comes with an estimate
of the region of attraction, whereas the second condition
is sharper but the regions of attraction of the synchro-
nized solution is unknown in this case. Since both con-
ditions are conservative for general network topologies
and parameters, we also present a recent analysis ap-
proach leading to a sharp sufficient condition for certain
classes of oscillator networks.

In the final Section 8, we summarize the limitations of
existing analysis methods and highlight some important
directions for future research.

1.4 Preliminaries and Notation:

The remainder of this section recalls some standard no-
tation and preliminaries from algebraic graph theory.

Vectors and functions: Let 1n and 0n be the n-
dimensional vectors of unit and zero entries, and let
1⊥n be the orthogonal complement of 1n in Rn, that

is, 1⊥n , {x ∈ Rn | x ⊥ 1n}. Accordingly, let 1n×n
denote the (n × n)-dimensional matrix with unit
entries. Given an n-tuple (x1, . . . , xn), let x ∈ Rn
be the associated vector with maximum and mini-
mum elements xmax and xmin. Given an ordered in-
dex set I of cardinality |I| and a one-dimensional
array {xi}i∈I , let diag({xi}i∈I) ∈ R|I|×|I| be the
associated diagonal matrix. For x ∈ Rn define
sin(x) = (sin(x1), . . . , sin(xn)) and for x ∈ [−1, 1]n

define arcsin(x) = (arcsin(x1), . . . , arcsin(xn)). Fi-
nally, define the continuous function sinc : R → R by
sinc(x) = sin(x)/x, where sinc(0) = 1.
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Geometry on the n-torus: The set S1 denotes the unit
circle, an angle is a point θ ∈ S1, and an arc is a con-
nected subset of S1. The n-torus is the Cartesian product
Tn = S1 × · · · × S1. The geodesic distance between two
angles θ1, θ2 is the minimum of the counter-clockwise
and the clockwise arc lengths connecting θ1 and θ2. With
slight abuse of notation, let |θ1− θ2| denote the geodesic
distance between the two angles θ1, θ2 ∈ S1.

Algebraic graph theory: Let G(V, E , A) be an undi-
rected, connected, and weighted graph without self-
loops. Let A ∈ Rn×n be its symmetric nonnegative
adjacency matrix with zero diagonal elements aii = 0.
For each node i ∈ {1, . . . , n}, define the node degree
by degi =

∑n
j=1 aij . Define the Laplacian matrix by

L = diag({degi}ni=1) − A ∈ Rn×n. If a unique number
` ∈ {1, . . . , |E|} and an arbitrary direction are assigned
to each edge {i, j} ∈ E , the (oriented) incidence matrix
B ∈ Rn×|E| is defined component-wise by Bk` = 1 if
node k is the sink node of edge ` and by Bk` = −1 if
node k is the source node of edge `; all other elements
are zero. For x ∈ Rn, the vector BTx ∈ R|E| has entries
of the form xi − xj corresponding to the oriented edge
from j to i, that is, BT maps node variables xi, xj to
incremental edge variables xi − xj . If diag({aij}{i,j}∈E)
is the diagonal matrix of edge weights, then one can
show L = B diag({aij}{i,j}∈E)BT . If the graph is con-

nected, then Ker (BT ) = Ker (L) = span(1n), all n − 1
non-zero eigenvalues of L are strictly positive, and the
second-smallest eigenvalue λ2(L) is called the algebraic
connectivity and is a spectral connectivity measure.

Since the Laplacian L is singular, we will use its Moore-
Penrose pseudo inverse L†. If V ∈ Rn×n is an orthonor-
mal matrix of eigenvectors of L, the singular value de-
composition ofL isL = V diag(0, {λi}i∈{2,...,n})V T , and

its Moore-Penrose pseudo inverse L† is given by L† =
V diag(0, {1/λi}i∈{2,...,n})V T . A direct consequence of

the singular value decomposition is the identity L ·L† =
L† · L = In − 1

n1n×n. We also define the effective resis-

tance between any two nodes i and j by Rij = L†ii +

L†jj − 2L†ij . We refer to (Dörfler and Bullo, 2013a) for
further information and identities on Laplacian inverses
and on the resistance distance.

Laplacian flow: A well-studied cost function associated
with a graph is the Laplacian potential 1/2·xTLx = 1/2·∑n
i,j=1 aij(xi−xj)2, defined for x ∈ Rn. The associated

gradient flow ẋ = −Lx is known as the Laplacian flow
or consensus protocol, and it reads in components as

ẋi = −
∑n

j=1
aij(xi − xj) . (5)

The consensus protocol is well-studied in the control lit-
erature (Olfati-Saber et al., 2007; Ren et al., 2007; Bullo
et al., 2009; Garin and Schenato, 2010; Mesbahi and

Egerstedt, 2010), and it can be regarded as linear coun-
terpart to the coupled oscillator model (1) with dynam-
ics evolving on the Euclidean state space Rn and with-
out drift terms. Some of the analysis tools and insights
developed for the consensus protocol extend to the cou-
pled oscillator model (1).

2 Selected Examples of Oscillator Networks
Relevant to Control Systems

The mechanical analog in Fig. 1 provides an intuitive
illustration of the coupled oscillator dynamics (1), and
Section 1 contains a survey of a wide range of applica-
tions. Here, we detail some selected exemplary applica-
tions, which have recently received significant attention
by the control community, and we justify the importance
of the oscillator network (4) as a local canonical model.

2.1 Flocking, Schooling, and Vehicle Coordination

A recent research field in control is the coordination of
autonomous vehicles based on locally available informa-
tion and inspired by biological flocking phenomena. Con-
sider a set of n particles in the plane R2, which we iden-
tify with the complex plane C. Each particle i ∈ V =
{1, . . . , n} is characterized by its position ri ∈ C, its
heading angle θi ∈ S1, and a steering control law ui(r, θ)
depending on the position and heading of itself and other
vehicles, see Fig. 2.(a). For simplicity, we assume that
all particles have unit speed. The particle kinematics are
then given by (Justh and Krishnaprasad, 2004)

ṙi = eiθi ,

θ̇i = ui(r, θ) ,
(6)

for i ∈ {1, . . . , n} and i =
√
−1. If no control is applied,

then particle i travels in a straight line with orientation
θi(0), and if ui = ωi ∈ R is a nonzero constant, then
particle i traverses a circle with radius 1/|ωi|.

The interaction among the particles is modeled by a
possibly time-varying interaction graph G(V, E(t), A(t))
determined by communication and sensing patterns. As
shown by Vicsek et al. (1995), interesting motion pat-
terns emerge if the controllers use only relative phase
information between neighboring particles, that is, ui =
ω0(t) + fi(θi − θj) for {i, j} ∈ E(t) and ω0 : R≥0 →
R. For example, the steering control ui = ω0(t) − K ·∑n
j=1 aij(t) sin(θi − θj) with gain K ∈ R results in

θ̇i = ω0(t)−K ·
∑n

j=1
aij(t) sin(θi− θj) , i ∈ V . (7)

The controlled phase dynamics (7) correspond to the
coupled oscillator model (1) with a time-varying interac-
tion graph with weights K · aij(t) and identically time-
varying natural frequencies ωi = ω0(t). The controlled
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(x, y)
θ

‖r‖ =

∥∥∥∥
[
x
y

]∥∥∥∥

θ

eiθi

(a) (b) (c) (d) (e)

Fig. 2. Panel (a) illustrates the particle kinematics (6). Panels (b)-(e) illustrate the controlled dynamics (6)-(7) with n=6 par-
ticles, a complete interaction graph, and identical and constant natural frequencies: ω0(t) = 0 in panels (b) and (c) and
ω0(t) = 1 in panels (d) and (e). The values of K are K=1 in panel (b) and (d) and K=−1 in panel (c) and (e). The arrows
depict the orientation, the dashed curves show the long-term position dynamics, and the solid curves show the initial transient
position dynamics. As illustrated, the resulting motion displays “synchronized” or “balanced” heading angles for K = ±1,
and translational motion for ω0(t) = 0, respectively circular motion for ω0(t) = 1.

phase dynamics (7) give rise to elegant and useful co-
ordination patterns that mimic animal flocking behav-
ior (Leonard et al., 2012) and fish schools (Paley et al.,
2007). A few representative trajectories are illustrated
in Fig. 2. Inspired by these biological phenomena, scien-
tists have studied the controlled phase dynamics (7) and
their variations in the context of tracking and formation
controllers in swarms of autonomous vehicles. We refer
to (Paley et al., 2007; Sepulchre et al., 2007, 2008; Klein,
2008; Klein et al., 2008; Scardovi, 2010; Leonard et al.,
2012) for other control laws, motion patterns, and their
analysis.

In the following sections, we will present various tools to
analyze the motion patterns in Fig. 2, which we will refer
to as phase synchronization (Fig. 2.(b) and Fig. 2.(d))
and phase balancing (Fig. 2.(c) and Fig. 2.(e)).

2.2 Electric Power Networks with Synchronous Gener-
ators and DC/AC Inverters

Consider an AC power network modeled as an undi-
rected, connected, and weighted graph with n nodes
V = {1, . . . , n}, transmission lines E ⊂ V × V, and ad-
mittance matrix Y = Y T ∈ Cn×n. For each node, con-
sider the voltage phasor Vi = |Vi|eiθi corresponding to
the phase θi ∈ S1 and magnitude |Vi| ≥ 0 of the si-
nusoidal solution to the circuit equations. If the net-
work is lossless, then the active power flow from node
i to j is aij sin(θi − θj), where we adopt the shorthand
aij = |Vi|·|Vj |·=(Yij), see Fig. 3.(a). The node set is par-
titioned as V = V1 ∪V2 ∪V3, where V1 are load buses, V2
are synchronous generators, and V3 are grid-connected
direct current (DC) power sources.

The active power drawn by a load i ∈ V1 consists of a
constant term Pl,i > 0 and a frequency-dependent term

Diθ̇i with Di > 0, see Fig. 3.(b). The resulting power
balance equation is

Diθ̇i + Pl,i = −
∑n

j=1
aij sin(θi − θj) , i ∈ V1 . (8)

If the generator reactances are absorbed into the admit-
tance matrix, then the electromechanical swing dynam-
ics of the synchronous generator i ∈ V2 are

Miθ̈i +Diθ̇i = Pm,i −
∑n

j=1
aij sin(θi − θj) , i ∈ V2,

(9)

where θi ∈ S1 and θ̇i ∈ R1 are the generator rotor angle
and frequency, Pm,i > 0 is the mechanical power input,
and Mi > 0, and Di > 0 are the inertia and damping co-
efficients. The dynamics (8)-(9) constitute the structure-
preserving power network model, proposed by Bergen
and Hill (1981). A derivation from first principles can be
found in (Sauer and Pai, 1998, Chapter 7).

We assume that each DC source is connected to the
AC grid via a DC/AC inverter, the inverter output
impedances are absorbed into the admittance matrix,
and each inverter is equipped with a conventional droop
controller. For a droop-controlled inverter i ∈ V3 with
droop-slope 1/Di > 0, the deviation of the power out-
put

∑n
j=1 aij sin(θi−θj) from its nominal value Pd,i > 0

is proportional to the frequency deviation Diθ̇i. This
gives rise to the droop-controlled inverter dynamics
(Simpson-Porco et al., 2013)

Diθ̇i = Pd,i −
∑n

j=1
aij sin(θi − θj) , i ∈ V3 . (10)

These power network devices are illustrated as circuit
elements in panels (a)-(d) of Fig. 3. Panels (e) and
(f) show a high-voltage transmission network and a mi-
crogrid. We remark that different loads such as constant
power/current/susceptance loads and synchronous mo-
tors can be modeled by the same set of equations (8)-
(10), see (Sastry and Varaiya, 1980; Chiang et al., 1995;
Sauer and Pai, 1998; Dörfler and Bullo, 2013a).

Synchronization is pervasive in the operation of power
networks. All generating units of an interconnected
grid must remain in strict frequency synchronism while
continuously following demand and rejecting distur-
bances. Notice that, with the exception of the inertial
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Pm,i |Vi| eiθi Yij

|Vj | eiθjYij|Vi| eiθi

aij sin(θi − θj)

(a) (b)

(c)

(d)

aij sin(θi − θj)

Pd,i

|Vi| eiθi

(e) (f)

|Vi| eiθi

YijYik

DiPl,i

Fig. 3. Illustration of the power network devices as circuit elements. Subfigure (a) shows a transmission element connecting
nodes i and j. Subfigure (b) shows an inverter controlled according to (10). Subfigure (c) shows a synchronous generator.
Subfigure (d) shows a frequency-dependent load. Subfigure (e) shows a schematic illustration of the IEEE 39 power grid, where
the (red) squares depict synchronous generators and the (blue) circles are load buses. Finally, Subfigure (f) shows a microgrid
based on the IEEE 37 feeder, where the (yellow) diamonds depict inverters and (black) circles are passive junctions.

terms Miθ̈i and the possibly non-unit coefficients Di,
the power network dynamics (8)-(10) are a perfect elec-
trical analog of the coupled oscillator model (1) with
ωi ∈ {−Pl,i, Pm,i, Pd,i}. Thus, it is not surprising that
scientists from different disciplines recently advocated
coupled oscillator approaches to analyze synchroniza-
tion in power networks (Tanaka et al., 1997; Subbarao
et al., 2001; Hill and Chen, 2006; Filatrella et al., 2008;
Buzna et al., 2009; Fioriti et al., 2009; Simpson-Porco
et al., 2013; Dörfler and Bullo, 2012b; Rohden et al.,
2012; Dörfler et al., 2013; Mangesius et al., 2012; Mot-
ter et al., 2013; Ainsworth and Grijalva, 2013). The
theoretical tools presented in this article establish how
frequency synchronization in power networks depend
on the nodal parameters (Pl,i, Pm,i, Pd,i) as well as the
interconnecting electrical network with weights aij .

2.3 Clock Synchronization in Decentralized Networks

Another emerging technological application of oscillator
networks is clock synchronization in decentralized com-
puting networks, such as wireless and distributed soft-
ware networks. A natural approach to clock synchroniza-
tion is to treat each clock as an oscillator and follow a
diffusion-based (or pulse-coupling) protocol to synchro-
nize them, see the surveys (Lindsey et al., 1985; Simeone
et al., 2008) and the interesting recent results (Hong and
Scaglione, 2005; Baldoni et al., 2010; Mallada and Tang,
2011; Wang et al., 2013; Wang and Doyle, 2012).

For illustration, consider a set of distributed processors
V = {1, . . . , n} connected by a (possibly directed) com-
munication network. Each processor is equipped with
an internal clock. These clocks need to be synchronized
for distributed computing and network routing tasks.
As discussed in the surveys by Lindsey et al. (1985) and
Simeone et al. (2008), we consider only analog clocks
with continuous coupling since digital clocks are essen-
tially discretized analog clocks, and pulse-coupled clocks
can be modeled continuously after a phase reduction and
averaging analysis. For our purposes, the clock of pro-
cessor i is a voltage-controlled oscillator (VCO) generat-
ing a harmonic waveform si(t) = sin(θi(t)), where θi(t)
is the accumulated instantaneous phase. For uncoupled

clocks, each phase θi(t) evolves according to

θi(t) =

(
θi(0) +

2π

Tnom + Ti
t

)
mod(2π) , i ∈ {1, . . . , n}.

where Tnom > 0 is the nominal period, Ti ∈ R is an
offset (or skew), and θi(0) ∈ S1 is the initial phase. To
synchronize their internal clocks, the processors follow
a diffusion-based protocol. In a first step, neighboring
oscillators communicate their respective waveforms si(t)
to another. Second, through a phase detector (PD) each
node measures a convex combination of phase differences

cvxi(θ(t)) =
∑n

j=1
aijf(θi(t)− θj(t)) , i ∈ {1, . . . , n} ,

where f : S1 → R is an odd 2π-periodic function, and
aij ≥ 0 are detector-specific convex weights satisfying∑n
j=1 aij=1. Finally, cvxi(θ(t)) is fed to a phase-locked

loop filter (PLL) whose output drives the local phase. A
first-order and constant PLL with gain K results in

θ̇i(t) =
2π

Tnom + Ti
+K · cvxi(θ(t)) , i ∈ {1, . . . , n} .

(11)
The diffusion-based synchronization protocol (11) is il-
lustrated in Fig. 4, and its objective is to synchronize
the frequencies θ̇i(t) and possibly also the phases θi(t)
in the processor network. For an undirected communi-
cation protocol with symmetric weights aij = aji and
a sinusoidal coupling function f(·) = sin(·), the proto-
col (11) reduces to the coupled oscillator model (1).

VCO

PD PLL

VCO

PDPLL

K
◦
cv
x
2 (θ(t))s2(t)

cvx1(θ(t))

K
◦c

v
x
2
(θ
(t
))

cvx2(θ(t))

s1(t)

Tnom + T1 Tnom + T2s1(t)s2(t)

Fig. 4. Schematic illustration of the diffusion-based synchro-
nization protocol (11) for two coupled analog clocks.
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The tools developed in the next section will enable
us to state conditions when the protocol (11) success-
fully achieves phase or frequency synchronization. The
protocol (11) is merely a starting point, more sophisti-
cated higher-order PLLs can be constructed to enhance
steady-state deviations from phase synchrony, commu-
nication and phase noise as well as non-constant time-
delays can be considered in the design, and the phase
coupling functions f can be optimized to increase the
synchronization rate or minimize energy consumption.

2.4 Canonical Coupled Oscillator Model

In the preceding subsections we have seen how the
coupled-oscillator model (1) appears naturally in var-
ious applications. At first glance, diffusively-coupled
phase oscillator models of the general form (4) appear
to be quite specific. We now illustrate how the general
phase oscillator network model (4) (and its particular
instance (1)) can be obtained as a local canonical model
of weakly coupled and periodic limit-cycle oscillators
(Hoppensteadt and Izhikevich, 1997). Our presentation
is informal, we schematically follow the approaches de-
veloped in the computational neuroscience community,
and we refer to the textbooks (Hoppensteadt and Izhike-
vich, 1997; Izhikevich, 2007), the tutorials (Izhikevich
and Kuramoto, 2006; Mauroy et al., 2012; Sacré and
Sepulchre, 2014), and the pioneering papers (Winfree,
1967; Ermentrout and Kopell, 1984, 1991) for details.

Consider a limit-cycle oscillator modeled as a dynami-
cal system with state x ∈ Rm and nonlinear dynamics
ẋ = f(x). Assume that this system admits a locally ex-
ponentially stable periodic orbit S ⊂ Rm with period
T > 0. By a local change of variables, any trajectory
in a neighborhood of S can be characterized by a phase
variable ϕ ∈ S1 with dynamics ϕ̇ = Ω, where Ω = 2π/T .
Now consider a weakly-forced oscillator of the form

ẋ(t) = f(x(t)) + εg(t) , (12)

where ε > 0 is sufficiently small and g(t) is a time-
dependent external forcing term. For sufficiently small
forcing εg(t), the attractive limit cycle S persists, and
the local phase dynamics are obtained as

ϕ̇(t) = Ω + εQ(ϕ(t))g(t) ,

where ϕ 7→ Q(ϕ) is the infinitesimal phase response
curve (iPRC) and we dropped higher order termsO(ε2).
The iPRC is a linear response function that associates
to each point on the periodic orbit S (parameterized by
the phase ϕ) the phase shift induced by the input εg(t).

Now consider n such limit-cycle oscillators. Let xi ∈ Rm
be the state of oscillator i with limit cycle Si ⊂ Rm and
period Ti > 0. We assume that the oscillators are weakly

coupled with interconnected dynamics given by

ẋi = fi(xi)+ε
∑n

j=1
gij(xi, xj) , i ∈ {1, . . . , n} . (13)

Here, gij is the coupling function for the oscillators i, j ∈
{1, . . . , n}. The coupling functions may be continuous or
impulsive or take the value zero if oscillators i and j are
not interacting. The weak coupling in (13) can be identi-
fied with the weak forcing in (12), and a transformation
to phase coordinates results in the local phase model

ϕ̇i = Ωi + ε
∑n

j=1
Qi(ϕi)gij(xi(ϕi), xj(ϕj)) ,

where Ωi = 2π/Ti. By changing variables as θi(t) =
ϕi(t)− Ωit, we arrive at the coupled phase dynamics

θ̇i = ε
∑n

j=1
Qi(θi + Ωit)gij(xi(θi + Ωit), xj(θj + Ωjt)).

An averaging analysis applied to the θ-dynamics yields

θ̇i = εωi + ε
∑n

j=1
hij(θi − θj) , (14)

where the averaged coupling functions hij are given by

hij(χ)= lim
T→∞

1

T

∫ T

0

Qi(Ωiτ)gij(xi(Ωiτ), xj(Ωjτ−χ))dτ,

and ωi = hii(0). Notice that the averaged coupling func-
tions hij are 2π-periodic and the coupling in (14) is dif-
fusive. In the slow time scale τ = εt, the averaged dy-
namics (14) equal the phase oscillator network (4). This
analysis justifies calling the phase oscillator network (4)
a local canonical model for weakly coupled limit-cycle
oscillators. It also explains the widespread adoption of
phase oscillator models as phenomenological model in
synchronization studies. If the interaction among the
oscillators is anti-symmetric, then all functions hij are
odd, and a first-order Fourier series expansion yields
hij(·) ≈ aij sin(·) as first harmonic with coefficient aij .
In this case, the dynamics (14) in the slow time scale
τ = εt reduce to the coupled oscillator model (1).

As a prototypical example, for two van der Pol oscilla-
tors (with parameters in the quasi-harmonic limit) cou-
pled through a resistor, the above procedure results ex-
actly in the coupled oscillator model (1), see (Rand and
Holmes, 1980; Mauroy et al., 2012). In general, the cou-
pling functions hij depend on the iPRC and may not be
sinusoidal. Hence, the iPRC serves as a natural analysis
(Sacré and Sepulchre, 2014; Sacré, 2013; Brown et al.,
2004) and design (Wang et al., 2013; Wang and Doyle,
2012) tool for general limit-cycle oscillator networks.

8



X

r eiψ=0
θi = ∠eiψ

X

X

r eiψ=0

(a) (b) (c) (d) (e)

γ

γ

Fig. 5. Different phase configurations exhibited by frequency-synchronized solutions of the oscillator network (1): (a) phase
synchronization, (b) phase cohesiveness, (c) arc invariance, (d) phase balancing, and (e) splay state synchronization.

3 Synchronization Notions and Metrics

In this section, we introduce different notions of syn-
chronization illustrated in Fig. 5. We first address vari-
ous commonly-studied notions of synchronization asso-
ciated with coherent behavior and cohesive phases. We
then address the concept of phase balancing and splay
states. Finally, we also discuss the setting of infinite-
dimensional systems.

3.1 Synchronization Notions

The coupled oscillator model (1) evolves on Tn and fea-
tures an important symmetry, namely, the rotational in-
variance of the angular variable θ. This symmetry gives
rise to the structure of the state space and the different
synchronization properties that the model (1) can dis-
play. We first review the case of a finite oscillator popu-
lation, where all notions of synchronized solutions share
the common property that the frequencies are equal to
a constant synchronization frequency.

Frequency synchronization: A solution θ : R≥0 →
Tn achieves frequency synchronization if all frequencies
θ̇i(t) converge to a common constant frequency ωsync ∈
R as t → ∞. The explicit synchronization frequency
ωsync ∈ R of the coupled oscillator model (1) can be ob-

tained by summing over all equations in (1) as
∑n
i=1 θ̇i =∑n

i=1 ωi. In the frequency-synchronized case, this sum
simplifies to

∑n
i=1 ωsync =

∑n
i=1 ωi. In conclusion, if

a solution of the coupled oscillator model (1) achieves
frequency synchronization, then it does so with syn-
chronization frequency equal to ωsync =

∑n
i=1 ωi/n. By

transforming to a rotating frame with frequency ωsync

and by replacing ωi with ωi−ωsync, we obtain ωsync = 0
(or, equivalently, ω ∈ 1⊥n ). In what follows, without loss
of generality, we assume that ω ∈ 1⊥n so that ωsync = 0.

Phase synchronization: A solution θ : R≥0 → Tn to
the coupled oscillator model (1) achieves phase synchro-
nization if all phases θi(t) become identical as t→∞.

Remark 1 (Terminology) In the vast synchroniza-
tion literature, alternative terminologies for phase syn-
chronization include full, exact, or perfect synchroniza-
tion. For a frequency-synchronized solution all phase
distances |θi(t) − θj(t)| are constant, and the terminol-
ogy phase locking is sometimes used instead of frequency

synchronization. Other commonly used terms instead of
frequency synchronization include frequency locking, fre-
quency entrainment, or also partial synchronization. �

Phase cohesiveness: As we will see later, phase syn-
chronization can occur only if all natural frequencies ωi
are identical. If the natural frequencies are not identi-
cal, then each pairwise distance |θi(t) − θj(t)| can con-
verge to a constant but not necessarily zero value. The
concept of phase cohesiveness formalizes this possibility.
For γ ∈ [0, π[, let ∆G(γ) ⊂ Tn be the closed set of an-
gle arrays (θ1, . . . , θn) with the property |θi − θj | ≤ γ
for all {i, j} ∈ E , that is, each pairwise phase distance
is upper bounded by γ. Also, let ∆G(γ) be the interior
of ∆G(γ). A solution θ : R≥0 → Tn is then said to be
phase cohesive if there exists a length γ ∈ [0, π[ such that
θ(t) ∈ ∆G(γ) for all t ≥ 0. Notice that a phase cohesive
solution is also phase synchronous when γ = 0.

The main object under study in most applications and
theoretic analyses are phase-cohesive and frequency-
synchronized solutions, where all oscillators rotate with
the same frequency and all the pairwise phase distances
are upper bounded. In the following, we restrict our at-
tention to synchronized solutions with sufficiently small
phase distances |θi − θj | ≤ γ < π/2 for {i, j} ∈ E . Of
course, there may exist other synchronized solutions
with larger phase distances, but these are not neces-
sarily stable (see our analysis in Section 4) and/or not
relevant in most applications. 2 In what follows, in the
interest of brevity, we call a solution synchronized if it
is frequency synchronized and phase cohesive.

Synchronization manifold: A geometric object of in-
terest is the synchronization manifold. Given a point
r ∈ S1 and an angle s ∈ [0, 2π], let rots(r) ∈ S1 be
the rotation of r counterclockwise by the angle s. For
(r1, . . . , rn) ∈ Tn, define the equivalence class

[(r1, . . . , rn)]={(rots(r1), . . . , rots(rn))∈Tn |s∈ [0, 2π]}.

Clearly, if (r1, . . . , rn) ∈ ∆G(γ) for some γ ∈ [0, π/2[,
then [(r1, . . . , rn)] ⊂ ∆G(γ). Given a synchronized so-

2 For example, in power network applications the coupling
terms aij sin(θi−θj) are power flows along transmission lines
{i, j} ∈ E , and the phase distances |θi − θj | are bounded
well below π/2 due to thermal constraints. In Subsection 3.4,
we present a converse synchronization notion termed phase
balancing, where the goal is to maximize phase distances.
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lution characterized by θsync ∈ ∆G(γ) for some γ ∈
[0, π/2[, the set [θsync] ⊂ ∆G(γ) is a synchronization
manifold of the coupled-oscillator model (1). Note that
a synchronized solution takes value in a synchroniza-
tion manifold due to rotational symmetry, and for ω ∈
1⊥n (implying ωsync = 0) a synchronization manifold is
also an equilibrium manifold of the coupled oscillator
model (1). These geometric concepts are illustrated in
Fig. 6 for the two-dimensional case.

∆G(π/2)

[θ∗]

12

θ∗

Fig. 6. Illustration of the state space T2, the set ∆G(π/2),
the synchronization manifold [θ∗] associated to a phase-syn-

chronized angle array θ∗ = (θ∗1 , θ
∗
2) ∈ ∆G(0), and the tan-

gent space with translation vector 12 at θ∗.

Arc invariance: To conclude our list of synchroniza-
tion notions, we introduce the concept of arc invariance.
For γ ∈ [0, 2π[, let Arcn(γ) ⊂ Tn be the closed set of an-
gle arrays θ = (θ1, . . . , θn) with the property that there
exists an arc of length γ containing all θ1, . . . , θn. Thus,
an angle array θ ∈ Arcn(γ) satisfies maxi,j∈{1,...,n} |θi−
θj | ≤ γ. Finally, let Arcn(γ) be the interior of the set

Arcn(γ). A solution θ : R≥0 → Tn is then said to
be arc invariant if there exists a length γ ∈ [0, 2π[
such that θ(t) ∈ Arcn(γ) for all t ≥ 0. Notice that
Arcn(γ) ⊆ ∆G(γ) but the two sets are generally not
equal. For a complete coupling graph, sufficiently many
oscillators, and for sufficiently small γ, the two sets be-
come equal, and arc invariance is an appropriate syn-
chronization notion, see, e.g., Theorems 5.2 and 6.6.

3.2 A Simple yet Illustrative Example

The following example illustrates different notions of
synchronization and points out various important geo-
metric subtleties occurring on the compact state space
T2. Consider n = 2 oscillators with ω2 ≥ 0 ≥ ω1 = −ω2.
We restrict our attention to angles contained in Arcn(π):
for angles θ1, θ2 with |θ2−θ1| < π, the angular difference
θ2 − θ1 is the number in ]−π, π[ with magnitude equal
to the geodesic distance |θ2 − θ1| and with positive sign
if and only if the counter-clockwise path length from θ1
to θ2 is smaller than the clockwise path length. With
this definition the two-dimensional oscillator dynamics
(θ̇1, θ̇2) can be reduced to the scalar difference dynamics

θ̇2 − θ̇1. After scaling time as t 7→ t(ω2 − ω1) and intro-

ducing κ = 2a12/(ω2 − ω1), the difference dynamics are

d

dt
(θ2 − θ1) = fκ(θ2 − θ1) , 1− κ sin(θ2 − θ1) . (15)

The one-parameter family of dynamical systems (15) can
be analyzed graphically by plotting the scalar vector field
fκ(θ2 − θ1), for θ2 − θ1 ∈ [0, π]; see Fig. 7(a). The vec-
tor field features a saddle-node bifurcation at κ = 1. For
κ < 1 no equilibria exist. For κ > 1 we have an asymptot-
ically stable equilibrium θstable = arcsin(κ−1) ∈ ]0, π/2[
and an unstable equilibrium θunstable = arcsin(κ−1) ∈
]π/2, π[. For κ > 1 and (θ2(0) − θ1(0)) ∈ [0, θunstable[,
all trajectories converge to θstable, that is, the oscilla-
tors synchronize and remain phase cohesive (or arc in-
variant). For (θ2(0)−θ1(0)) 6∈ [0, θunstable[ the difference
θ2(t) − θ1(t) increases beyond π, and θ2(t) − θ1(t) con-
verges asymptotically to the equilibrium θstable in the
set where θ2 − θ1 < 0. Equivalently, in the configura-
tion space S1 the oscillators revolve once around the
circle before converging to [θstable]. Since sin(θstable) =
sin(θunstable) = κ−1, in the limit κ → ∞ the oscillators
achieve phase synchronization from every initial condi-
tion in an open semi-circle Arc2(π). In the critical case,
κ = 1, the saddle equilibrium manifold at [θsaddle] is
globally attractive but not stable, see Fig. 7(b).

! !"# $ $"# % %"# &
!$

!!"#

!

!"#

$

$"#

κ = 1
κ > 1

κ < 1

θ2 − θ1

θstable θunstableθsaddlef κ
(θ

2
−

θ 1
)

(a) Vector field in eq. (15)

[θsaddle]

θ(t)

θ(0)

(b) Trajectory θ(t) for κ = 1

Fig. 7. Plot of the vector field (15) for θ2 − θ1 > 0 and
various values of κ and a trajectory θ(t) ∈ T2 for the critical
case κ = 1, where the dashed line is the saddle equilibrium
manifold and � and • depict θ(0) and limt→∞ θ(t).

In conclusion, the simple but already rich 2-dimensional
case shows that two oscillators are phase cohesive and
synchronize if and only if κ > 1, that is, if and only if the
coupling dominates the heterogeneity as 2a12 > ω2−ω1.
The ratio 1/κ determines the asymptotic phase cohe-
siveness as well as the set of admissible initial conditions.
More general oscillator networks display the same phe-
nomenology, but the threshold from incoherence to syn-
chrony is generally unknown. Finally, we remark that for
oscillator networks of dimension n ≥ 3, this loss of syn-
chrony via a saddle-node bifurcation is only the starting
point of a series of bifurcations occurring if the coupling
is further decreased, see (Maistrenko et al., 2005; Tönjes,
2007; Popovych et al., 2005; Suykens and Osipov, 2008).
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3.3 Synchronization Metrics

The notions of phase cohesiveness and arc invari-
ance are performance measures for synchroniza-
tion, and phase synchronization can be character-
ized as the extreme case of phase cohesiveness with
limt→∞ θ(t) ∈ ∆G(0) = Arcn(0). An alternative perfor-
mance measure is the magnitude of the so-called order
parameter introduced by Kuramoto (1975, 1984a) as

reiψ =
1

n

∑n

j=1
eiθj . (16)

The order parameter (16) is the centroid of all oscilla-
tors represented as points on the unit circle in C1. The
magnitude r of the order parameter is a synchroniza-
tion measure: if the oscillators are phase-synchronized,
then r = 1, and if the oscillators are spaced equally on
the unit circle, then r = 0, see Fig. 5(e). The latter case
is characterized in detail in Subsection 3.4. Because the
order parameter (16) is the centroid of the oscillators, it
is contained within the convex hull of the smallest arc
containing all oscillators, see the illustration in Fig. 8.
Hence, the magnitude r of the order parameter can be
related to the arc length γ as in the following lemma.

X

rmin

rmax

�

Fig. 8. Schematic illustration of an arc of length γ ∈ [0, π],
its convex hull (shaded), and the value ⊗ of the corre-
sponding order parameter reiψ with minimum magnitude
rmin = cos(γ/2) and maximum magnitude rmax = 1.

Lemma 3.1 (Shortest arc length and order pa-
rameter) Given an angle array θ = (θ1, . . . , θn) ∈ Tn
with n ≥ 2, let r(θ) = 1

n |
∑n
j=1 e

iθj | be the mag-

nitude of the order parameter, and let γ(θ) be the
length of the shortest arc containing all angles, that is,
θ ∈ Arcn(γ(θ)). The following statements hold:

1) if γ(θ) ∈ [0, π], then r(θ) ∈ [cos(γ(θ)/2), 1]; and
2) if θ ∈ Arcn(π), then γ(θ) ∈ [2 arccos(r(θ)), π].

For a complete graph, the asymptotic magnitude r of
the order parameter serves as an average performance
index for synchronization, and arc invariance can be un-
derstood as a worst-case performance index. Appropri-
ate definitions of the order parameter tailored to non-
complete graphs (and noisy dynamics) have been pro-
posed by Jadbabaie et al. (2004); Restrepo et al. (2005);
Scardovi et al. (2007); Paley et al. (2007); Sonnenschein
and Schimansky-Geier (2012); Ichinomiya (2004).

3.4 Phase Balancing, Splay State, and Patterns

Applications in neuroscience (Crook et al., 1997; Varela
et al., 2001; Brown et al., 2003), deep-brain stimula-
tion (Tass, 2003; Nabi and Moehlis, 2011; Franci et al.,
2012), vehicle coordination (Paley et al., 2007; Sepul-
chre et al., 2007, 2008; Klein, 2008; Klein et al., 2008),
and central pattern generators for locomotion purposes
(Ijspeert, 2008; Aoi and Tsuchiya, 2005; Righetti and
Ijspeert, 2006) motivate the study of coherent behaviors
with synchronized frequencies where the phases are not
cohesive, but rather dispersed in appropriate patterns.
Whereas the phase-synchronized state is characterized
by the order parameter r achieving its maximal (unit)
magnitude, we say that a solution θ : R≥0 → Tn to the
coupled oscillator model (1) achieves phase balancing if
all phases θi(t) asymptotically converge to the set

Baln =
{
θ ∈ Tn

∣∣ r(θ) =
∣∣∣
∑n

j=1
eiθj/n

∣∣∣ = 0
}
,

that is, asymptotically the oscillators are uniformly dis-
tributed over the unit circle S1 so that their centroid
converges to the origin; see Fig. 5(d) and 5(e) for illus-
trations. We refer to Sepulchre et al. (2007) for a geomet-
ric characterization of the balanced state. One balanced
state of particular interest in neuroscience applications
is the so-called splay state {θ ∈ Tn | θi = i · 2π/n+ ϕ
(mod 2π) , ϕ ∈ S1 , i ∈ {1, . . . , n}} ⊆ Baln correspond-
ing to phases uniformly distributed around the unit cir-
cle S1 with distances 2π/n, see Fig. 5(e).

Other highly-symmetric balanced states consist of mul-
tiple clusters of collocated oscillators, where the clus-
ters themselves are arranged in splay state. In particu-
lar, if m is a divisor of n, we define a symmetric balanced
(m,n)-pattern to be a symmetric arrangement of the n
phases consisting of m clusters uniformly spaced on S1,
where each cluster contains n/m synchronized phases.
Fig. 9 illustrates all symmetric balanced (m,n)-patterns
for n = 12. Notice that, for any n ∈ N, there are at

(4, 12) (6, 12) (12, 12)

(1, 12) (2, 12) (3, 12)

Fig. 9. Illustration of all symmetric balanced (m,n)-patterns
for n = 12. The (1, 12)-pattern equals phase synchronization
with r = 1, all other patterns are phase-balanced configura-
tions with r = 0, and the (12, 12)-pattern is the splay state.
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least two symmetric patterns: the (1, n)-pattern (i.e., the
phase-synchronized state) and the (n, n)-pattern (i.e.,
the splay state). Arbitrary (m,n)-patterns can be sta-
bilized, for example, by using coupling functions with
higher harmonics, such as sin(m(θi−θj)); see (Sepulchre
et al., 2007, 2008). The topic of symmetric phase balanc-
ing is similar in spirit to pattern formation (Cross and
Hohenberg, 1993; Arcak, 2012), where phase synchro-
nization corresponds to the “flat” solution with uniform
phases and balanced (m,n)-patterns correspond to spa-
tially non-uniform solutions with “higher-order modes.”

3.5 Synchronization in Infinite-Dimensional Networks

For a complete coupling graph with uniform weights
aij = K/n, where K > 0, the coupled oscillator
model (1) reduces to the celebrated Kuramoto model
given in (3). By means of the order parameter reiψ de-
fined in equation (16), the Kuramoto model (3) can be
rewritten in the insightful form

θ̇i = ωi −Kr sin(θi − ψ) , i ∈ {1, . . . , n} . (17)

Equation (17) gives the intuition that the oscillators syn-
chronize because of their coupling to a mean field rep-
resented by the order parameter reiψ, which itself is a
function of θ(t). Intuitively, for small coupling strength
K each oscillator rotates with its distinct natural fre-
quency ωi, whereas for large coupling strength K all an-
gles θi(t) will entrain to the mean field reiψ, and the
oscillators synchronize. The transition from incoherence
to synchronization occurs at a critical threshold value of
the coupling strength, denoted by Kcritical.

The analysis of this phase transition based on a mean-
field and statistical mechanics viewpoint has been the
subject of numerous investigations, starting with Ku-
ramoto’s own ingenious analysis in (Kuramoto, 1975,
1984a). As neatly described by Strogatz (2000), Ku-
ramoto assumed the a priori existence of solutions to (17)
which feature a stationary order parameter r(t)eiψ(t) =
constant. Following this assumption and his intuition,
Kuramoto derived a set of self-consistency equations.
A rigorous mathematical underpinning to Kuramoto’s
mean-field approach can be established by a time-scale
separation (Ha and Slemrod, 2011) or in the contin-
uum limit as the number of oscillators tends to infinity,
and the natural frequencies ω are sampled from a dis-
tribution function g : R → R≥0. The continuum-limit
model has enjoyed a considerable amount of attention by
the physics and dynamics communities. Related control-
theoretical applications of the continuum-limit model
are estimation of gait cycles (Tilton et al., 2012), spa-
tial power grid modeling and analysis (Mangesius et al.,
2012), and game theoretic approaches (Yin et al., 2012).

Continuum-limit model: Since infinite-dimensional
oscillator networks are surveyed in detail in (Strogatz,

2000; Acebrón et al., 2005; Balmforth and Sassi, 2000),
this paper discusses them only very briefly. In what fol-
lows, we present an informal Eulerian derivation of the
continuum-limit model. We also remark that a treat-
ment of (17) as a stochastic differential equation (in the
limit of zero additive white noise) results in a Fokker-
Planck equation analogous to the continuum-limit model
(Crawford, 1994; Strogatz, 2000; Acebrón et al., 2005).

Consider an infinite population of oscillators, and let
ρ : S1×R≥0×R→ R≥0 be the probability density func-

tion of the oscillators, that is,
∫ γ
0

∫ ω
ω
ρ(θ, t, ω)g(ω) dωdθ

denotes the fraction of oscillators in Arcn(γ) ⊆ S1, at
time t, and with frequencies ω ∈ [ω, ω]. Hence, the order
parameter is given by

r(t)eiψ(t) =

∫ 2π

0

∫ ∞

−∞
eiθρ(θ, t, ω)g(ω) dωdθ. (18)

Notice that in the discrete (finite-dimensional) case we
have ρ(θ, t, ω) = 1

n

∑n
j=1 δ(θ − θj) (where δ(·) is the

Dirac δ-distribution), and the two order parameters (16)
and (18) coincide. According to (17), the instantaneous
velocity of an oscillator at position θ, at time t, and
with natural frequency ω is given by v(θ, t, ω) = ω −
Kr(t) sin(θ−ψ(t)). The evolution of the probability den-
sity function is then governed by the continuity equation

∂

∂t
ρ+

∂

∂θ
(ρv) = 0, (19)

subject to the conservation of the oscillators at time t

and with frequency ω, that is,
∫ 2π

0
ρ(θ, t, ω) dθ = 1. 3

Synchronization in the continuum-limit model:
Similar to the finite-dimensional model (16)-(17), the
continuum-limit model (18)-(19) displays a rich set of
symmetries (Ott and Antonsen, 2008) and dynamics
(Balmforth and Sassi, 2000; Martens et al., 2009). The
saddle-node bifurcation from incoherence to synchrony
in the finite-dimensional model (16)-(17) (see Subsec-
tion 3.2) manifests itself in the infinite-dimensional
model (18)-(19) as a phase transition from the uni-
form incoherent state with density ρ(θ, t, ω) = 1

2π to
the so-called partially-synchronized state. The partially-
synchronized state is characterized by a subset of phase-
locked oscillators rotating in unison whereas the re-
maining oscillators are incoherent. 4 The synchronized

3 In some articles, the continuum-limit model (18)-
(19) is presented with the density function ρ̃(θ, t, ω) =

ρ(θ, t, ω)g(ω), which satisfies
∫ 2π

0
ρ̃(θ, t, ω)dθ = g(ω).

4 An analogous partially-synchronized state can be defined
in the finite-dimensional Kuramoto model (16)-(17), where
a subset of oscillators is contained in an arc; see (Aeyels and
Rogge, 2004; De Smet and Aeyels, 2007). A related dynamic
phenomenon are chimera states with frequency-synchronized
and incoherent oscillators (Laing, 2009; Martens et al., 2013).
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set of oscillators are those satisfying Kr > |ω| such that
v(θ, t, ω) = 0, and the incoherent ones are uniformly
spread over the circle, see Fig. 10(a) and Fig. 10(b) for
a schematic illustration. This phase transition occurs
when K exceeds some critical value Kpartial. When K
is further increased, more and more oscillators become
entrained by the mean field (18) and join the set of
phase-locked oscillators. For a frequency distribution
g(ω) with bounded support, there exists a second criti-
cal parameter Klock ≥ Kpartial, such that for K > Klock

all oscillators are phase-locked. This final stage of syn-
chronization is illustrated in Fig. 10(c). It is often
referred to as the fully phase-locked state, and it is remi-
niscent of frequency synchronization and arc invariance
as displayed in the finite-dimensional model (16),(17).

ρ(θ, t,ω) ρ(θ, t,ω)

X X

r eiψ
r eiψ

(a) (b)

ρ(θ, t,ω)

Xr eiψ

(c)

Fig. 10. Subfigure (a) displays the uniform incoherent state
ρ(θ, t, ω) = 1/(2π). Subfigure (b) illustrates the partial-
ly-synchronized state, where a subset of oscillators rotates
in unison and the remaining oscillators are incoherent. Sub-
figure (c) illustrates the fully phase-locked state.

Whereas the majority of the literature on the continuum-
limit model (18)-(19) focuses on the first phase tran-
sition and the calculation of Kpartial, see (Kuramoto,
1984a; Crawford, 1994; Strogatz, 2000; Acebrón et al.,
2005; Mirollo and Strogatz, 2007; Balmforth and Sassi,
2000; Ott and Antonsen, 2008; Chiba, 2014) and refer-
ences therein, the articles (Ermentrout, 1985; Hemmen
and Wreszinski, 1993; Mirollo and Strogatz, 2005, 2007;
Roberts, 2008; Verwoerd and Mason, 2011) discuss the
fully phase-locked state and the calculation of Klock.
The influential works (Ott and Antonsen, 2008, 2009)
exploit the extensive symmetries of the continuum-limit
model (18)-(19) to construct a simple solution ansatz
obeying low-dimensional ordinary differential equations.
This reduction approach has triggered an extensive line
of recent research, e.g., see (Martens et al., 2009; Laing,
2009; Pikovsky and Rosenblum, 2011; So et al., 2014)
and references therein.

4 Basic Analysis Methods and Results

In this section, we review a few fundamental insights into
the coupled oscillator dynamics (1), we state some key
lemmas, and we introduce some analysis methods which
will be exploited throughout the rest of the paper.

4.1 Jacobian Analysis

We begin by drawing some insights from a Jacobian anal-
ysis. The right-hand side of the oscillator network (1)

defines the vector field f : Tn → Rn with components

fi(θ)=ωi−
∑n

j=1
aij sin(θi−θj) , i ∈ {1, . . . , n} . (20)

Because ∂
∂θi
fi(θ) = −∑n

j=1 aij cos(θi − θj) and
∂
∂θj

fi(θ) = aij cos(θi − θj), the Jacobian J(θ) of the

coupled oscillator model (1) satisfies

J(θ) = −B diag({aij cos(θi − θj)}{i,j}∈E)BT , (21)

where B is the incidence matrix of the graph. Notice
that for phase cohesive angles θ ∈ ∆G(π/2), the Ja-
cobian J(θ) equals minus the Laplacian matrix of the

graph G(V, E , Ã) with strictly positive weights ãij =
aij cos(θi − θj) > 0, for {i, j} ∈ E . Hence, J(θ) is neg-
ative semidefinite, it inherits the sparsity of the graph
G(V, E , A), and its nullspace Span(1n) arises from the
rotational symmetry of the vector field (20). These basic
results are fundamental to various analysis approaches.
To the best of the authors’ knowledge this set of results
was first established by Tavora and Smith (1972b,a), and
it has since been rediscovered several times. Some con-
sequences are collected in the following lemma, whose
proof can be found in (Dörfler et al., 2013, Lemma 3).

Lemma 4.1 (Stable synchronization in ∆G(π/2))
Consider the coupled oscillator model (1) with a con-
nected graph G(V, E , A) and frequencies ω ∈ 1⊥n . If there
exists an equilibrium θ∗ ∈ ∆G(π/2), then

(i) −J(θ∗) is a negative semidefinite Laplacian matrix;
(ii) the equilibrium manifold [θ∗] ⊂ ∆G(π/2) is locally

exponentially stable (modulo rotational symmetry).

Some consequences of the particular form of the Jaco-
bian (21) evaluated in ∆G(π/2) are collected below.

Frequency dynamics: The frequency dynamics ob-
tained by differentiating the phase dynamics (1) are

d

dt
θ̇i = −

∑n

j=1
ãij(t)(θ̇i − θ̇j) , i ∈ {1, . . . , n} , (22)

where ãij(t) = aij cos(θi(t) − θj(t)). The frequency dy-
namics (22) evolve on the tangent space of Tn, that is,
the Euclidean space Rn. If the set ∆G(γ) is forward in-
variant and θ(0) ∈ ∆G(γ) for some γ ∈ [0, π/2[, then
aij(t) ≥ aij cos(γ) > 0, for {i, j} ∈ E . Thus, the fre-
quency dynamics (22) can be regarded as linear con-
sensus protocol (5) with time-varying strictly-positive
weights. Based on this observation, it can be shown that
all frequencies θ̇i(t) synchronize exponentially, that is,

∥∥θ̇(t)− ωsync1n
∥∥
2
≤
∥∥θ̇(0)− ωsync1n

∥∥
2
eλfet , (23)

where λfe = −λ2(L) cos(γ). We refer to (Chopra and
Spong, 2009, Theorem 3.1) and (Dörfler and Bullo,
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2012b, Theorem 4.1) for a formal proof, and to (Schmidt
et al., 2012, Lemma 3.5), (Dörfler and Bullo, 2012b,
Theorem 4.1), and (Wang and Doyle, 2013, Theorem
4) for extensions to more general coupling functions,
time-delays, and extensions to models with pacemakers.

Contraction and incremental stability: Assume
again that ∆G(γ) is forward invariant for some
γ ∈ [0, π/2[. Since −J(θ) is negative semidefinite in
∆G(γ), it follows that the coupled oscillator dynam-
ics (1) are contracting 5 relative to the nullspace 1n.
Consequently, the dynamics (1) are incrementally expo-
nentially stable (modulo symmetry), that is, given any

two initial values θ(0) ∈ ∆G(γ) and θ̃(0) ∈ ∆G(γ), there
is a pseudo-metric d : Tn × Tn → R≥0 (more precisely,
a metric defined modulo symmetry) 6 and constants
c1 ≥ 1 and c2 > 0 such that

d
(
θ(t), θ̃(t)

)
≤ c1e−c2td

(
θ(0), θ̃(0)

)
, ∀ t ≥ 0 . (24)

The application of contraction analysis to the coupled os-
cillator model (1) yields the incremental exponential sta-
bility (24) in `2-type metrics (Chung and Slotine, 2010,
Theorem 7) or in `∞-type metrics (Forni and Sepulchre,
2014, Example 6). Choi et al. (2011a, Theorem 4.1) re-
port the incremental stability (24) in an `1-metric. Fi-
nally, for discontinuous and monotone coupling func-
tions and complete interaction graphs the total variation
distance provides yet another `1-type contraction metric
(Mauroy and Sepulchre, 2012).

Jacobian analysis beyond ∆G(π/2): The results dis-
cussed so far in Subsection 4.1 are applicable only to
angles inside the phase cohesive set ∆G(π/2), where all
weights ãij = aij cos(θi − θj) are strictly positive for
{i, j} ∈ E , and the Laplacian properties of the Jaco-
bian J(θ) can be exploited. Outside the set ∆G(π/2),

the associated state-dependent graph G(V, E , Ã) may
at times be disconnected and/or have negative weights
ãij = aij cos(θi − θj) < 0. In this more general set-
ting, the standard methods from algebraic and spectral
graph theory cannot be applied and many puzzling ex-
amples are known (Araposthatis et al., 1981). A neces-
sary condition for stability of arbitrary equilibrium man-
ifolds [θ∗] ⊂ Tn is that the graph induced by the Jaco-
bian J(θ∗) possess a spanning tree with strictly positive
weights ãij > 0 along its edges (Do et al., 2012). Suffi-
cient stability and instability conditions can be derived
if the graph induced by J(θ∗) admits certain cutsets

5 We refer the reader to (Lohmiller and Slotine, 1998; Son-
tag, 2010) for a treatment of contraction analysis and to
(Wang and Slotine, 2005; Russo et al., 2010; Forni and Sepul-
chre, 2014) for its extension to systems with symmetries.
6 The pseudo-metric d is a nonnegative and symmetric func-
tion (d(θ1, θ2) = d(θ2, θ1)) satisfying the triangle inequality
d(θ1, θ2) ≤ d(θ1, θ3) + d(θ3, θ2) and d(θ1, θ1) = 0 if and only
if [θ1] = [θ2]. The pseudo-metric d is a proper distance func-
tion on the quotient manifold Tn/S1.

(Araposthatis et al., 1981; Bergen and Hill, 1981; Chan-
drashekhar and Hill, 1986; Mallada and Tang, 2014). Fi-
nally, for the complete graph with uniform weights (see
the Kuramoto model (3)), additional insights and identi-
ties related to the Jacobian (21) can be found in (Aeyels
and Rogge, 2004; Mirollo and Strogatz, 2005; Verwoerd
and Mason, 2008; Bronski et al., 2012).

4.2 Potential Landscape Analysis

A classic analysis approach to oscillator networks with
symmetric coupling can be deduced from the potential
landscape. The potential energy U : Tn → R of the
spring network in Fig. 1 is, up to an additive constant,

U(θ) =
∑
{i,j}∈E

aij
(
1− cos(θi − θj)

)
. (25)

For the complete graph with uniform weights K/n, the
magnitude r of the order parameter and the potential
energy U(θ) are related by 2

nU(θ) = 1 − r2. One can
easily verify that the phase-synchronized state is a local
minimum of the potential energy.

Given the potential energy in equation (25), the coupled
oscillator model (1) can be reformulated as the forced
gradient system

θ̇i = ωi −
∂

∂θi
U(θ) , i ∈ {1, . . . , n} . (26)

This rewriting clarifies the competition between the
synchronization-enforcing coupling through U(θ) and
the synchronization-inhibiting heterogeneous natural
frequencies ωi. The unforced system (26) with ω = 0n
is a negative gradient flow θ̇ = −∂U(θ)/∂θ with the
potential function U(θ) as natural Lyapunov function.

Since the Jacobian J(θ) is the negative Hessian of the
potential U(θ), Lemma 4.1 implies that any equilib-
rium in ∆G(π/2) is a local minimizer of U(θ). Of par-
ticular interest are so-called S1-synchronizing graphs for
which all critical points of (25) are hyperbolic, the phase-
synchronized state is the global minimum ofU(θ), and all
other critical points are local maxima or saddle points.
The class of S1-synchronizing graphs includes, among
others, complete graphs and acyclic graphs (Monzón
and Paganini, 2005; Canale and Monzón, 2008; Sarlette,
2009; Canale et al., 2010b,a). These basic results mo-
tivated the study of the critical points and of the cur-
vature of the potential energy U(θ) in the literature on
the theory and applications of synchronization, includ-
ing, the study of transient stability in power systems and
the design of motion coordination controllers for planar
vehicles, see Subsections 2.1 and 2.2. Some direct conse-
quences of the gradient formulation (26) and of the asso-
ciated Hessian matrix (21) will be presented in Section 5.
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4.3 Absolute and Incremental Boundedness

In this subsection we start from the basic observation
that the sinusoidal interaction terms in equation (1) are
upper bounded by the nodal degree degi =

∑n
j=1 aij

of each oscillator. Hence, the natural frequencies
(ω1, . . . , ωn) have to satisfy certain bounds, relative to
the nodal degree, if a synchronized solution is to exist.

Lemma 4.2 (Necessary sync condition) Consider
the coupled oscillator model (1) with graph G(V, E , A),
frequencies ω ∈ 1⊥n , and nodal degree degi =

∑n
j=1 aij

for each node i ∈ {1, . . . , n}. If there exists a synchro-
nized solution θ ∈ ∆G(γ) for some γ ∈ [0, π/2], then the
following conditions hold:

1) Absolute bound: For each node i ∈ {1, . . . , n},

degi sin(γ) ≥ |ωi| . (27)

2) Incremental bound: For distinct i, j ∈ {1, . . . , n},

(degi + degj) sin(γ) ≥ |ωi − ωj | . (28)

This lemma follows directly from the fact that synchro-
nized solutions must satisfy θ̇i = 0 and θ̇i − θ̇j = 0 for
all i, j ∈ {1, . . . , n}, see (Dörfler et al., 2013, Lemma 3)
for a formal proof. Along the same lines, condition (27)
can also be extended from a single node to a cutset in
the graph (Ainsworth and Grijalva, 2013, Theorem 1).

Notice that the necessary conditions (27) and (28) are
conservative estimates since they can be attained only
if all angular distances |θi − θk| and |θj − θk| take the
value γ, which is generally not possible. We will show in
Lemma 6.4 below how to improve upon these necessary
conditions in the case of a complete graph.

5 Synchronization of Identical Oscillators

In this section we present several analysis approaches
and results for the study of synchronization in homoge-
neous oscillator networks, that is, oscillator models of
the form (1) with identical natural frequencies.

5.1 Phase Synchronization

It can be easily verified that for non-zero and dissimilar
natural frequencies ω ∈ 1⊥n , the coupled oscillator model
(1) does not admit a phase-synchronized solution of the
form θi(t) = θj(t) for all i, j ∈ {1, . . . , n}. On the con-
trary, if all natural frequencies are identical, ωi ≡ ω0 for
all i ∈ {1, . . . , n}, then a transformation of the oscillator
network (1) to a rotating frame with frequency ω0 yields

θ̇i = −
∑n

j=1
aij sin(θi−θj) , i ∈ {1, . . . , n} . (29)

An elegant analysis of the coupled oscillator model (29)
follows the insights developed in Subsections 4.1
and 4.2. System (29) is a negative gradient flow

θ̇ = −∂U(θ)/∂θ defined by the smooth function U(θ)
with compact sublevel sets. Hence, the LaSalle In-
variance Principle (Khalil, 2002, Theorem 4.4) asserts
that every solution converges to set of critical points
{θ ∈ Tn | ∂U(θ)/∂θ = 0n}. This basic convergence
result using potential functions and the LaSalle Invari-
ance Principle has long been known in the neuroscience
community, see, for example, (Cohen and Grossberg,
1983; Hoppensteadt and Izhikevich, 1997). Recent re-
search efforts focus predominantly on establishing al-
most global synchronization. By Lemma 4.1, the phase-
synchronized equilibrium manifold [θ] ∈ ∆G(0) is locally
exponentially stable, and for a S1-synchronizing graph,
all other equilibria are unstable. We collect these obser-
vations in the following result presented, among others,
in (Jadbabaie et al., 2004; Monzón and Paganini, 2005;
Scardovi et al., 2007; Sepulchre et al., 2007).

Theorem 5.1 (Phase synchronization) Consider
the coupled oscillator model (1) with a connected graph
G(V, E , A) and with natural frequencies ω ∈ Rn. The
following statements are equivalent:

(i) Homogeneity: there exists a constant ω0 ∈ R such
that ωi = ω0 for all i ∈ {1, . . . , n}; and

(ii) Local phase sync: there exists a locally exponen-
tially stable phase synchronization manifold ∆G(0).

If the two equivalent cases (i) and (ii) are true, the fol-
lowing statements hold:

1) Global convergence: For all initial angles θ(0) ∈
Tn, the frequencies θ̇(t) converge to ω01n and the
phases θ(t) converge to {θ ∈ Tn | ∂U(θ)/∂θ = 0n};
and

2) Almost global stability: If G(V, E , A) is S1-
synchronizing, the region of attraction of the phase
synchronization manifold ∆G(0) is almost all of Tn.

A representative simulation is shown in Fig. 12(a) below.
The corresponding discrete-time analog to Theorem 5.1
can be found in (Klein, 2008; Klein et al., 2008; Scardovi
et al., 2007). If higher order models with dynamic cou-
pling are considered, then almost globally stable phase
synchronization can be achieved for arbitrary connected
(and also directed) graphs; see (Scardovi et al., 2007;
Sepulchre et al., 2008; Lunze, 2011) for details.

5.2 Consensus, Contraction, & Convexity

The interest of the control community in oscillator net-
works (1) was initially sparked by Jadbabaie et al. (2004)
and Moreau (2005), who analyzed networks of identical
oscillators as nonlinear extensions of the consensus pro-
tocol (5). Indeed, for zero natural frequenciesω = 0n and
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for angles contained in an open semicircle θ ∈ Arcn(π),
the dynamics (29) can be projected onto the real line via
the local coordinate map ϕ : ]− π/2, π/2[

n → Rn de-
fined by xi = ϕi(θi) = tan(θi). With this projection pro-
posed by Moreau (2005), the dynamics (29) are rewrit-
ten as the consensus-type model

ẋi = −
∑n

j=1
bij(x)(xi − xj) , (30)

where bij(x)=aij
√

(1 + x2i )/(1 + x2j ) ≥ 0. In particular,

for θ ∈ Arcn(γ) for some γ ∈ [0, π[, we have that bij(x) ≥
aij/ sec(γ/2) > 0 is strictly positive for all {i, j} ∈ E .
A similar viewpoint is taken by Jadbabaie et al. (2004),
where the coupled oscillator model (29) is rewritten as

θ̇i = −
∑n

j=1
cij(θ)(θi − θj) , (31)

where cij(θ) = aij sinc(θi−θj) ≥ 0. Again, we have that

cij(θ) ≥ aij sinc(γ) > 0 for {i, j} ∈ E and θ ∈ Arcn(γ),
γ ∈ [0, π[. Further consensus-theoretical derivations of
the oscillator network (29) can be found in (Olfati-Saber,
2006; Sarlette and Sepulchre, 2009; Sepulchre, 2011).

In both formulations (30) and (31), the dynamics (29)
are regarded as a consensus protocol (5) with strictly
positive weights whose values are time-varying or state-
dependent. This interpretation is well defined provided
that θ(t) ∈ Arcn(γ) for all t ≥ 0 and for some γ ∈ [0, π[.
Different Lyapunov functions can be used to assure this
boundedness, for example, the potential function U(θ)
or standard quadratic Lyapunov functions used in con-
sensus theory. Generally, the level sets of these Lyapunov
functions are hard to characterize and provide poor esti-
mates on the region of attraction. Another natural Lya-
punov function is simply the length of the shortest arc
containing all oscillators. This approach relies upon the
contraction property, it has been developed for general
nonlinear consensus systems, and it aims at showing
that the convex hull of all states is decreasing, e.g., see
(Moreau, 2004, 2005; Lin et al., 2007; Sepulchre, 2011).

Recall the geodesic distance on S1 and define the con-
tinuous function V : Tn → [0, π] by

V (ψ) = max{|ψi − ψj | | i, j ∈ {1, . . . , n}}. (32)

If all angles at time t are contained in an arc of length
strictly less than π, then the arc length V (θ(t)) =
maxi,j∈{1,...,n} |θi(t) − θj(t)| is a Lyapunov function
candidate for phase synchronization, see Fig. 11.
Intuitively, the oscillators θ`(t) and θr(t) at both bound-
aries are pulled towards their neighbors in the interior
Arcn(V (θ(t)), and the Lyapunov function V (θ(t)) is
non-increasing. The technical analysis is slightly more
subtle since the function V (θ(t)) is continuous but not
necessarily differentiable when the maximum geodesic

V (θ(t))

θℓ(t) θr(t)

Fig. 11. Illustration of the Lyapunov function candidate
V (θ(t)) for angles in an open semicircle θ(t) ∈ Arcn(π). The
oscillators at the boundaries of the arc containing all oscil-
lators Arcn(V (θ(t)) are denoted by θ`(t) and θr(t).

distance is attained by more than one pair of oscilla-
tors. In summary, we state the following result, which
follows from the analysis of nonlinear consensus pro-
tocols, see (Lin et al., 2007, Theorem 3.6 and 3.7) and
(Moreau, 2005, Theorems 1 and 2) for continuous and
discrete-time results.

Theorem 5.2 (Contraction in Open Semicircle
Arcn(π)) Consider the coupled oscillator model (29)
with a connected graph G(V, E , A) and ω = 0n. Each set
Arcn(γ), for γ ∈ [0, π[, is positively invariant, and each
trajectory originating in Arcn(γ) achieves exponential
phase synchronization, that is,

‖θ(t)− θavg1n‖2 ≤ ‖θ(0)− θavg1n‖2eλpst , (33)

where λps = −λ2(L) sinc(γ) and θavg =
∑n
i=1θi(0)/n is

the average initial phase. 7

Theorem 5.2 also holds for directed and time-variant
graphs, it applies to more general interaction functions,
and it can be extended to time-delayed systems. Applica-
tions to oscillator networks and extensions can be found
in (Lin et al., 2007; Moreau, 2005; Münz et al., 2009;
Ha et al., 2010a; Sarlette, 2009; Ha et al., 2010a; Dörfler
and Bullo, 2011, 2012b; Schmidt et al., 2012). We will
revisit this literature in Section 6. An elegant general-
ization of the above analysis to oscillator networks on n-
spheres (rather than on S1) can be found in (Zhu, 2013),
and diffusively-coupled Lienard-type oscillators can be
analyzed using similar ideas in the phase plane (Tuna,
2012).

Remark 2 (A control-theoretical perspective on
synchronization) As established in Theorems 5.1 and
5.2, the phase-synchronized set ∆G(0) = Arcn(0) is lo-
cally exponentially stable provided that all natural fre-
quencies are identical. While phase synchronization is
not possible for dissimilar natural frequencies, a certain

7 This “average” of angles (points on S1) is well-defined
in an open semi-circle. If the parametrization of θ has no
discontinuity inside the arc containing all angles, then the
average can be obtained by the usual formula.

16



0 5 10 15 20 25 30
−2

0

2

4

6

8

10

t [s]

θ(t) [rad]

(b)

θ(t → ∞)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t [s]

θ(t) [rad]

(a)

θ(t → ∞)

0 10 20 30 40 50

−2

0

2

4

6

8

t [s]

θ(t) [rad]

(c)

θ(t → ∞)

0 5 10 15 20 25 30
−2

−1

0

1

2

3

4

t [s]

θ(t) [rad]

(d)

θ(t → ∞)

Fig. 12. Synchronization in a network of identical oscillators with n = 20, ω = 0n, and a ring graph G(V, E , A) with unit
weights. Subfigure (a) shows phase synchronization achieved by the oscillator network (29). Subfigure (b) shows phase balancing
achieved by the oscillator network (34). Subfigure (c) and (d) show pattern formation achieved by the oscillator network (35)
(with gains K` = 1 for ` < m and Km = −1) for the symmetric balanced (5, 20)-pattern and (20, 20) splay state pattern.

degree of phase cohesiveness can still be achieved. In-
deed, the coupled oscillator model (1) can be regarded as
an exponentially stable system subject to the disturbance
ω ∈ 1⊥n and synchronization can be studied using clas-
sic control-theoretical concepts such as input-to-state sta-
bility, practical stability, ultimate boundedness (Khalil,
2002) or their incremental versions (Angeli, 2002). In
control-theoretical terminology, phase cohesiveness can
then be described as “practical phase synchronization.”
Compared to prototypical nonlinear control examples,
various additional challenges arise in the analysis of the
coupled oscillator model (1) due to the bounded and non-
monotone sinusoidal coupling, the compact state space,
and the coexistence of multiple equilibria. �

5.3 Phase Balancing and Pattern Formation

As compared with phase synchronization, only few re-
sults are known about phase balancing. This asymmetry
may be caused by the fact that phase synchrony is stud-
ied in more applications than phase balancing. More-
over, the phase-synchronized set Arcn(0) admits a very
simple geometric characterization, whereas the phase-
balanced set Baln has a complicated structure consisting
of multiple disjoint subsets. The number of these subsets
grows combinatorially with the number of nodes n.

Consider the coupled oscillator model (29). By inverting
the direction of time, we obtain

θ̇i =
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} . (34)

In what follows, we say that an undirected graph
G(V, E , A) is circulant if the adjacency matrix A = AT

is a circulant matrix. Circulant graphs are highly sym-
metric graphs; examples include complete graphs, com-
plete bipartite graphs, and ring graphs. 8 For circulant
and uniformly weighted graphs, the coupled oscillator
model (34) achieves phase balancing. The following
theorem summarizes several results originally presented
in (Sepulchre et al., 2007, Theorem 1) and (Sepulchre
et al., 2008, Theorem 2).

8 A gallery and examples of circulant graphs can be found
at http://mathworld.wolfram.com/CirculantGraph.html.

Theorem 5.3 (Phase balancing) Consider the cou-
pled oscillator model (34) with a connected, undirected,
uniformly weighted, and circulant graph G(V, E , A). The
following statements hold:

1) Local phase balancing: The phase-balanced set
Baln is locally asymptotically stable; and

2) Almost global stability: If the graph G(V, E , A)
is complete, then the region of attraction of the stable
phase-balanced set Baln is almost all of Tn.

The proof of Theorem 5.3 is similar to that of Theorem
5.1: convergence is established by a potential function
argument and the local (in)stability of equilibria is es-
tablished by a Jacobian argument. An illustrative sim-
ulation is shown in Fig. 12(b). The analysis leading to
(Sepulchre et al., 2008, Theorem 2) suggests also almost
global stability of the phase-balanced set for arbitrary
circulant graphs, but a complete proof is not available.
For non-circulant graphs, the conclusions of Theorem 5.3
are not true. As a remedy to achieve almost globally sta-
ble phase balancing, higher order models with dynamic
coupling can be considered, see (Scardovi et al., 2007;
Sepulchre et al., 2008) for further details.

Alternatively, phase balancing can also be achieved by
coupling functions with higher-order harmonics. For ex-
ample, a modification of model (34) is

θ̇i =
∑n

j=1

∑m

`=1

K` · aij
`

sin
(
`(θi − θj)

)
, (35)

where K` ∈ R are appropriate gains, and m ∈ N di-
vides n. The dynamics (35) are again a gradient system
whose critical points include symmetric balanced (m,n)-
patterns; recall Fig. 9 for a schematic illustration. The
following result is given in (Sepulchre et al., 2007, The-
orem 7) and (Sepulchre et al., 2008, Theorem 7).

Theorem 5.4 (Pattern formation) Consider the
coupled oscillator model (35) with a connected, undi-
rected, uniformly weighted, and circulant graphG(V, E , A).
Let m ∈ N be a divisor of n, let K` > 0 for
` ∈ {1, . . . ,m− 1}, and let Km < 0 be sufficiently small.
Then each symmetric balanced (m,n)-pattern is a locally
exponentially stable equilibrium manifold.
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Two representative simulations of the pattern-forming
model (35) are shown in Fig. 12(c) and Fig. 12(d). The-
orem 5.4 can also be extended to non-circulant (and di-
rected) graphs through dynamic coupling, see (Sepul-
chre et al., 2008, Theorem 8). Notice that Theorem 5.4
establishes only the local stability of (m,n) patterns; the
dynamics (35) may feature also other stable equilibria.
For the complete graph, Sepulchre et al. (2007) conjec-
ture almost global convergence to the set of symmetric
balanced (m,n)-patterns.

6 Synchronization in Complete Networks

In this section, we study heterogeneous oscillators
coupled in a complete graph with uniform weights
aij = K/n. In this case, the coupled oscillator model (1)
reduces to the celebrated Kuramoto model given in (3).
The Kuramoto model will reach synchronization pro-
vided that the coupling gain K is larger than a critical
value, which depends on the dissimilarity among the
natural frequencies ω. Starting from Winfree’s and Ku-
ramoto’s pioneering work (Winfree, 1967; Kuramoto,
1975, 1984a), this trade-off has been characterized by
parametric inequalities. In what follows, we review
various estimates of the critical coupling strength to
characterize the on-set of synchronization as well as
the ultimate stage of synchronization. We consider
both infinite-dimensional as well as finite-dimensional
Kuramoto models.

6.1 Infinite-Dimensional Kuramoto Models

In his ingenious analysis of the continuum-limit
model (18)-(19) Kuramoto considered continuous, even,
and unimodal distributions g(ω) of the natural fre-
quencies (achieving their maximum at g(0)), and found
that partially-synchronized solutions (if existent) must
satisfy the self-consistency equation (Kuramoto, 1984a)

r = Kr

∫ π/2

−π/2
cos2(θ)g(Kr sin(θ)) dθ . (36)

One trivial solution to the self-consistency equation (36)
is r = 0 corresponding to the uniform incoherent state
shown in Fig. 10(a). The second solution for r > 0 corre-
sponds to the partially-synchronized state illustrated in
Fig. 10(b). When canceling the variable r from both sides
of (36) and taking the limit r ↘ 0, the self-consistency
equation (36) delivers the bifurcation parameter

Kpartial =
2

πg(0)
. (37)

Kuramoto conjectured that the uniform incoherent state
would become unstable for K > Kpartial and concluded
famously that “surprisingly enough, this seemingly obvi-
ous fact seems difficult to prove.” The resolution of this

long-standing conjecture and Kuramoto’s ingenious yet
incomplete analysis inspired generations of scientists, see
(Strogatz, 2000) for an historical account. We present the
following general result by (Chiba, 2014, Theorem 3.5).

Theorem 6.1 (Instability of the incoherent state)
Consider the infinite-dimensional Kuramoto model (18)-
(19) with coupling gain K and frequency distribu-
tion g : R → R≥0. Assume that the number of roots
{y1, y2, . . . } of the equation

lim
x↘0

∫ ∞

−∞

ω − y
x2 + (w − y)2

g(ω) dω = 0 , (38)

is countable, and g(ω) is continuous at {y1, y2, . . . }. If

K > Kpartial =
2

π supj g(yj)
,

then the incoherent state ρ(θ, t, ω) = 1/(2π) is unstable.

Notice that Theorem 6.1 is fairly general and includes
bimodal distributions. It can be shown that for a contin-
uous, even, and unimodal distribution g(ω), the unique
root of (38) is given by y1 = 0, see (Chiba, 2014, Corol-
lary 3.6). This observation leads to the following corol-
lary, which can be found in (Crawford, 1994; Balmforth
and Sassi, 2000; Acebrón et al., 2005; Mirollo and Stro-
gatz, 2007; Ott and Antonsen, 2008; Martens et al., 2009;
Chiba, 2014), and references therein.

Corollary 6.2 (Instability beyond Kuramoto’s
critical transition point) Consider the infinite-
dimensional Kuramoto model (18)-(19) with coupling
gain K and frequency distribution g : R → R≥0. Sup-
pose that g(ω) is continuous at the origin, even, and
unimodal. If K is greater than Kpartial as given in (37),
then the incoherent state ρ(θ, t, ω) = 1/(2π) is unstable.

A linear stability analysis of the associated partially-
synchronized state illustrated in Fig. 10(b) is discussed
by Mirollo and Strogatz (2007) and reveals linear neu-
tral stability. To the best of the authors’ knowledge, a
nonlinear stability analysis of the partially-synchronized
state is still outstanding.

If the distribution g(ω) is restricted to have bounded
support, then the fully phase-locked state (illustrated in
Fig. 10(c)) can be achieved when the couplingK is larger
than the second critical threshold Klock ≥ Kpartial. In
this case, two distributions of interest are the uniform
distribution and the bipolar distribution given by

gunif : [−ω0,+ω0]→ R , gunif(ω) =
1

2ω0
,

gbip : [ωmin, ωmax]→ R ,
gbip(ω) = p · δ(ω − ωmax) + (1− p) · δ(ω − ωmin),
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Fig. 13. Extremal distributions g(ω) of the natural frequencies and their stationary phase distributions in
the critical case K ↘ Klock: Panels (a) and (b) show the (generally non-symmetric) bipolar distribution
gbip(ω) = p · δ(ω − ωmax) + (1 − p) · δ(ω − ωmin) and its associated bipolar phase distribution. Panels (c) and (d) show the
uniform distribution gunif(ω) = 1/(2ω0) and its associated uniform phase distribution. Finally, panels (e) and (f) show the
tripolar distribution gtrip,n(ω) = 1

n
δ(ω−ω0)+ n−2

n
δ(ω)+ 1

n
δ(ω+ω0) and its associated tripolar phase distribution for n→∞.

where ω0 > 0, ωmax > ωmin, and p ∈ [0, 1]. These two
distributions are particularly interesting since they yield
the smallest and the largest threshold Klock.

Theorem 6.3 (Full phase locking thresholds)
Consider the infinite-dimensional Kuramoto model (18)-
(19) with coupling gain K and frequency distribution
g : R→ R≥0 with bounded support. The following state-
ments hold for the full phase-locking threshold Klock:

(i) Lower bound: For any continuous, even, and uni-
modal g : [−ω0,+ω0] → R, where ω0 > 0, we have
Klock ≥ 4ω0/π. Moreover, for the uniform distri-
bution gunif(ω), we have Klock = 4ω0/π.

(ii) Upper bound: For any g : [ωmin, ωmax] → R≥0,
where ωmax > ωmin, we have Klock ≤ ωmax − ωmin.
Moreover, for the bipolar distribution gbip(ω), we
have Klock = ωmax − ωmin.

A proof of the lower bound (i) can be found in (Ermen-
trout, 1985, Corollary 2(b)) and (Mirollo and Strogatz,
2007). Notice that the two thresholds Kpartial (reported
in (37)) and Klock coincide for the uniform distribution:

Klock =
2

πgunif(0)
= Kpartial .

This remarkable identity was also observed by Hem-
men and Wreszinski (1993); Mirollo and Strogatz (2007);
Roberts (2008); Verwoerd and Mason (2011). The upper
bound (ii) on bipolar distributions has been proved by
Hemmen and Wreszinski (1993) and earlier by Ermen-
trout (1985) for the symmetric case (p = 1/2 and ωmax =
−ωmin = ω0). Bipolar and more general bimodal fre-
quency distributions g(ω) have attracted tremendous re-
search interest by dynamical system researchers thanks
to their rich bifurcation diagram, see (Acebrón et al.,
2005; Martens et al., 2009). The uniform and bipolar
distributions are shown in Fig. 13 together with the
associated stationary phase distributions in the criti-
cal case K ↘ Klock (explicitly calculated by Hemmen
and Wreszinski (1993)). For later reference, Fig. 13 also
shows the tripolar distribution gtrip,n(ω) = 1

nδ(ω−ω0)+
n−2
n δ(ω0) + 1

nδ(ω + ω0) and its associated phase distri-

bution (calculated by Chopra and Spong (2009, Proof of
Theorem 2.1)) for the case n→∞.

6.2 Finite-Dimensional Kuramoto Models

In the finite-dimensional case, various necessary, suf-
ficient, implicit, and explicit estimates of the critical
coupling strength Kcritical have been proposed (Hem-
men and Wreszinski, 1993; Aeyels and Rogge, 2004; Jad-
babaie et al., 2004; Acebrón et al., 2005; Mirollo and
Strogatz, 2005; De Smet and Aeyels, 2007; Chopra and
Spong, 2009; Verwoerd and Mason, 2008, 2009; Chung
and Slotine, 2010; Ha et al., 2010a; Ha and Slemrod,
2011; Choi et al., 2011a; Franci et al., 2011; Dörfler and
Bullo, 2011, 2012b; Schmidt et al., 2012). We refer to
(Dörfler and Bullo, 2011) for a comprehensive historical
overview and present only the best known results here.

Necessary, explicit, and tight conditions: The nec-
essary condition (28) evaluated for γ ↗ π/2 gives the
following lower bound for the critical coupling:

K ≥ Kcritical ,
n · (ωmax − ωmin)

2(n− 1)
. (39)

Of course, this often-reported lower bound (39) is gener-
ally conservative. The following tighter lower bound has
been constructed by Chopra and Spong (2009). Here, we
report a refined formulation of their necessary condition.

Lemma 6.4 (Explicit, necessary, and tight criti-
cal coupling) Consider the Kuramoto model (3) with
n ≥ 2 oscillators, natural frequencies ω ∈ 1⊥n , and cou-
pling strength K. Define γ ∈ [π/2, π] by

γ = 2 arcos

(
−(n− 2) +

√
(n− 2)2 + 32

8

)
. (40)

The Kuramoto model has a frequency-synchronized so-
lution only if the coupling strength K is larger than a
critical value, that is,

K ≥ Kcritical ,
n · (ωmax − ωmin)

2 (sin(γ) + (n− 2) sin(γ/2))
. (41)
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Moreover, condition (41) is tight: for ω = ωtrip , ω0 ·
(+1,−1,0n−2) with ω0 ∈ R and for any of its permuta-
tions, there exists a synchronous solution if and only if
K ≥ Kcritical.

Notice that the bound (41) equals the bound (39) for
n = 2 and for n → ∞, and it is a strict improvement
otherwise. The bound (41) is reported in (Chopra and
Spong, 2009, Eqs. (8) and (11)) and is computed using
optimization techniques. Though not explicitly stated
by Chopra and Spong (2009), it can be verified from
their proof that the lower bound (40)-(41) is tight for
ω = ωtrip. In the critical case K = Kcritical, the as-
sociated arc-invariant equilibrium manifold is given by
[θ∗] = [(+γ/2,−γ/2,0n−2)]. In the limit n → ∞ this
choice of natural frequencies ω corresponds to the tripo-
lar distribution in Fig. 13(e), and the associated phases
[θ∗] are shown in Fig. 13(f).

Exact and implicit conditions: The articles (Aeyels
and Rogge, 2004; Mirollo and Strogatz, 2005; Verwo-
erd and Mason, 2008) derive a set of implicit consis-
tency equations for the exact critical coupling strength
Kcritical for which frequency-synchronized solutions ex-
ist. The consistency equation can be easily motivated.
Each equilibrium solution to the Kuramoto model (16)-
(17) is characterized by [θ∗] ∈ Tn such that the right-
hand side of (17) equals zero. We denote the correspond-
ing value of the order parameter (16) by r∞ ∈ [0, 1] and,
without loss of generality, we assume that its phase ψ is
zero. Hence, we arrive at the equations

ωi = Kr∞ sin(θ∗i ) ,

r∞ =
1

n

∑n

j=1
cos(θ∗i ) .

(42)

The equations (42) are solvable only if Kr∞ ≥ ‖ω‖∞,
and thus necessarily r∞ > 0 unless ω = 0n. By eliminat-
ing θ∗ from (42), we arrive at the consistency equation

r∞ =
1

n

∑n

j=1
±
√

1− (ωi/Kr∞)2 , (43)

where the± signs are due to the equality: cos(arcsin(x)) =

±
√

1− x2 for x ∈ ]− 1, 1[. In fact, the consistency
equation (43) is a set of 2n equations corresponding to
different possible equilibria θ∗ in (42) and thus different
choices of the ± signs, although not all choices yield fea-
sible solutions r∞ ≥ 0. We refer to (Aeyels and Rogge,
2004) for a discussion of the consistency equation (43)
and its infinite-dimensional counterpart (36). The im-
plicit consistency equation (43) marks the starting point
for the analyses in (Aeyels and Rogge, 2004; Mirollo and
Strogatz, 2005; Verwoerd and Mason, 2008). By collect-
ing various results in these three references, we arrive at
the following statement, which has not been presented
in this complete and self-contained form so far.

Theorem 6.5 (Implicit formulae for the exact
critical coupling) Consider the Kuramoto model (3)
with n ≥ 2 oscillators, natural frequencies ω ∈ 1⊥n \{0n},
and coupling strength K. Compute u∗ ∈ [‖ω‖∞ , 2 ‖ω‖∞]
as unique solution to the equation

2
∑n

i=1

√
1− (ωi/u)2 =

∑n

i=1
1/
√

1− (ωi/u)2 . (44)

The following statements are equivalent:

(i) Critical coupling: the coupling strength K is
larger than a critical value, that is,

K > Kcritical , nu∗/
∑n

i=1

√
1− (ωi/u∗)2 ; (45)

(ii) Stable frequency synchronization: there exists
a locally exponentially stable equilibrium manifold
[θ∗] ⊂ Tn.

The implicit formulae (44)-(45) have been estab-
lished by Verwoerd and Mason (2008, Theorem 3),
who showed that Kcritical is the smallest nonnegative
value of the coupling strength for which the Kuramoto
model (3) admits a frequency-synchronized solution.
We remark that Verwoerd and Mason also extended
the implicit formulae (44)-(45) to complete bipartite
graphs (Verwoerd and Mason, 2009, Theorem 3) and
infinite-dimensional networks (Verwoerd and Mason,
2011, Theorem 4). Moreover, they provided bisection
algorithms to compute Kcritical with predefined preci-
sion in a finite number of iterations. Aeyels and Rogge
(2004) and Mirollo and Strogatz (2005) found similar
implicit formulae and carried out a local stability anal-
ysis (Aeyels and Rogge, 2004, Theorems 1 and 3) and
(Mirollo and Strogatz, 2005, Sections 3 and 4) show-
ing a saddle-node bifurcation for K = Kcritical: for
K < Kcritical no frequency-synchronized solution (i.e.,
equilibrium manifolds) exists and for K > Kcritical a lo-
cally exponentially stable (corresponding to all + signs
in (43)) and multiple unstable phase-locked solutions
co-exist. As shown by Roberts (2008), the Kuramoto
model (3) can be embedded into a higher-dimensional,
linear, and complex-valued system, 9 and the above sta-
bility results can also be elegantly established via linear
systems theory; see also the recent work by Conteville
and Panteley (2012); El Ati and Panteley (2013a,b).

Sufficient, explicit, and tight conditions: For the
purpose of analyzing and selecting a sufficiently strong
coupling in applications, Theorem 6.5 has three draw-
backs. The stability results are local and the region of
attraction of a synchronized solution is unknown. Sec-
ond, the exact formulae (44)-(45) are implicit and thus
not suited for performance estimates. For example, it is

9 An embedding of the Kuramoto model (3) in a Hamilto-
nian system can be found in (Witthaut and Timme, 2013).
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unclear which value of asymptotic arc invariance can be
achieved if K > c · Kcritical for some c > 1. Third and
finally, the natural frequencies ωi are often time-varying
or uncertain in most applications. In this case, the ex-
act value of Kcritical needs to be estimated in continuous
time, or a conservatively strong coupling K � Kcritical

has to be chosen. The following theorem provides an ex-
plicit upper bound on the critical coupling together with
performance estimates, convergence rates, and a guar-
anteed semi-global region of attraction. This bound is
tight and thus necessary and sufficient when consider-
ing arbitrary distributions with compact support of the
natural frequencies. The result has been originally pre-
sented in (Dörfler and Bullo, 2011, Theorem 4.1).

Theorem 6.6 (Explicit, sufficient, and tight criti-
cal coupling and practical phase sync) Consider the
Kuramoto model (3) with n ≥ 2 oscillators, natural fre-
quencies ω ∈ 1⊥n and coupling strength K. The following
statements are equivalent:

(i) Critical coupling: the coupling strength K is
larger than a critical value, that is,

K > Kcritical , ωmax − ωmin ; (46)

(ii) Admissible initial arc invariance: there exists
γmax ∈ ]π/2, π] such that the Kuramoto model (3)
achieves exponential frequency synchronization for
all possible distributions of the natural frequencies
ωi supported on the compact interval [ωmin, ωmax]
and for all initial phases θ(0) ∈ Arcn(γmax); and

(iii) Arc invariance of sync manifold: there exists
γmin ∈ [0, π/2[ such that the Kuramoto model (3)
has a locally exponentially stable synchronization
manifold in Arcn(γmin) for all possible distributions
of the natural frequencies ωi supported on the com-
pact interval [ωmin, ωmax].

If the equivalent conditions (i), (ii), and (iii) hold, then
the ratio Kcritical/K and the arc lengths γmin ∈ [0, π/2[
and γmax ∈ ]π/2, π] are related uniquely via sin(γmin) =
sin(γmax) = Kcritical/K. Moreover, the Kuramoto
model (3) achieves practical phase synchronization,
that is, the set Arcn(γ) is positively invariant for ev-
ery γ ∈ [γmin, γmax], and each trajectory originating in
Arcn(γmax) approaches asymptotically Arcn(γmin).

The proof of Theorem 6.6 relies on the Jacobian and
contraction properties developed in Subsections 4.1 and
5.2. If all angles at time t ≥ 0 belong to a closed arc of
length γ ∈ [0, π[, that is, θ(t) ∈ Arcn(γ), then the arc
length t 7→ V (θ(t)) given in (32) is non-increasing if

K sin(γ) ≥ ωmax − ωmin .

The above inequality holds true for γ ∈ [γmin, γmax] if
and only if condition (46) holds true. Additionally, t 7→

V (θ(t)) is strictly decreasing for γ ∈ ]γmin, γmax[, the an-
gles θ(t) reach the set Arcn(γmin) ∈ ∆G(π/2), and fre-
quency synchronization and stability follow from the re-
sults developed in Subsection 4.1. Hence, condition (46)
implies properties (ii) and (iii) of Theorem 6.6. The con-
verse implications follow since condition (46) is also nec-
essary for synchronization with bipolar natural frequen-
cies ω = ωbip , ω0 ·(−p·1n−p,+(n−p)·1p) with ω0 ∈ R,
p ∈ {1, . . . , n − 1}, and for any of its permutations. In
recent work, (Choi et al., 2013) show that the bipolar
distribution ωbip is the unique worst-case distribution,
where synchronization fails for K = Kcritical.

Besides establishing a tight condition for Kcritical, Theo-
rem 6.6 establishes some properties of the transient evo-
lution of the Kuramoto dynamics (3) and shows that the
asymptotic synchronization behavior of the Kuramoto
model (3) is best described by the terminology practi-
cal phase synchronization, see also (Franci et al., 2011;
Dörfler and Bullo, 2011). Notice also that Theorem 6.6
reduces to Theorem 5.2 for identical natural frequencies.
We remark that similar analysis results are reported in
(De Smet and Aeyels, 2007; Ha et al., 2010a; Choi et al.,
2011a; Dörfler and Bullo, 2012b; Schmidt et al., 2012),
and the bound γmin on the ultimate phase distances can
be improved for particular pairs of oscillators, see (Choi
et al., 2011a, Theorem 5.2). Finally, we remark that
the proof strategy via the contraction Lyapunov func-
tion (32) can be adapted to more general cases, for exam-
ple, the conclusions of Theorem 6.6 can be extended to
time-varying natural frequencies, see (Dörfler and Bullo,
2011) and the illustration in Fig. 14.

Comparison and statistical analysis: Theorem 6.6
states the tight and explicit upper bound (46) on the
critical coupling strength Kcritical. Likewise, Lemma 6.4
states the tight and explicit lower bound (41) onKcritical.
The exact critical coupling lies somewhere in-between
and can be obtained from the implicit formulae (44)-
(45). By collecting these results, we can state the follow-
ing corollary, which improves upon the explicit bounds
proposed by Verwoerd and Mason (2008, Corollary 7).

Corollary 6.7 (Tight explicit bounds) Consider the
Kuramoto model (3) with n ≥ 2 oscillators, natural fre-
quencies ω ∈ 1⊥n \ {0n}, and coupling strength K. Com-
pute the exact critical couplingKcritical according to (44)-
(45). The explicit necessary condition (41) and sufficient
condition (46) provide tight upper and lower bounds on
the exact critical coupling Kcritical, that is,

n · (ωmax − ωmin)

2 (sin(γ) + (n− 2) sin(γ/2))
≤ Kcritical ≤ ωmax−ωmin ,

(47)
where γ ∈ [π/2, π] is defined in (40). Moreover, the lower

bound is tight for ω = ωtrip , ω0 ·(+1,−1,0n−2), and the

upper bound is tight for ω = ωbip , ω0 ·(−p ·1n−p,+(n−
p) · 1p), where ω0 ∈ R, p ∈ {1, . . . , n− 1}, and both ωtrip
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Fig. 14. Simulation of a network of n = 10 Kuramoto oscillators satisfying K = 1.1 · (ωmax − ωmin). In panel (a), the natural
frequencies ωi : R≥0 → [ωmin, ωmax] = [0, 1] are smooth, bounded, and distinct sinusoidal functions. Each natural frequency
ωi(t) asymptotically converges to ω̃i + sin(πt) with constant and randomly chosen ω̃i ∈ [0, 1]. In panel (b), the natural
frequencies ωi(t) of oscillators 1 and 10 (displayed in red dashed lines) switch between constant values in [ωmin, ωmax] = [0, 1].

The simulations illustrate the phase cohesiveness of the angles θ(t) in Arcn(γmin), the boundedness and convergence of the

frequency variations (between consecutive switching instances) θ̇(t)− ωavg(t)1n, as well as the monotonicity of the Lyapunov

function V (θ(t)) in Arcn(γ) for γ ∈ [γmin, γmax].

and ωbip are defined modulo index permutations.

Corollary 6.7 is the finite-dimensional counterpart to
Theorem 6.3 and identifies bipolar and tripolar fre-
quency distributions ωbip and ωtrip as the extreme
choices for the resulting critical coupling Kcritical.

10

These two distributions of natural frequencies are illus-
trated in Fig. 13(a) and 13(e). We want to remark that
for natural frequencies sampled from a particular distri-
bution, g(ω), the critical quantity in Corollary 6.7, the
support ωmax−ωmin, can be estimated by extreme value
statistics, see (Bronski et al., 2012) for further details.

By Theorem 6.3, for infinite-dimensional models the uni-
form distribution gunif(ω) = 1/(2ω0) yields the small-
est synchronization threshold Klock = 4ω0/π over all
continuous, symmetric, and unimodal distributions g(ω)
with bounded support ω ∈ [−ω0,+ω0]. Hence, the uni-
form distribution is an interesting choice to compare the
three conditions (41), (44)-(45), and (46) in a statistical
analysis. Fig. 15 reports our numeric findings for ω0 =1.

All three displayed conditions are identical for n = 2
oscillators. As n increases, the sufficient condition (46)
converges to the width ωmax − ωmin = 2ω0 of the sup-
port of gunif(ω), and the necessary condition (41) con-
verges to half of that width. The exact value of Kcritical

given by (44)-(45) converges to 4(ωmax − ωmin)/(2π) =
4ω0/π in agreement with condition (37) predicted for
the continuum-limit model (18)-(19).

7 Synchronization in Sparse Networks

This section considers the coupled oscillator model (1)
in its general form featuring de-synchronizing dissimi-
lar natural frequencies ω ∈ 1⊥n and the synchronizing
coupling through a graph G(V, E , A) with a nontrivial

10 Notice that the extreme choices for the lower bounds in
Theorem 6.3 and Corollary 6.7 do not coincide, since g(ω) is
required to be continuous for the lower bound in Theorem 6.3.
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Fig. 15. Statistical analysis of the necessary, tight, and
explicit bound (41) (♦), the exact and implicit formu-
lae (44)-(45) (◦), and the sufficient, tight, and explicit
bound (46) (�) for n ∈ [2, 300] oscillators, where the coupling
gains for each n are averaged over 1000 samples of randomly
uniformly generated frequencies in the interval [−1, 1].

topology. The network science, nonlinear dynamics, and
physics communities coined the term complex for such
non-trivial topologies to distinguish them from long-
range (complete) and short-range (lattice-type) interac-
tion topologies. The interest in such complex oscillator
networks has been sparked by the seminal article (Jad-
babaie et al., 2004) and the widespread scientific atten-
tion given to complex network studies (Strogatz, 2001;
Boccaletti et al., 2006; Osipov et al., 2007; Arenas et al.,
2008; Suykens and Osipov, 2008; Dorogovtsev et al.,
2008), and consensus and its applications (Olfati-Saber
et al., 2007; Ren et al., 2007; Bullo et al., 2009; Garin
and Schenato, 2010; Mesbahi and Egerstedt, 2010).

7.1 Survey of Synchronization Metrics and Conditions

Loosely speaking, the oscillator network (1) achieves
synchronization when the coupling dominates the dis-
similarity in natural frequencies. Various conditions
have been proposed to quantify this trade-off for sparse
graphs, both in theoretical studies as well as in power
network applications. The coupling is typically quan-
tified by the algebraic connectivity λ2(L) (Wu and
Kumagai, 1980; Pecora and Carroll, 1998; Nishikawa
et al., 2003; Jadbabaie et al., 2004; Restrepo et al., 2005;
Boccaletti et al., 2006; Arenas et al., 2008; Dörfler and
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Bullo, 2012b; Motter et al., 2013), the weighted nodal
degree degi =

∑n
j=1 aij (Wu and Kumagai, 1982; Ko-

rniss et al., 2006; Gómez-Gardeñes et al., 2007; Buzna
et al., 2009; Dörfler and Bullo, 2012b, 2013a; Skardal
et al., 2013), or various metrics related to the notion
of effective resistance (Wu and Kumagai, 1982; Korniss
et al., 2006; Dörfler and Bullo, 2013a). The frequency
dissimilarity is quantified either by absolute norms ‖ω‖p
or by incremental norms 11 ‖BTω‖p, for p ∈ N. Here,
we specifically consider the three incremental norms:

‖ω‖E,∞ , ‖BTω‖∞ = max{i,j}∈E |ωi − ωj | ,

‖ω‖E,2 , ‖BTω‖2 =

(∑
{i,j}∈E

|ωi − ωj |2
)1/2

,

‖ω‖Ecplt,2 , ‖BTcpltω‖2 =
1

2

(∑n

i,j=1
|ωi − ωj |2

)1/2
,

where the subscript cplt stands for the complete graph.
With slight abuse of notation, we also adopt these incre-
mental norms for angular distances. For example, for γ ∈
[0, π[, the incremental ∞-norm ball {θ ∈ Tn | ‖θ‖E∞ ≤
γ} is identical to the phase cohesive set ∆G(γ).

As every review article on synchronization (Strogatz,
2000, 2001; Acebrón et al., 2005; Boccaletti et al., 2006;
Arenas et al., 2008; Dorogovtsev et al., 2008; Dörfler
et al., 2013), let us state here that the problem of find-
ing sharp and provably correct synchronization condi-
tions is not yet completely solved. Some of the proposed
synchronization conditions for complex phase oscillator
networks can be evaluated only numerically since they
are state-dependent (Wu and Kumagai, 1980, 1982) or
arise from a non-trivial linearization process of full state
space oscillator models. The latter procedure is adopted
in the widely-studied Master Stability Function formal-
ism, see (Pecora and Carroll, 1998; Boccaletti et al.,
2006; Arenas et al., 2008) for the original reference and
relevant surveys, see (Restrepo et al., 2004; Sun et al.,
2009; Sorrentino and Porfiri, 2011) for its extension to
quasi-identical oscillators, and see (Shafi et al., 2013;
Russo and Di Bernardo, 2009) for related linearization-
based approaches from the control community.

In general, concise and accurate results are known
only for specific topologies such as complete graphs (as
discussed in the previous section), linear chains (Stro-
gatz and Mirollo, 1988), highly symmetric ring graphs
(Buzna et al., 2009), acyclic graphs (Dekker and Taylor,
2013), and complete bipartite graphs (Verwoerd and
Mason, 2009) with uniform weights. For arbitrary cou-
pling topologies, the literature contains only sufficient
conditions (Wu and Kumagai, 1980, 1982; Jadbabaie
et al., 2004; Dörfler and Bullo, 2012b) as well as numer-
ical and statistical investigations for large random net-

11 More precisely, the incremental norms ‖BTω‖p are semi-
norms in Rn and proper norms in the quotient space 1⊥n .

works indicating certain (e.g., degree-dependent) scal-
ing laws (Nishikawa et al., 2003; Restrepo et al., 2005;
Gómez-Gardeñes et al., 2007; Moreno and Pacheco,
2004; Kalloniatis, 2010; Skardal et al., 2013).

Numerical studies indicate that all known and provably-
correct synchronization conditions are conservative esti-
mates on the threshold from incoherence to synchrony.
Our recently-proposed condition (Dörfler et al., 2013)
is provably correct for various extremal network topolo-
gies and weights, and is numerically accurate for a broad
range of random networks; a complete analytic treat-
ment is missing at this time. In the following, we review a
set of known and provably correct synchronization con-
ditions and analysis concepts.

7.2 Sufficient Synchronization Conditions

For arbitrary network topologies and weights the equi-
librium and potential energy landscape of the oscillator
network (1) has been studied by different communities,
see (Tavora and Smith, 1972a; Korsak, 1972; Arapos-
thatis et al., 1981; Baillieul and Byrnes, 1982; Mehta
and Kastner, 2011). We particularly recommend the ar-
ticle (Araposthatis et al., 1981), where various surprising
and counter-intuitive examples are reported. To the best
of the authors’ knowledge, the conditions (27)-(28) in
Lemma 4.2 are the best known explicit necessary condi-
tions for the existence of equilibria for arbitrary topolo-
gies and weights. In what follows, we focus on sufficient
conditions guaranteeing frequency synchronization, and
we restrict ourselves to phase cohesive synchronous so-
lutions within the set ∆G(π/2). There are two reasons
for this choice. First, as discussed in Subsection 4.1, the
equilibria in ∆G(π/2) are exponentially stable, and the
forward invariance of the set ∆G(π/2) leads to stable
synchronization by incremental stability or frequency
dynamics arguments. Second, from a pragmatic point of
view, there are few analysis results and conditions for
equilibria outside ∆G(π/2), with the treatment of (di-
rected) ring graphs in (Rogge and Aeyels, 2004; Ha and
Kang, 2012) being a notable exception.

The approaches to phase synchronization (in Section 5)
and to frequency synchronization in complete graphs (in
Section 6) are generally not applicable to dissimilar nat-
ural frequencies and sparse coupling graphs, or are so
only under very conservative conditions. For example,
in the presence of dissimilar natural frequencies ω ∈ 1⊥n ,
a Lyapunov analysis of the forced system (26) via the
trigonometric potential function U(θ) is very involved
since the level sets of U(θ) are hard to characterize. Like-
wise, the contraction Lyapunov analysis based on defini-
tion (32) inherently requires arc-invariance of all angles,
and does not easily extend to arbitrary topologies. One
quadratic Lyapunov function advocated by Jadbabaie
et al. (2004); Chopra and Spong (2009) for classic Ku-
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ramoto oscillators (3) is W : Arcn(π)→ R defined by

W (θ) =
1

4

∑n

i,j=1
|θi − θj |2 =

1

2
‖θ‖2Ecplt,2

. (48)

This Lyapunov function is useful to analyze the more
general oscillator network (1), and yields the following
result found in (Dörfler and Bullo, 2012a, Theorem 4.6)
and (Dörfler and Bullo, 2012b, Theorem 4.4).

Theorem 7.1 (Practical phase synchronization
in sparse graphs I) Consider the coupled oscillator
model (1) with a connected graph G(V, E , A) and fre-
quencies ω ∈ 1⊥n . There exists a locally exponentially
stable equilibrium manifold [θ] ∈ ∆G(π/2) if the alge-
braic connectivity is larger than a critical value, that is,

λ2(L) > λcritical , ‖ω‖Ecplt,2 . (49)

Moreover, if condition (49) holds, then the coupled
oscillator model (1) achieves practical phase syn-
chronization in the following sense. Given γmax ∈
]π/2, π] and γmin ∈ [0, π/2[ as unique solutions to
(π/2) · sinc(γmax) = sin(γmin) = λcritical/λ2(L), the set{
θ ∈ Arcn(π) | ‖θ‖2Ecplt,2

≤ γ
}
⊆ ∆G(γ) is positively

invariant for all γ ∈ [γmin, γmax], and each trajectory
starting in

{
θ ∈ Arcn(π) | ‖θ‖2Ecplt,2

< γmax

}
asymptot-

ically reaches
{
θ ∈ Arcn(π) | ‖θ‖2Ecplt,2

≤ γmin

}
.

The analysis leading to Theorem 7.1 is similar to the
proof of Theorem 6.6: the Lyapunov function (48) is used
to guarantee the ultimate boundedness of the phases in{
θ ∈ Arcn(π) | ‖θ‖Ecplt,2 ≤ γmin

}
⊂ ∆G(γmin), and

the Jacobian arguments in Subsection 4.1 guarantee fre-
quency synchronization. For classic Kuramoto oscilla-
tors (3), condition (49) reduces to K > ‖ω‖Ecplt,2; this
condition is more conservative than the tight bound (46)
which reads K > ‖ω‖E,∞ = ωmax−ωmin. One reason for
this conservatism is that condition (49) guarantees that
all phase differences |θi−θj | are bounded, not only those
along the edges of the graph. However, by Lemma 4.1,
we know that bounded phase differences |θi − θj | only
for {i, j} ∈ E , are sufficient to establish the existence of
a locally exponentially stable synchronized solution.

In what follows we adopt a fixed-point approach to the
study of the equilibrium equations for the coupled os-
cillator model (1). In matrix notation, these equilibrium
equations read as

ω = BA sin(BT θ) , (50)

where A = diag({aij}{i,j}∈E) is the diagonal matrix of
weights. We next follow the ingenious analysis of (50)
suggested in (Jadbabaie et al., 2004, Section IIV.B).
For the sake of a streamlined presentation, we treat the
angles θ as vectors in 1⊥n . Recall the state-dependent

weights cij(θ) = aij sinc(θi−θj) from the consensus for-
mulation (31), and define the state-dependent Laplacian

L(θ) = B diag({cij(θ)}{i,j}∈E)BT .

Hence, equations (50) can be written compactly as ω =
L(θ)θ. Since L(θ)† · L(θ) = In − 1

n1n×n, we arrive at

θ = L(θ)†ω . (51)

The following result has been obtained in (Dörfler and
Bullo, 2012a, Theorem 4.7) by applying to equation (51)
a fixed point theorem in the incremental two norm ‖·‖E,2.

Theorem 7.2 (Practical phase synchronization
in sparse graphs II) Consider the coupled oscillator
model (1) with a connected graph G(V, E , A) and fre-
quencies ω ∈ 1⊥n . There exists a locally exponentially
stable equilibrium manifold [θ∗] ∈ ∆G(π/2) if

λ2(L) > λcritical , ‖ω‖E,2 . (52)

Moreover, if condition (52) holds, then [θ∗] is phase co-
hesive in the following sense: [θ∗] ⊂ {θ ∈ Tn | ‖θ‖E,2 ≤
γmin} ⊆ ∆G(γmin), where γmin ∈ [0, π/2[ satisfies
sin(γmin) = λcritical/λ2(L).

Clearly, condition (52) is sharper than condition (49),
but the stability result is only local. The synchronization
condition (52) is the sharpest sufficient condition for gen-
eral graphs known to the authors, but it is still a conser-
vative estimate for most network topologies and weights.
Indeed, the necessary condition (28) and sufficient condi-
tion (52) are separated by a tremendous gap for n > 2 os-
cillators. The reasons for this conservatism are manifold.
First, the derivation of the conditions (27), (28), (49),
and (52) involves conservative bounding of the trigono-
metric nonlinearities and network interactions. Second,
by Theorem 7.2, the condition (52) guarantees that the
2-norm of all phase distances between neighboring os-
cillators is bounded as ‖θ∗‖E,2 ≤ arcsin(λcritical/λ2(L)).
On the other hand, to conclude frequency synchroniza-
tion by Lemma 4.1, phase synchronization by Theorem
5.2, or frequency synchronization (in the complete graph
case) by Theorem 6.6, only the worst-case phase distance
(between neighbors) ‖θ‖E,∞ needs to be bounded. We
conclude that the incremental 2-norm metric leads to
overly strong phase cohesiveness requirements and ac-
cordingly to conservative conditions. All our previous re-
sults hint at the incremental∞-norm as a natural metric.

7.3 Towards an Exact Synchronization Condition

An analysis of the fixed-point equations (51) using 2-
norm bounding of ‖L(θ)†ω‖E,2 results in the condition
‖ω‖E,2/λ2(L) < 1 in Theorem 7.2. As discussed above,
an ∞-norm analysis of equations (51) and the term
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‖L(θ)†ω‖E,∞ should yield a less conservative condition,
possibly of the form ‖L†ω‖E,∞ < 1. Indeed, this condi-
tion can be derived for particular networks. By formally
replacing each term sin(θi − θj) in the fixed-point equa-
tions (50) by an auxiliary scalar variable ψij we arrive at

ω = BAψ , (53)

ψ = sin(BT θ) , (54)

where ψ ∈ R|E| is a vector with elements ψij . We refer
to equations (53) as the auxiliary-fixed point equation. It
can be easily verified that every solution of the auxiliary
fixed-point equations (53) is of the form

ψ = BTL†ω + ψhom , (55)

where the homogeneous solution ψhom ∈ R|E| satisfies
Aψhom ∈ Ker (B). Note that the orthogonal vector
spaces Ker (B) and Ker (B)⊥=Im (BT ) are spanned by
vectors associated to cycles and cutsets in the graph, see
(Biggs, 1994, 1997). For x, y ∈ Rn, we say x = y mod 2π
if, for each i ∈ {1, . . . , n}, there exists an integer ki such
that xi = yi + 2πki. We now arrive at the following
characterization of the fixed points (Dörfler et al., 2013,
Theorem 1).

Lemma 7.3 (Properties of the fixed point equa-
tions) Consider the coupled oscillator model (1) with
graph G(V, E , A) and ω ∈ 1⊥n , its fixed-point equa-
tions (50), and the auxiliary fixed-point equations (53).
Let γ ∈ [0, π/2[. The following statements are equivalent:

(i) There exists a solution θ∗ ∈ ∆G(γ) to the fixed-point
equations (50); and

(ii) There exists a solution ψ ∈ R|E| to the auxiliary
fixed-point equation (53) of the form (55) satisfying
the norm constraint ‖ψ‖∞ ≤ sin(γ) and the cycle
constraint arcsin(ψ) = BT y mod 2π, for some y ∈
Rn.

If the equivalent statements (i) and (ii) are true, then we
have BT θ∗ = arcsin(ψ) mod 2π. Additionally, [θ∗] ⊂
∆G(γ) is a locally exponentially stable synchronization
manifold.

By Lemma 7.3, the cycle space Ker (B) of the graph
serves as a degree of freedom to find a minimum∞-norm
solution ψ∗ ∈ R|E| to equations (53), which yields an
optimal necessary synchronization condition.

Corollary 7.4 (Optimal necessary synchroniza-
tion condition) Consider the coupled oscillator
model (1) with a connected graphG(V, E , A) and ω ∈ 1⊥n .
Compute ψ∗ ∈ R|E| as solution to the optimization
problem

minimizeψ∈R|E| ‖ψ‖∞ s.t. ω = BAψ. (56)

Let γ ∈ [0, π/2[. There exists a locally exponentially sta-
ble equilibrium manifold [θ∗] ⊂ ∆G(γ) only if ‖ψ∗‖∞ ≤
sin(γ).

If the graph is acyclic, then there are no cycle con-
straints, and the norm constraint in Lemma 7.3 reduces
to sin(γ) ≥ ‖ψ‖∞ = ‖L†ω‖E,∞. We arrive at the follow-
ing corollary (Dörfler et al., 2013, Theorem 2).

Corollary 7.5 (Practical phase synchronization
in acyclic graphs) Consider the coupled oscillator
model (1) with a connected and acyclic graph G(V, E , A)
and ω ∈ 1⊥n . There exists a locally exponentially stable
equilibrium manifold [θ∗] ⊂ ∆G(π/2) if and only if

‖L†ω‖E,∞ < 1 . (57)

Moreover, if condition (57) holds, then [θ∗] is phase
cohesive in ∆G(γmin), where γmin ∈ [0, π/2[ satisfies
sin(γmin) = ‖L†ω‖E,∞.

Condition (57) is equivalent to the cutset condition
(Dekker and Taylor, 2013, Lemma 1). Dörfler et al.
(2013) also proved that condition (57) is sufficient and
tight for various extremal graph topologies and param-
eters such as complete and uniformly weighted graphs
(in this case (57) is equivalent to (46)), small cycles of
length strictly less than five, cutset-inducing natural
frequencies ω = Lωbip, in the limit ‖L†ω‖E,∞ ↘ 0, and
1-connected combinations of these graphs. Moreover,
by means of a statistical analysis, it can be shown that
condition (57) is extremely accurate for a broad set of
random network topologies and weights as well as for
standard power network test cases (Dörfler et al., 2013;
Dörfler and Bullo, 2013b). However, the authors also
identified possibly thin sets of topologies and parame-
ters for which condition (57) is not sufficiently tight.

We conclude this section with a comparison of the syn-
chronization conditions (27), (28), (49), (52), and (57).
Let V ∈ Rn×n be the matrix of orthonormal eigenvec-
tors of L and let 0 = λ1 < λ2 ≤ · · · ≤ λn be the corre-
sponding eigenvalues. Then condition (57) reads as

∥∥V diag
(
0, 1/λ2, . . . , 1/λn

)
·
(
V Tω

)∥∥
E,∞ < 1 . (58)

A sufficient condition for inequality (58) is λ2 > ‖ω‖E,∞,
which strictly improves upon the algebraic connectiv-
ity conditions (49) and (52). Likewise, a necessary con-
dition for (58) is 2 · maxi∈V degi ≥ λn ≥ ‖ω‖E,∞, re-
sembling the degree-dependent conditions (27) and (28).
When compared to (58), this sufficient condition and
this necessary condition feature only one of n − 1 non-
zero Laplacian eigenvalues and are overly conservative.
We conclude that condition (57) strongly improves upon
the conditions (27), (28), (49), and (52), but a complete
analytic characterization of its applicability is still open.
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8 Conclusions and Open Research Directions

In this paper we introduced the reader to the coupled
oscillator model (1), we reviewed several applications,
we discussed different synchronization notions, and
we presented different analysis approaches and results
for phase synchronization, phase balancing, pattern
formation, frequency synchronization, and partial syn-
chronization. We covered complete and sparse network
topologies, homogeneous and heterogeneous natural fre-
quencies, and finite and infinite oscillator populations.

Despite the vast literature, the countless applications,
and the numerous theoretical results on the synchroniza-
tion properties of model (1), many interesting and im-
portant problems are still open. In the following, we sum-
marize limitations of the existing analysis approaches
and present a few worthwhile directions for future re-
search.

Generalized interactions: Most of the results pre-
sented in this paper can be extended to more general
anti-symmetric and 2π-periodic coupling functions as
long as the coupling is diffusive and bidirectional. In
some applications, the coupling topology is inherently
directed, such as transcriptional, metabolic, or neuronal
networks (Mason and Verwoerd, 2007). In this case,
there are only a few theoretical investigations including
analyses for ring graphs (Rogge and Aeyels, 2004; Ha
and Kang, 2012) and acyclic graphs (Ha and Li, 2014),
results on the synchronization frequency (El Ati and
Panteley, 2013a; Dörfler and Bullo, 2012b), and statisti-
cal analysis of large graphs (Restrepo et al., 2006). Also,
in many applications the diffusive coupling includes
a phase shift (Izhikevich, 1998). For instance, mutual
excitatory or inhibitory synaptic organizations in neu-
roscience (Crook et al., 1997), time delays in sensor
networks (Simeone et al., 2008), or transfer conduc-
tances in power networks (Chiang et al., 1995) lead to a
shifted coupling of the form sin(θi − θj − ϕij) with
ϕij ∈ [−π/2, π/2]. In these cases and also for other
“skewed” or “symmetry-breaking” interactions among
the oscillators, many of the presented analysis schemes
either fail or lead to overly conservative results. Addi-
tionally, the inclusion of odd coupling functions possibly
with higher-order harmonics can lead to qualitatively
different behavior and scaling laws as discussed by
Daido (1994); Crawford (1995); Strogatz (2000). Fi-
nally, a topic of recent interest is mixed attractive and
repulsive coupling (Hong and Strogatz, 2011; El Ati and
Panteley, 2013b; Burylko, 2012).

Pulse coupling: Another interesting class of oscillator
networks are systems of pulse-coupled oscillators which
were introduced by Peskin (1975) and popularized in
the seminal work by Mirollo and Strogatz (1990). Pulse-
coupled oscillators feature hybrid dynamics: impulsive
coupling at discrete time instants and uncoupled con-

tinuous dynamics otherwise. This class of oscillator net-
works displays a very interesting phenomenology which
is qualitatively different from diffusive and continuous
coupling, see (Mauroy et al., 2012). For instance, the
behavior of identical oscillators coupled in a complete
graph strongly depends on the curvature of the uncou-
pled dynamics. As discussed in Subsection 2.4, weakly
pulse-coupled oscillator models can be reduced to the
canonical model (14) through a phase reduction and av-
eraging analysis. For certain weakly pulse-coupled oscil-
lators the coupling functions hij(·) turn out to be mono-
tone and discontinuous, and they result in finite-time
convergent dynamics (Mauroy and Sepulchre, 2012; Ku-
ramoto, 1991). Most of the results and analysis meth-
ods known for continuously-coupled oscillators still need
to be extended to pulse-coupled oscillators, especially in
the case of dissimilar natural frequencies.

Transient dynamics: For dissimilar oscillators, most
results presented in this paper pertain to existence and
local stability of synchronous solutions, with the excep-
tion of Theorems 6.6 and 7.1. Even for the Kuramoto
model (3), many problems pertaining to the transient
dynamics still need to be fully resolved. For instance,
most known estimates on the region of attraction of a
synchronized solution are conservative, such as the semi-
circle estimates given in Theorems 5.2 and 6.6. We re-
fer to (Chiang et al., 1995; Wiley et al., 2006) for a set
of interesting results and conjectures on the region of
attraction. Of further interest is whether almost global
frequency synchronization can be achieved for heteroge-
neous oscillator networks coupled in, e.g., acyclic graphs.
As shown in Theorem 6.6, for complete graphs, the re-
gion of attraction of a synchronous solution always in-
cludes ∆G(π/2) for any K > Kcritical. It is unclear if
an analogous result holds for sparse graphs or if the
region of attraction severely depends on the topology.
When the Kuramoto dynamics (3) are subject to addi-
tive noise, they can be analyzed through Fokker-Planck
equations similar to the continuum-limit model (18)-(19)
or in the limit of small stochastic perturbations, see (Bag
et al., 2007; DeVille, 2011). In this case, there are var-
ious interesting transitions between wells of the poten-
tial landscape and only few analytic investigations. Also
the sub-synchronous regime for K < Kcritical is vastly
unexplored, and partial synchronization or clustering
(similar to the infinite-dimensional model) (Aeyels and
Rogge, 2004; De Smet and Aeyels, 2007), chimera states
(Laing, 2009; Martens et al., 2013), or chaotic motion
(Maistrenko et al., 2005; Tönjes, 2007; Popovych et al.,
2005; Suykens and Osipov, 2008) can occur. Finally, the
incremental stability results referenced in Subsection 4.1
appear to be a promising direction that still needs to be
fully explored.

Higher-order phase oscillator networks: For the
mechanical analog in Fig. 1 and the previously listed
applications (Bergen and Hill, 1981; Ermentrout, 1991;
Chiang et al., 1995; Sauer and Pai, 1998; Wiesenfeld
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et al., 1998; Hoppensteadt and Izhikevich, 2000; Ben-
nett et al., 2002; Pantaleone, 2002; Strogatz et al., 2005;
Righetti and Ijspeert, 2006; Shim et al., 2007; Ha et al.,
2010b, 2011; Kapitaniak et al., 2012; Zhang et al., 2012)
the coupled oscillator dynamics are not exactly given
by the first-order phase model (1). In many cases, the
dynamics are of second order as in (9). The analysis
of second-order oscillator networks has also received a
lot of attention, see (Acebrón et al., 2005; Dörfler and
Bullo, 2011; Choi et al., 2011b) for a literature overview.
Among others, the contraction Lyapunov function (32)
can be extended to second-order oscillators (Choi et al.,
2011b), the continuum-limit analysis can be extended
(Acebrón et al., 2005), and the local stability proper-
ties are preserved when going from first to second or-
der (Dörfler and Bullo, 2011). Of course, the transient
dynamics of second-order oscillator networks have their
own characteristics, especially for large inertia and small
damping (Paganini and Lesieutre, 1999). Thus, many of
the presented results still need to be extended to second-
order oscillator networks.

State space and aperiodic oscillator networks: In
other instances of oscillator networks, there is no readily-
available phase variable to describe the periodic limit-
cycle dynamics of the coupled system, and the phase os-
cillator model is valid only after a phase reduction and
averaging analysis. Since features of the original model
may be poorly preserved in the phase model (4), a direct
analysis of the state space model is preferred. In the case
of linear or passive systems, state or output synchro-
nization are well understood, see for example, (Arcak,
2007; Wieland, 2010; Bürger et al., 2013; Lunze, 2012).
The analysis of synchronization problems in general pe-
riodic and heterogeneous state space oscillator networks
remains a challenging and important problem. Addition-
ally, synchronization phenomena can also occur among
chaotic and aperiodic oscillators (Pecora and Carroll,
1990), whose analysis is thus far mainly restricted to nu-
merical linearization via the Master Stability Function
approach (Pecora and Carroll, 1998; Boccaletti et al.,
2006; Arenas et al., 2008; Motter et al., 2013). It is yet
unclear which analysis methods carry over from phase
oscillator networks to state space or chaotic oscillator
networks.

Sparse and heterogeneous networks: Despite the
vast scientific interest the quest for sharp, concise, and
closed-form synchronization conditions for arbitrary
connected graphs has been so far in vain. As suggested
by our discussion in Section 7, the proper metric for the
analysis of synchronization problem appears to be the
incremental∞-norm. In the authors’ opinion, an analy-
sis with the incremental∞-norm will most likely deliver
the sharpest possible conditions. We believe that the
norm and cycle constraints developed in (Dörfler et al.,
2013) are a fruitful approach towards a more complete
understanding of sparse topologies. Likewise, for the
transient analysis, the `∞-type contraction Lyapunov

function (32) is a powerful analysis concepts for com-
plete graphs and still needs to be extended to arbitrary
connected graphs. Regarding the potential and equilib-
rium landscape, a few interesting and still unresolved
conjectures can be found in Tavora and Smith (1972a);
Araposthatis et al. (1981); Baillieul and Byrnes (1982);
Mehta and Kastner (2011); Korsak (1972) and pertain
to the number of (stable) equilibria and topological
properties of the equilibrium set. Finally, the complex
networks, nonlinear dynamics, and statistical physics
communities found various interesting scaling laws in
their statistical and numerical analyses of random graph
models, such as conditions depending on the spectral
ratio λ2/λn of the Laplacian eigenvalues, interesting
results for correlations between the degree degi and the
natural frequency ωi, and degree-dependent synchro-
nization conditions (Nishikawa et al., 2003; Moreno and
Pacheco, 2004; Restrepo et al., 2005; Boccaletti et al.,
2006; Gómez-Gardeñes et al., 2007; Arenas et al., 2008;
Kalloniatis, 2010; Skardal et al., 2013). It is unclear
which of these results and findings are amenable to an
analytic and quantitative investigation.

We sincerely hope that this survey article stimulates fur-
ther exciting research on synchronization in coupled os-
cillators, both on the theoretical side as well as in the
countless applications.
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