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Abstract

Contraction theory is a methodology for assessing the stability of trajectories of a dynamical system with respect
to one another. In this work, we present the fundamental results of contraction theory in an intrinsic, coordinate-free
setting. The presentation highlights both the underlying geometric foundations of contraction theory, and the coordinate
invariance of the resulting stability properties. We provide coordinate-free proofs of the main results for autonomous
vector fields, and clarify the assumptions under which the results hold. In addition, we state and prove several interesting
corollaries, study cascade and feedback interconnections, and highlight how contraction theory has arisen independently
in other scientific disciplines. We conclude by illustrating the developed theory for the case of gradient dynamics.
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1. Introduction

In the stability analysis of dynamical systems, one is
sometimes interested not in the stability of trajectories
with respect to specific attractor, but rather with the sta-
bility of trajectories with respect to one another. For linear
systems, these two concepts are identical, but for nonlinear
systems the latter is indeed a much stronger property.

Literature Review: Both differential and integral ap-
proaches have been developed for studying this relative
stability of trajectories. The former, popularized in the
control community by J.-J.E. Slotine et al. under the title
of contraction theory, involves examining the dynamics of
a “virtual displacement” between two infinitesimally sep-
arated trajectories. The root piece of literature for this
methodology is [1], with a plethora of extensions including
graph-theoretic characterizations [2], backstepping design
[3], extensions to distributed systems [4], and algorithmic
searches for contraction metrics [5]. Rigorous proofs of the
main result — a sufficient condition for a vector field to be
“contracting” — are varied in style, with some revolving
around the use of the matrix measure [6, 7] while others
utilize the perspective of a contraction metric [8, 9, 10]. As
noted a recent historical review [11], the main ideas of the
theory trace to the works [12, 13] in the early 1950’s, with
some similar concepts presented slightly later [14, 15]. A
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notion closely related to contraction is that of a conver-
gent system, first introduced in [16]. Demidovich gave a
sufficient condition for this type of convergence, with con-
traction theory as described above representing a general-
ization of this body of work. A simple proof of how Demi-
dovich’s condition leads to the convergent system property
can be found in the tribute paper [17], with a thorough ac-
count of convergent systems available in [18].

The integral approach to the relative stability of tra-
jectories — referred to as incremental stability — revolves
around the use of an appropriate incremental Lyapunov
function, and was first defined and put on firm ground in
[19]. Extensions and generalizations of this line of work are
presented in [20, 21, 22, 3, 23]. Of particular interest are
[3, 23], which provide a coordinate-invariant formulation
of incremental stability. As noted in [3], related ideas can
be traced to [24]. Recently in [25], Finsler geometry has
been used to formulate a characterization of contracting
systems using Lyapunov functions defined on the tangent
bundle.

Application areas of contraction theory and incremen-
tal stability have grown as the topics have proliferated, and
now include symbolic models and control [26, 9], output
regulation [18], synchronization and consensus [27, 21, 28],
bio-molecular systems [7], intrinsic observer design [8, 29,
30], mechanical system controller design [31], and power
system dynamics [3]. Among these works, we also note the
useful tutorial paper [32].

Limitations of the Literature: Despite a flurry of ac-
tivity in the area, the basic theory of contracting vector
fields has never been presented rigorously in a coordinate-
free setting. Moreover, the literature is often unclear on
exactly what the key assumptions are for the main sta-
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bility result to hold, with corollaries presented as remarks
without detailed proofs.

Contributions: The contributions of this work are five-
fold. First, we use the tools of affine differential geometry
to provide a purely geometric and intrinsic description of
contracting vector fields on Riemannian manifolds (Def-
inition 2.1). Second, we state and rigorously prove the
main contraction stability theorem in an intrinsic setting,
highlighting all assumptions (Theorem 2.3). In particu-
lar, the presentation unequivocally shows that contrac-
tion is a coordinate-invariant stability concept. Third,
we present with proofs some ancillary facts about con-
tracting systems, none of which are proven rigorously in
the contraction literature. In particular, we show that
contraction implies the existence of an exponentially sta-
ble fixed point for the vector field, and we show how the
Riemannian contraction metric can be used to construct
Lyapunov functions for this fixed point (Proposition 2.5).
Fourth, we rigorously examine the modularity properties
of contracting systems by studying cascade and feedback
interconnections (Lemmas 3.1 and 3.2). Our analysis re-
sults in cascades always being contracting in an appropri-
ate metric, while feedback systems require a suitable small
gain condition. Finally, we connect the concept of contrac-
tion to ideas studied in the fields of differential geometry
and general relativity (Section 4), and illustrate the the-
ory with the important example of gradient dynamics on
general Riemannian manifolds (Corollary 5.1).

Notation and Preliminaries: The presentation that
follows relies heavily on concepts from affine differential
geometry. Our notation follows [33], and the reader is re-
ferred to standard references such as [34, 35, 36] for details.
For simplicity, all objects are assumed to be smooth, and
we employ the Einstein summation convention in which
repeated indices are implicitly summed over. Throughout,
M denotes a manifold of dimension n, and TxM (T∗xM) de-
notes the tangent (resp. cotangent) vector space at x ∈ M.
We denote by vx ∈ TxM a vector in the tangent space at
x. The tangent bundle TM (resp. cotangent bundle T∗M)
is the disjoint union of these tangent (resp. cotangent)
vector spaces over all x ∈ M. A vector field (resp. cov-
ector field) X on U ⊂ M is a map assigning to each
point x ∈ U a vector X(x) ∈ TxM (resp. X(x) ∈ T∗xM).
We let Γ∞(TM) (resp. Γ∞(T∗M)) denote the set of vector
(resp. covector) fields on M. In a set of local coordinates
(x1, . . . , xn) in a neighborhood V of x ∈ M, we denote by
∂/∂xi (resp. dxi) the ith basis vector of TxM (resp. T∗xM).
We denote the canonical pairing between a tangent vector
vx ∈ TxM and a covector αx ∈ T∗xM by 〈αx; vx〉 ∈ R. A
point x̄ ∈ M is a fixed point of X if X(x̄) = 0x̄. An
integral curve of X ∈ Γ∞(TM) at x ∈ M is a curve
γ : Jx ⊂ R → M satisfying γ(0) = x and γ′(t) = X(γ(t))
for each t ∈ Jx. If Jx is the largest interval containing
the origin over which γ is well defined, the integral curve
γ at x is maximal . The flow of X is the unique map
Φ : J × V → M, (t, x) 7→ Φt(x), with V an open neighbor-
hood of x ∈ M, such that t→ Φt(x) is the maximal integral

curve of X through x. If sup Jx = +∞ for each x ∈ U ,
X is said to be forward complete on U . If for each t ≥ 0,
x ∈ U ⇒ Φt(x) ∈ U , the set U is said to be forward X-
invariant . We denote the set of functions from M to R by
C∞(M). The differential of a function f ∈ C∞(M) is the
covector field df ∈ Γ∞(T∗M). In local coordinates, df =
(∂f/∂xi) dxi. The Lie derivative LXf of a function f ∈
C∞(M) with respect to a vector field X ∈ Γ∞(TM) is the
function in C∞(M) defined by (LXf)(x) = 〈df(x);X(x)〉.
The Lie Bracket of two vector fields X,Y ∈ Γ∞(TM) is
the vector field [X,Y ] ∈ Γ∞(TM) defined by [X,Y ]f =
LXLY f − LY LXf for any f ∈ C∞(M). A Rieman-
nian metric G is a (0, 2)-tensor field on M having the
property that G(x) : TxM × TxM → R is an inner prod-
uct on TxM. We denote this inner product at the point
x ∈ M by 〈〈·, ·〉〉G(x), with the induced norm denoted by
‖ · ‖G(x). The pair (M,G) is a Riemannian manifold .
In local coordinates, G = Gijdxi ⊗ dxj . We will write
[Gij ] for the associated n × n matrix. The metric can be
used to uniquely relate elements of TM and elements of
T∗M. Specifically, for each x ∈ M we define the flat map
G(x)[ : TxM → T∗xM, by 〈G[(vx);ux〉 = 〈〈vx, ux〉〉G(x),

and the sharp map G] : T∗xM → TxM as the inverse
of G[, for each vx, ux ∈ TxM. In local coordinates, G] =
Gijdxi⊗∂/∂xj , where GikGkj = δij . A Riemannian metric

G induces a unique affine connection
G
∇ on M, called the

Levi-Civita connection , satisfying (i)
G
∇XY −

G
∇YX =

[X,Y ], and (ii) LZ〈〈X,Y 〉〉G = 〈〈
G
∇ZX,Y 〉〉G+〈〈X,

G
∇ZY 〉〉G

for vector fields X,Y, Z ∈ Γ∞(TM). The vector field
G
∇YX

is the covariant derivative of X with respect to Y .

In local coordinates the Christoffel symbols for
G
∇ are

(i, j, k ∈ {1, . . . , n})

Γkij = Γkji =
1

2
Gk`

(
∂Gi`
∂xj

+
∂Gj`
∂xi

− ∂Gij
∂x`

)
. (1)

Given a curve γ : J → M, a vector field along γ is
a map that assigns to each t ∈ J an element of Tγ(t)M.
Let ξ(t) and η(t) be vector fields along γ. The covariant
derivative of ξ along γ — denoted by ∇γ′(t)ξ(t) — is

linear in ξ, and satisfies (i) ∇γ′(t)(f(t)ξ(t)) = ḟ(t)ξ(t) +
f(t)∇γ′(t)ξ(t), and (ii) ∇γ′(t)ξ(t) = ∇γ′(t)Y (γ(t)), for any
vector field Y satisfying Y ◦ γ = ξ and any f : R→ R. In
particular for a Levi-Civita connection it holds that

d

dt
〈〈ξ(t), η(t)〉〉G(γ(t)) = 〈〈

G
∇γ′(t)ξ(t), η(t)〉〉G(γ(t))

+ 〈〈ξ(t),
G
∇γ′(t)η(t)〉〉G(γ(t)) .

(2)

In components, the covariant derivative of a vector field
Y ∈ Γ∞(TM) along the curve γ is

(∇γ′(t)Y (t))k = Ẏ k(t) + Γkij(γ(t))ẋi(t)Y j(t) , (3)

where t 7→ (x1(t), . . . , xn(t)) is the local representation
of γ. The Lie derivative of a metric G along a vector
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field X is defined by LXG = G[(
G
∇X), where

G
∇X is the

unique (1, 1)-tensor field defined by
G
∇X(Y ) =

G
∇YX for

each Y ∈ Γ∞(TM). A vector field X is said to be a Killing
vector field if 〈〈vx, vx〉〉LXG = 0 for each vx ∈ TM. The
arclength of a piecewise smooth curve γ : J → M is
defined to be

`G(γ) ,
∫
J

√
〈〈γ′(t), γ′(t)〉〉G(γ(t)) dt .

For each pair of points x1, x2 ∈ M, we define the path space
Ω(x1, x2) , {γ : [0, 1] → M | γ is piecewise smooth and
γ(0) = x1, γ(1) = x2}. The Riemannian distance be-
tween x1 and x2 is then defined as dG(x1, x2) , inf{`G(γ) :
γ ∈ Ω(x1, x2)}. It follows that (M,dG) is a metric space
[37]. For a fixed x̄ ∈ M and r > 0, we define the r-ball
Br(x̄) by Br(x̄) , {x ∈ M |dG(x, x̄) ≤ r}. We denote by
ω : T∗M × · · · × T∗M → R the canonical volume form
associated with (M,G). The volume of a set N ⊂ M is
given by Vol(N) ,

∫
N
ω. Moreover, for X ∈ Γ∞(TM)

it holds that LXω = div(X)ω. In components, divX =
∂Xi/∂xi + ΓiijX

j .

2. Theory of Contracting Vector Fields

We now present the theory of contracting vector fields
in a coordinate-free setting. We begin our presentation
with the key definition.

Definition 2.1. (Contracting System). Let M be a
manifold. A contracting system is a quadruple (U , X,G, λ)
where

• U ⊂ M is a connected set, called the contraction re-
gion,

• X ∈ Γ∞(TM) is a vector field,

• G is a Riemannian metric, called the contraction
metric, and

• λ > 0 is the contraction rate.

Moreover, for each x ∈ U and each vx ∈ TxM, X satisfies

〈〈
G
∇vxX, vx〉〉G(x) ≤ −λ‖vx‖2G(x) . (4)

The vector field X is then said to be infinitesimally con-
tracting on U with respect to the metric G.

Condition (4) can be equivalently rewritten as

〈〈vx, vx〉〉LXG(x) ≤ −2λ‖vx‖2G(x) .

This formulation gives the intuition that lengths measured
using G “shrink” as one travels along the integral curves of
X. As we will see this intuition is essentially correct, but
we will find the form presented in (4) more relevant. We
now require one small definition regarding the contraction
region U .

Definition 2.2. (K-Reachable Set). Let (M,G) be a
Riemannian manifold. For K ≥ 1, a set U ⊆ M is K-
reachable if, for any two points x0, x1 ∈ U , there exists a
continuously differentiable curve γ : [0, 1] → U such that
γ(0) = x0, γ(1) = x1, and `G(γ) ≤ KdG(x0, x1).

This particular geometry serves to weaken the condi-
tion that the contraction region must be geodesically con-
vex (see [38, Theorem 4.1]), in exchange for a potentially
weaker estimate on the convergence. In particular, for the
case of Euclidean space, Definition 2.2 relaxes the assump-
tion that the contraction region must be convex, c.f. [7].
We now present the main stability result for contracting
systems.

Theorem 2.3. (Contraction Theorem). Let M be a
manifold, and let X ∈ Γ∞(TM) be a vector field on M.
Denote by Φt(x) the flow of X. Suppose there exists a
Riemannian metric G, constants λ,K > 0, and a set U ⊆
M such that

(i) (U , X,G, λ) is a contracting system,

(ii) U is a K-reachable, forward X-invariant set, and

(iii) X is forward complete on U .

Then for each pair of points x0, x1 ∈ U , it holds for each
t ≥ 0 that

dG(Φt(x0),Φt(x1)) ≤ Ke−λtdG(x0, x1) . (5)

Proof. Let γ : [0, 1] → U be a continuously differentiable
curve joining the points x0, x1 ∈ U as in Definition 2.2,
with γ(0) = x0 and γ(1) = x1. For each t ≥ 0, let L(t) be
the length of the curve s 7→ Φt(γ(s)), for s ∈ [0, 1], given
by

L(t) =

∫ 1

0

√√√√∥∥∥∥ d

ds
Φt(γ(s))

∥∥∥∥2

G(Φt(γ(s)))

ds . (6)

From now on we suppress the point at the inner product
is being taken. Since X is forward complete, this is well
defined for each t > 0. Differentiating (6) with respect to
time gives the length dynamics

dL(t)

dt
=

∫ 1

0

d
dt

(
‖ d

dsΦt(γ(s))‖2G
)

2
√
‖ d

dsΦt(γ(s))‖2G
ds . (7)

Define S(s, t) , d
dsΦt(γ(s)), and note that for s ∈ [0, 1],

the map t 7→ S(s, t) ∈ TM is a vector field along the curve
t 7→ Φt(γ(s)). Similarly, define T (s, t) , d

dtΦt(γ(s)), the
velocity field of the curve t 7→ Φt(γ(s)). These construc-

tions are depicted in Figure 1. Since
G
∇ is a Levi-Civita

connection, the numerator of the integrand in (7) gives

d

dt
‖S(s, t)‖2G = 2〈〈

G
∇T (s,t)S(s, t), S(s, t)〉〉G .

Again by the properties of the Levi-Civita connection,
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Figure 1: Construction for proof of Theorem 2.3. The Riemannian
length of the curve γ(s) connecting two arbitrary initial conditions
is shown to shrink under the flow.

Lemma 1 implies that
G
∇TS =

G
∇ST . We therefore have

that

d

dt
‖S(s, t)‖2G = 2〈〈

G
∇T (s,t)S(s, t), S(s, t)〉〉G

= 2〈〈
G
∇S(s,t)T (s, t), S(s, t)〉〉G

= 2〈〈
G
∇S(s,t)X(Φt(γ(s))), S(s, t)〉〉G

≤ −2λ〈〈S(s, t), S(s, t)〉〉G .

(8)

The first equality above follows from (2), the second from
Lemma 1 of Appendix A, and the third from the fact
that T (s, t) is the maximal integral curve of X through
the point γ(s). The final inequality uses the fact that the
system is contracting and that U is forward X-invariant.
Substituting the result of (8) back into (7), we obtain

d

dt
L(t) ≤ −λL(t) , ∀t ≥ 0 ,

and we therefore conclude via the Bellman-Gronwall lemma
that L(t) ≤ L(0)e−λt, for each t ≥ 0. Since by definition
dG(Φt(x0),Φt(x1)) ≤ L(t), and L(0) ≤ KdG(x0, x1), we
arrive at (5) and the proof is complete.

We note that the tensor nature of the contraction con-
dition (4) along with Theorem 2.3 imply that the stability
properties of contracting systems are coordinate-invariant.

Proposition 2.4. (Coordinate Description of Con-
traction). The following two statements are equivalent:

(i) The contraction condition (4) holds;

(ii) For every x ∈ U and in every set of admissible co-
ordinates (x1, . . . , xn) in a neighborhood V of x, it
holds that1[

Gki
∂Xk

∂x`
+
∂Xk

∂xi
Gk` +

∂Gi`
∂xj

Xj

]
� −2λ[Gi`]. (9)

1For positive definite symmetric (0,2) tensors A and B, we write
A � B if B −A is a positive definite symmetric (0,2) tensor.

Proof. Choosing a set of coordinates (x1, . . . , xn) and us-
ing the component expression (3) for the covariant deriva-
tive, the contraction condition of Definition 2.1 becomes(

Gk`
∂Xk

∂xi
+ Gk`ΓkijXj

)
viv` ≤ −λGi`viv`, (10)

where Γkij , are the Christoffel symbols for the Levi-Civita
connection. Due to the interchange symmetry between i
and ` on the left side of (10), only the symmetric part of
the (0, 2)-tensor in parentheses contributes to the overall
result. Symmetrizing the tensor in parenthesis in (10) and
using the Christoffel symbols (1) gives the coordinate for-
mula (9). The converse statement holds since admissible
local coordinates satisfy a smooth overlap condition [33,
Chapter 3].

Inequality (9) is the generalized Demidovich condition
for contraction [1, 3]. In the special case of M = Rn with
Euclidean metric G = GR2 , inequality (9) reduces further
to the classical stability condition of Krasovskĭi that the
symmetric part of the Jacobian matrix be negative definite
[39]. The following proposition collects some fascinating
ancillary facts about contracting systems. Some of these
facts have been noted in the literature, but have lacked
formal proofs.

Proposition 2.5. (Properties of Contracting Sys-
tems). Let (U , X,G, λ) be a contracting system. The fol-
lowing statements hold:

(i) Existence of Stable Fixed Point: if (U ,dG) is a
complete metric space, X is forward complete, and
U is a forward X-invariant K-reachable set, then X
has a unique fixed point x̄ ∈ U , and for each x ∈ U it
holds that Φt(x)→ x̄ exponentially fast as t→ +∞;

(ii) Krasovskĭi’s Method: if (i) holds, then V (x) ,
‖X(x)‖2G(x) serves as a strict local Lyapunov func-
tion for the unique fixed point x̄ ∈ U ;

(iii) Incremental Lyapunov Function: if (i) holds,
then the Riemannian distance x 7→ dG(x, x̄) serves
locally as a strict Lyapunov function for x̄. More-
over, for any r > 0 such that Br(x̄) ⊂ U , the system
(Br(x̄), X,G, λ) is contracting and the ball Br(x̄) is
forward X-invariant and 1-reachable;

(iv) Contraction of Volume: for any r > 0 and x ∈ U
such that Br(x) ⊂ U , the volume Vol(Φt(Br(x)))→ 0
exponentially fast as t→ +∞.

Note that by Proposition 2.5 (i), one can infer the ex-
istence of a unique, exponentially stable fixed point for
contracting systems without knowing a priori where the
fixed point actually is. This fixed point is unique in the
contraction region, but is not necessarily the only fixed
point on all of M. Indeed, the contraction region is con-
tractible, in the sense that after a reparameterization of
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time, the identity map x 7→ x is homotopic to the con-
stant map x 7→ x̄. It follows that there are no globally
contracting vector fields on compact manifolds [40].

Proof. (i): Let τ > 0 be such that Ke−λτ < 1, and
let x ∈ U . Examining (5), we see that x 7→ Φτ (x) is
a contraction mapping on U . Applying the Banach Fixed
Point Theorem in the complete space (U ,dG), we conclude
the existence of a unique fixed point x̄ ∈ U for the map
x 7→ Φτ (x), and hence for the vector field X itself. Ex-
ponential stability of x̄ follows from (5). (ii): Since x̄ is
a fixed point, V (x̄) = 0, and due to the uniqueness of
x̄, V (x) is strictly positive for each x ∈ U with x 6= x̄.
Taking the Lie derivative of V (x) along X we obtain that
LXV (x) = LX‖X(x)‖2G(x) ≤ −2λ‖X(x)‖2G(x) = −2λV (x),

where we have applied the contraction condition (2.1) with
vx = X(x). Hence V (x) is a strict local Lyapunov func-
tion for x̄. (iii): The first claim follows, as the Rieman-
nian distance is positive definite about x̄, and from (5),
decreases exponentially along trajectories of X. The sec-
ond claim follows from the forward X-invariance of the
Lyapunov sublevel sets. The “geodesic sphere” Br(x̄) is
strongly convex, and therefore 1-reachable [10]. (iv): For
x ∈ U and τ > 0, we compute that

d

dt
Vol(Φt(Br(x)))

∣∣∣∣
t=τ

=

∫
Φτ (Br(x))

LXω

=

∫
Φτ (Br(x))

divX ω.

A coordinate calculation using (10) and [41, Lemma 8.4.12]
quickly shows that divX ≤ −nλ. The claim then follows
by the Bellman-Gronwall lemma.

Example 1. (Damped Oscillator). For constants k,m,b
> 0 consider the vector field on M = R2 given by X =
y ∂
∂x − ( kmx + b

my) ∂∂y . Defining ζ , b/(2
√
km) , for ε ∈

]0, 1/(1 + ζ2)[ one can verify that this vector field is in-
finitesimally contracting on all of M with respect to the
positive definite metric G = 1

2k dx ⊗ dx + bεdx ⊗ dy +
1
2m dy ⊗ dy. The origin is a unique and globally exponen-
tially stable fixed point, and Proposition 2.5 (iii) implies
that V (x, y) = 1

2kx
2 + 1

2my
2 + εbxy serves as a strict Lya-

punov function (the alternative Lyapunov function arising
from 2.5 (ii) is somewhat messy).

Remark 1. (Killing Vector Fields). It is illuminating
to view the results of both Theorem 2.3 and Proposition
2.5 in the limiting case of λ→ 0+ — the case of a Killing
vector field. For clarity, consider again Example 1 for the
case of b = 0. One can then verify that this field is Killing
with respect to the metric G = 1

2k dx ⊗ dx + 1
2m dy ⊗ dy.

The integral curves of X are ellipses around the origin, and
thus trajectories of X are Lyapunov stable. Proposition 2.5
(ii) and (iii) then both imply that V (x, y) = 1

2kx
2 + 1

2my
2

serves as a Lyapunov function for the unique fixed point at
the origin. Forward X-invariance of the Lyapunov sublevel
sets is replaced by invariance of the corresponding level

sets, and Proposition 2.5 (iv) becomes the volume preserva-
tion statement of Louville’s Theorem for solenoidal vector
fields [42]. Finally, note that if (U , X,G, λ) is a contract-
ing system, then so is (U , X+Y,G, λ) for any Killing field
Y of (M,G).

3. Modularity Properties of Contracting Systems

In this section we consider the modularity properties of
infinitesimally contracting vector fields. In particular we
study cascade and feedback interconnections of contract-
ing systems, and give conditions under which the system
resulting from the interconnection is also contracting. Let
M be a manifold, and consider for k ≥ 1 the vector field
with inputs X : M × Rk → TM. That is, for each fixed
u ∈ Rk, x 7→ X(x, u) is a vector field on M. For a vector
field with inputs X, (U , X,G, λ,Rk) is said to be a con-
tracting system with inputs if (U , X(·, u),G, λ) is a con-
tracting system for every u ∈ Rk; that is, when the input
is taken as a constant parameter.

Lemma 3.1. (Cascade Interconnection of Contract-
ing Systems). Consider the cascade interconnection of
a contracting system (U1 ⊆ M1, X1,G1, λ1) with smooth
output map h1 : M1 → Rk and a contracting system with
inputs (U2 ⊆ M2, X2,G2, λ2,Rk). Assume U1 and U2 are
compact. Then there exists a metric G on M1 ×M2 such
that the closed loop system is contracting on U1 × U2 with
respect to G.

We omit the proof of Lemma 3.1, as it is similar to
the proof of Lemma 3.2 which follows. We note however
that a proof of Lemma 3.1 on Rn using the alternative no-
tion of a matrix measure can be found in [7]. While the
previous result shows that cascades of contracting systems
are always contracting in an appropriate metric, the fol-
lowing lemma gives sufficient conditions for the existence
of a contraction metric. To our knowledge, the following
small-gain type result does not appear in the contraction
literature.

Lemma 3.2. (Feedback Interconnection of Contract-
ing Systems). Consider the feedback interconnection of
two contracting systems with inputs (Ui ⊆ Mi, Xi,Gi, λi,Rki)
and associated output maps hi : Mi → Rk(3−i) , i ∈ {1, 2}.
Assume U1 and U2 are compact, and define the induced
input-output gains γ1, γ2 > 0 by2

γ1 , max
x1∈U1

max
wx2∈TU2

1

2

∥∥∥∂X1

∂u1
◦ (Th2)wx2

∥∥∥
G1

‖wx2
‖G2

<∞ ,

γ2 , max
x2∈U2

max
vx1∈TU1

1

2

∥∥∥∂X2

∂u2
◦ (Th1)vx1

∥∥∥
G2

‖vx1
‖G1

<∞ .

(11)

2Here, the mappings ∂Xi
∂ui
◦ (Thj) : TMj → TMi can be thought

of as the input/output gain operators which determine how system
j couples to system i.

5



If
γ1γ2 < λ1λ2 , (12)

then there exists a metric G on M1 × M2 such that the
closed loop system is contracting on U1 × U2 with respect
to G.

Proof. The system evolves on the smooth product mani-
fold M = M1×M2 with tangent bundle TM = TM1×TM2.
For points vx = (vx1 , wx2), v′x = (v′x1

, w′x2
) ∈ TM define

the metric G : TM× TM→ R on M by

〈〈vx, v′x〉〉G = α1〈〈vx1
, v′x1
〉〉G1

+ α2〈〈wx2
, w′x2

〉〉G2
,

where α1, α2 > 0. That is, the combined metric is “block
diagonal”. Denoting by X the total vector field on M, for
x ∈ U1 × U2 and vx = (vx1 , wx2) ∈ TM we compute that3

〈〈
G
∇vxX, vx〉〉G = α1〈〈

G1

∇vx1X1, vx1
〉〉G1

+ α2〈〈
G2

∇wx2X2, wx2
〉〉G2

+ 2α1〈〈vx1
,
∂X1

∂u1
◦ (Th2)wx2

〉〉G1

+ 2α2〈〈
∂X2

∂u2
◦ (Th1)vx1 , wx2〉〉G2

≤ −α1λ1‖vx1‖2G1
− α2λ2‖wx2

‖2G2

+ (α1γ1 + α2γ2)‖vx1‖G1‖wx2‖G2 .

This quantity is strictly negative for all non-zero vx ∈ TM
if and only if the matrix

M ,

[
α1λ1 − 1

2 (α1γ1 + α2γ2)
− 1

2 (α1γ1 + α2γ2) α2λ2

]
is positive definite. Note that α1λ1 > 0, and define z ,
α1/α2 > 0. Then M is positive definite if and only if

λ1λ2 − γ1γ2/2 > (zγ2
1 + γ2

2/z)/4 . (13)

The right hand side of (13) is a convex function of z > 0
with a unique minimum value of γ1γ2/2 at z∗ = γ2/γ1.
Selecting α1/α2 = z∗ reduces (13) to (12), and hence M
is positive definite. Therefore, there exists a λ > 0 such
that M > λdiag(α1, α2), and it therefore holds that

〈〈
G
∇vxX, vx〉〉G ≤ −λ

[
‖vx1‖G1

‖wx2
‖G2

]T [
α1 0
0 α2

] [
‖vx1‖G1

‖wx2
‖G2

]
= −λ‖vx‖2G ,

which completes the proof.

4. Connections to Contraction Theory in Mathe-
matics and Physics

Within the differential geometry community, contracting-
type vector fields have been studied under the title of

3Here, the mappings ∂Xi
∂ui
◦ (Thj) : TMj → TMi can be thought

of as the input/output gain operators which determine how system
j couples to system i.

monotone vector fields [43]. In [10], a vector field X ∈
Γ∞(TM) is said to be strongly monotone on U ⊂ M if
there exists λ > 0 such that, for any geodesic γ joining
two points in U , the function ϕ(t) , 〈〈γ′(t), X(γ(t))〉〉G −
λt〈〈γ′(0), γ′(0)〉〉G is monotone increasing. That is, the
function of time 〈〈γ′(t), X(γ(t))〉〉G must be increasing faster
than linearly. We refer the reader to [43, 44, 10, 45] for
further details. Since we are more interested in stable sys-
tems, we will in fact reverse this definition and say that
X is strongly monotone if there exists a λ > 0 such that
ϕ(t) , 〈〈γ′(t), X(γ(t))〉〉G + λt〈〈γ′(0), γ′(0)〉〉G is monotone
decreasing. The following result relates monotone and in-
finitesimally contracting vector fields.

Proposition 4.1. (Monotone and Contracting Vec-
tor Fields). Let X ∈ Γ∞(TM) be a smooth vector field
on (M,G). The following two statements are equivalent:

(i) X is strongly monotone on U ⊂ M with parameter
λ > 0;

(ii) (U , X,G, λ) is a contracting system with U geodesi-
cally convex.

Proof. By definition, the function ϕ is monotone decreas-
ing if

d

dt
ϕ(t) = 〈〈γ′′(t), X(γ(t))〉〉G

+ 〈〈γ′(t),
G
∇γ′(t)X(γ(t))〉〉G + λ‖γ′(0)‖ ≤ 0 .

From the definition of a geodesic we have that γ′′(t) = 0,
and the remaining inequality therefore holds if and only

if it holds that 〈〈vx,
G
∇vxX〉〉G(x) + λ‖vx‖2G(x) ≤ 0 for each

x ∈ U and each vx ∈ TxM, which is exactly the contraction
condition (4).

Consider now the case where the contraction condi-
tion of Definition 2.1 is satisfied with equality rather than
inequality. Such vector fields have been studied in the gen-
eral relativity community, and are referred to as proper
homothetic vector fields. The perspective of study is
somewhat different, in that in this context one studies a
pseudo-Riemannian manifold and asks what classes of con-
tinuous vector fields can exist. The vector space H(M) of
homothetic vector fields on a Riemannian manifold (M,G)
is of dimension at most 1

2n(n + 1) + 1, and is in fact a
Lie algebra when endowed with the standard Lie bracket.
One can show that the dimension of H(M) is one greater
than that of the vector space of Killing fields K(M), and
therefore that there is exactly one linearly independent
proper homothetic field on (M,G), with all others being
constructed as a linear combination of this field and an
appropriate Killing field (c.f. Remark 1). Homothetic vec-
tor fields enjoy the property that geodesics of the mani-
fold are mapped to geodesics by the flow, and that every
fixed point is necessarily isolated. In addition, a quick cal-
culation shows that LXS ≥ 2λS, where S is the scalar
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curvature of the Riemannian manifold. That is, the scalar
curvature grows exponentially as one approaches a fixed
point, and hence the nomenclature “singularities“ in ref-
erence to fixed points of vector fields. We refer the reader
to [46] for additional results.

5. Gradient Systems

We now examine how the preceding results play out for
a class of example systems. A gradient system on (M,G)
is a vector field of the form

X(x) = −gradψ(x) , −G ](dψ(x)) ,

where ψ ∈ C∞(M). Note that a gradient system is defined
only in the presence of a Riemannian metric. In local co-
ordinates, the components of the gradient vector field are
Xi = −G ij(∂ψ/∂xj) for i ∈ {1, . . . , n}, which reduces
as expected in Euclidean space (G = GRn) to the stan-
dard “ż = −∇ψ(z)”. The Hessian of ψ is the symmetric
(0, 2)-tensor field on M defined for for vx, wx ∈ TxM by
Hessψ(x) · (vx, wx) , 〈〈vx,∇wxgradψ〉〉G(x). In coordi-
nates, the Hessian has components

(Hessψ)ij =
∂2ψ

∂xi∂xj
− ∂ψ

∂xk
Γkij , i, j ∈ {1, . . . , n} . (14)

A critical zero for a function ψ ∈ C∞(M) is a point
x̄ ∈ M such that ψ(x̄) = 0 and dψ(x̄) = 0x̄. This is a
point where both the function and its “slope” are zero.
From (14), we see that at a critical zero, the Hessian is
simply the matrix of mixed partial derivatives. A critical
zero is said to be nondegenerate if, in any coordinate
chart, this matrix has full rank. Given L > 0, we denote
by ψ−1(≤ L, x̄) , {x ∈ M |ψ(x) ≤ L} the (connected
component of the) L-sublevel set of ψ containing x̄.
We set

Lcpt(ψ, x0) , sup{L ∈ R |ψ−1(≤ L, x̄) is compact} ,
Lreg(ψ, x0) , sup{L ∈ R |x ∈ ψ−1(≤ L, x0) \ {x̄}

=⇒ dψ(x) 6= 0} ,

and Lcpt,reg(ψ, x̄) , min{Lcpt(ψ, x̄), Lreg(ψ, x̄)}. In other
words, Lcpt,reg(ψ, x̄) bounds from above the largest value
L such that the connected component of the L-sublevel
set of ψ is compact and contains no critical point other
than x̄. The preceding constructions are depicted in Figure
2. In the presence of a nondegenerate critical zero, the
application of Theorem 2.3 gives us the following result.

Corollary 5.1. (Contraction for Gradient Systems).
Let ψ ∈ C∞(M), suppose that x̄ ∈ M is a critical, nonde-
generate zero for ψ, and let L ∈ [0, Lcpt,reg(ψ, x̄)[. If there
exists λ > 0 and a Riemannian metric G such that for
each x ∈ ψ−1(≤ L, x̄) the Hessian of ψ satisfies

Hessψ(x) � λG(x) , (15)

then Theorem 2.3 holds with U = ψ−1(≤ L, x̄), K = 1 and
X = −gradψ.

Figure 2: Illustration of sublevel set constructions for Corollary 5.1.
The points x1 and x2 represent initial conditions which clearly con-
verge to the stable fixed point x̄, but do not lie within the contraction
region defined the the hatched vertical lines.

Proof. We set U , ψ−1(≤ L, x̄). With this, (−gradψ,U ,G, λ)
is by assumption a contracting system, since the inequal-
ity (15) is nothing other than the contraction condition of
Definition 2.1. The inequality (15) implies ψ is strongly
convex on U , and U is therefore 1-reachable [10, Propo-
sition 3.4]. Forward invariance of U follows from the or-
thogonality of the gradient field of ψ and its level sets, and
the vector field is therefore forward complete on U . Thus,
the criteria of Theorem 2.3 are satisfied, completing the
proof.

We note that Corollary 5.1 demonstrates that contrac-
tion is a stronger property than exponential stability of a
fixed point. Indeed, as evident from Figure 2, the initial
conditions x1, x2 ∈ ψ−1(≤ Lcpt,reg(ψ, x̄), x̄) both converge
asymptotically to the fixed point, whereas the exponential
convergence guaranteed by the contraction condition ap-
plies only in the region between the hatched vertical lines,
where the curvature of the function ψ is strictly positive.

6. Conclusions

In this work we have examined contracting systems in
a coordinate free setting on Riemannian manifolds. In par-
ticular, we have rigorously examined the main theory of
contraction using intrinsically defined quantities. An in-
teresting question not examined here is the relationship be-
tween contraction theory and the dual Lyapunov approach
proposed in [47]; see also the Koopman theory presented in
[48]. It seems plausible that there should be such a density
function approach for incremental stability. A challenging
problem, which to our knowledge remains open, is that
of finding succinct and meaningful conditions for a simple
mechanical system to exhibit contracting behavior.

Appendix A.

The following lemma records a useful property of the
vector fields S(s, t) and T (s, t).

Lemma 1. Let S̃, T̃ ∈ Γ∞(TM) be vector fields having

the property that S̃ ◦Φt(γ(s)) = S(s, t) and T̃ ◦Φt(γ(s)) =

7



T (s, t). Then [S̃, T̃ ](Φt(γ(s))) = 0 for (s, t) ∈ [0, 1] ×
[0,∞[.

Proof. The existence of the vector fields S̃ and T̃ follows
from the smoothness of the vector field X, so the con-
struction is well defined. Let f ∈ C∞(M) so that f ◦ Φ :
[0, 1]× [0,∞[→ R. The definition of the Lie bracket and a
coordinate calculation yields

L[S̃,T̃ ]f ◦ Φt(γ(s))

= LSLT f ◦ Φt(γ(s))−LTLSf ◦ Φt(γ(s))

=
d2

dsdt
f ◦ Φt(γ(s))− d2

dtds
f ◦ Φt(γ(s))) = 0

by the equality of mixed derivatives.
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22 (4) (2012) 047510.

9


	Introduction
	Theory of Contracting Vector Fields
	Modularity Properties of Contracting Systems
	Connections to Contraction Theory in Mathematics and Physics
	Gradient Systems
	Conclusions
	

