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T
he emergence of sensor networks operating at different modalities, mo-
bility, and coverage has opened the door to systems involving diverse 
data sources and analysis tools. These complex systems often contain 
both human and robotic elements, and, in many cases, it is the job of 
humans to process information generated by autonomous agents [1], [2]. 

The incredible amount of data generated by modern sensors makes these human 
operators susceptible to information overload, which can have detrimental effects 
on performance and may lead to dire consequences [3]. To alleviate this loss in 
performance, programs like the recent National Robotic Initiative [4] emphasize 
collaboration between humans and their robotic partners and envision symbiotic 
mechanisms to facilitate interactions between diverse system components. 
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This article focuses on the design of systems in which a 
human operator is responsible for overseeing autonomous 
agents and providing feedback based on sensor data. In the 
control systems community, the term human supervisory 
control (or simply supervisory control) is often used as a 
shorthand reference for systems with this type of architec-
ture [5]–[7]. In a typical human supervisory control appli-
cation, the operator does not directly manipulate 
autonomous agents but rather indirectly interacts with 
these components via a central data-processing station (see 
Figure 1). As such, system designers have the opportunity 
to easily incorporate automated functionalities to control 
how information is presented to the operator and how the 
input provided by the operator is used by automated sys-
tems. The goal of these functionalities is to take advantage 
of the inherent robustness and adaptability of human oper-
ators, while mitigating adverse effects such as unpredict-
ability and performance variability. In some contexts, to 
meet the goal of single-operator supervision of multiple 
automated sensor systems, such facilitating mechanisms 
are not only useful but necessary for practical use [8], [9]. A 
successful system design must carefully consider the goals 
of each part of the system as a whole and seamlessly stitch 
components together using facilitating functionalities.

DESIGN CONSIDERATIONS
The design of any effective supervisory control system 
starts with a model of human cognitive processing [10]. 
This model, which forms the “backbone” of the human-
centered system, must capture the operator’s underlying 
decision-making mechanisms, while still taking into 
account the variability that is inherent to human process-
ing. Other factors, such as mental workload, memory, and 
fatigue, can significantly affect these driving mechanisms 
as well and may also need to be incorporated into the 
model to achieve design goals.

Once an appropriate model has been constructed, the 
question becomes how to use the information that the 
model provides to manage data presentation and auto-
mated control schemes. For example, data collected by 
autonomous agents in supervisory control applications 
is often of a visual nature, that is, photos or video. Given 
such visual imagery, can operator performance, imagery 
characteristics, and system parameters be used to decide 
which region of the image the operator should focus on? 
If multiple images are waiting to be processed, is it pos-
sible to determine how much time the operator should 
spend on each image? Can system parameters be adjusted 
to react to nonoptimal user behaviors in real time? How 
should the autonomous agents take human responses 
into account?

It is apparent that an effective system design incorpo-
rates a broad range of theoretical and practical tools from 
many scientific disciplines, including control systems, 
human factors, and psychology. As such, practitioners face 
a series of diverse and complex choices when deriving 
models and strategies to govern system behavior. The goal 
for this article is to provide insight into some of these 
choices through examining common theoretical tools rel-
evant to each of the main components making up a super-
visory control system, namely, the human operator, 
autonomous agents, and the interface between them. In 
particular, the discussion is focused on those tools that 
have close ties to control and dynamical systems. Through-
out the discussion, key challenges that arise both in practi-
cal implementation and in combining these tools for use in 
the overall system are highlighted. In some sense, this ar-
ticle can be thought of as a brief survey of work relevant to 
the design of human supervisory control systems; howev-
er, the article also serves to provide a proof of concept by 
illustrating how basic, well-studied theory from various 
disciplines can work together for use in a broader, human-
centered systems perspective. The following discussion is 
not, by any means, intended to provide an exhaustive 
review of all relevant theory but rather is intended to give 
control practitioners a flavor for the types of models that 
are being used and the unique issues that can arise in this 
type of application.

STATE OF THE ART
Automation can be formally defined as the “execution by a 
machine agent of a function that was previously carried out 
by a human” [11]. In this broad context, the use of human 
operators to monitor the functionality of automated systems 
has arisen in widespread domains. Examples of current ap-
plications that incorporate human-centered automation sys-
tems include dynamic positioning systems in maritime 
applications [12], command and control systems for monitor-
ing satellites and space assets [13], automated vehicle opera-
tion aids [14], aviation accident and emergency response 
systems [15], numerous military operations [16], [17], medical 
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FIGURE 1 A typical human supervisory control setup consisting of 
three main components: the human operator(s), the data-process-
ing station, and the autonomous agents. Human operator(s) inter-
act with the autonomous agents through the data-processing 
station. The degree to which human performance and input affects 
automation, as well as the method by which sensor data is pre-
sented to the operators, is determined by the data-processing sta-
tion and its internal functionalities.
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imaging systems [18], advanced traffic management and in-
telligent transportation systems [19], and many more.

As a consequence of this growing interest in human 
supervisory control, a large body of research has focused 
on the direct incorporation of human performance models 
into autonomous system design. Significant research 
efforts have gone into finding systematic ways of distribut-
ing operator cognitive resources. In some approaches, the 
human decision-making process is unregulated, but the 
automated system is tailored to the human operator’s cog-
nitive requirements. The fundamental research questions 
under this approach include 1) optimal scheduling of the 
tasks to be processed by the operator [20]–[26], 2) enabling 
shorter operator reaction times by controlling the fraction 
of the total time during which the operator is busy [27], [28], 
and 3) efficient work-shift design to counter fatigue or 
interruption effects [29]. In other approaches, both the oper-
ator’s decision-making process and the autonomous agents 
are controlled. For example, the human operator is given a 
set time to spend on each task, and the operator’s decision 
is used to adaptively adjust overall automation schemes or 
parameters. The fundamental research questions under 
this approach include 1) determining optimal operator 
attention allocation both within and across tasks [30]–[32], 
2) managing operator workload to enable better perfor-
mance [33], and 3) controlling autonomous agents to collect 
the most useful information [33]–[35].

Many researchers have also studied adaptive strategies 
to human-centered system design, in which both physiolog-
ical and performance measures are used to infer the opera-
tor’s cognitive state (such as mental workload and operator 
intentions), and automated functionalities are only trig-
gered when a nonoptimal or undesirable state is detected 
[36], [37]. However, the majority of such adaptive systems to 
date have been experimental rather than practical due to 
difficulties in constructing accurate indicators of the user’s 
cognitive state [38]. Despite such difficulties, continually 
improving the accuracy and affordability of physiological 
sensors, such as eye trackers and electro encephalogram 
(EEG) devices, have led to a better understanding of objec-
tive measures that can give insight into operator cognitive 
behavior [39].

The remainder of this article discusses the three main 
components of a human supervisory control system as 
defined in Figure 1. Due to the vast amount of literature and 
theory that is available on each of these topics, an exhaus-
tive survey is impractical for a single article. Therefore, the 
goal of providing an illustrative orientation to human 
supervisory control is accomplished by focusing the discus-
sion on a subset of the available literature that 1) is represen-
tative of the state of the art approaches to human supervisory 
control system design, 2) is accessible to readers unfamiliar 
with human-centered systems, 3) is amenable to automated 
decision support and other facilitating functionality design, 
and 4) effectively illustrates how familiar control-theoretic 

tools can be used in this setting. Most of the following dis-
cussion is motivated by the control of mobile sensors that 
collect visual data (such as unmanned vehicles taking 
photos or video), although many of the concepts discussed 
readily extend to other related domains. To compliment the 
discussion and aid in understanding, , an example problem 
is studied in the sidebars. An overview of the example prob-
lem is found in “Persistent Surveillance Mission: Problem 
Overview and Setup.”

HUMAN MODELING

Approaches to Modeling Human Cognition
This section provides an overview of a few common strate-
gies used to capture human cognitive behavior in tasks 
where a person must choose between a set of alternative 
choices. The construction of a human modeling strategy for 
the example surveillance problem is demonstrated in “Persis-
tent Surveillance Mission: Human Performance Modeling.”

At a high level, the issue of producing a meaningful 
interpretation of human behavior that can be used in pre-
diction and system design is a type of “black box” problem, 
similar to those encountered in the modeling of uncertain 
dynamical systems. That is, the aim is to model what occurs 
in a system whose precise internal behavior is unknown, 
given only information about inputs and outputs. If 
unknown system parameters can be estimated and output 
quantities can be isolated, then simple data-fitting tech-
niques can be used to produce a functional relationship 
between the nature of a stimulus, the state of the organism 
in question, and the output quantity of interest. This rela-
tionship can subsequently be used to predict future system 
behavior. Such fitting techniques have been studied and 
employed in psychological contexts for many years [40], [41]. 
These approaches are usually simple and straightforward 
to implement, making them an attractive option for applica-
tions that only require modeling on a coarse scale.

Black box approaches, however, are often not sufficient 
for capturing the relationship between physiological phe-
nomena that occur on a fine scale, such as neuronal activity, 
and resulting behavior. In applications where these rela-
tionships are of particular importance, alternative psycho-
logical models that seek to explain cognitive behavior 
through direct links with detailed anatomy and physiology 
of the human’s contributive systems, such as the nervous 
and endocrine systems, may be more appropriate [42]. 
Many such models try to capture the decision process 
through the inherent dynamics of interconnected neurons 
(see, for example, [43]).

At a slightly coarser level, some constructs, such as arti-
ficial neural networks, seek to explain behavior through 
massive parallel models that are composed of large num-
bers of simple and uniform interconnected processing ele-
ments. These constructs are called connectionist models or 
parallel distributed-processing networks [44], [45]. Another 
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alternative modeling paradigm is the symbolic approach to 
cognition, which is inspired by logic and digital computing 
techniques, and sees reasoning as a process resulting from 

the structured manipulation of symbolic representations. 
The symbolic and connectionist approaches are comple-
mentary in the sense that the former is quite efficient at 

Persistent Surveillance Mission: Problem Overview and Setup 

OVERVIEW

To further illustrate the design principles discussed, the side-
bars in this article present an example human supervisory 

control problem that involves a continuous search of target re-
gions by a mobile sensor. This type of persistent surveillance 
using mobile sensors is applicable to a variety of real scenarios, 
including military applications, such as area reconnaissance 
and battlefield damage assessment, search and rescue opera-
tions, such as disaster assistance and target extraction, and 
environmental monitoring tasks, such as the control of forest 
fires and wildlife regulation.

An efficient persistent surveillance policy can have multiple 
objectives, including minimization of the time between subse-
quent visits to a region and minimization of the delay in detect-
ing anomalous events, such as the appearance of an intruder 
or the onset of a fire. The fundamental tradeoff in persistent 
surveillance is between the amount of evidence collected from 
the visited region and the resulting delay in evidence collection 
from other regions. In this example, the objective is to address 
this tradeoff by designing an efficient surveillance policy that 
takes into account human responses to image analysis tasks 
and subsequently collects evidence from regions that are high-
ly likely to be anomalous. Human decisions regarding the col-
lected evidence are considered in conjunction with a cognitive 
model to determine the likelihood of a region being anomalous. 
Finally, the integration of these tools is illustrated through the 
design of a simple decision support that determines how the op-
erator should allocate time to multiple image-processing tasks.

SETUP
The primary objective in this example surveillance mission is to 
detect, within a prescribed accuracy, any anomaly in a discrete 

set of regions. The mission setup is shown in Figure S1 and 
consists of three main components, consistent with the abstrac-
tion in Figure 1: 1) the autonomous system, 2) the cognitive sys-
tem, and 3) the data-processing station.

The autonomous system is a single unmanned aerial vehicle 
(UAV) that surveys a set of regions according to a routing policy. 
The UAV is equipped with a camera, and during each visit to a re-
gion the UAV generates an image. The image is sent to the data-
processing station, which, in turn, sends the image to the human 
operator (cognitive system). The cognitive system is a single hu-
man operator who examines the image and decides whether an 
anomaly is present or absent in the associated region.

In this example, the data-processing station consists 
of three elements: 1) the decision support system, 2) the 
anomaly detection algorithm, and 3) the vehicle routing al-
gorithm. The purpose of the decision support system is to 
use the performance of the operator to suggest the optimal 
amount of time that the operator should allocate to each 
perceptual task, that is, each image generated by the UAV. 
Decisions made by the human operator may be erroneous, 
and thus the anomaly detection algorithm is a sequential 
statistical algorithm that treats the operator’s decision as 
a binary random variable and ascertains the desired ac-
curacy of the anomaly detection. The anomaly detection al-
gorithm also provides the likelihood of an anomaly at each 
region. The vehicle routing algorithm uses the likelihood of 
each region being anomalous to determine an efficient ve-
hicle routing policy.

The goal of the overall system is to detect anomalies in the 
shortest time interval possible, subject to a false-alarm con-
straint. In subsequent sidebars, each problem component is 
examined in detail.

FIGURE S1 Setup for the example persistent surveillance mission.
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modeling knowledge representations, while the latter is 
more focused on capturing the learning process. This dis-
parity has lead to the development of hybrid connectionist-
symbolic models [46]. Examples of well-known cognitive 
architectures that fall into this category include ACT-R [47], 
Soar [48], EPIC [49], and CLARION [50].

Cognitive architectures that adopt intricate connection-
ist and/or symbolic components are usually very general 
and have the ability to capture a wide variety of complex 
behavior [51]. However, these architectures are primarily 
used in modeling sensory evidence retrieval and storage, 
rather than the dynamics of the evidence itself. As a result, 
cognitive architectures alone may lack information 
required to model low-level decision-making behavior 
associated with particular tasks [52]. In the context of per-
ceptual choice tasks, a variety of models can be used to 
more explicitly account for how behavioral performance 
improves over time as a result of the accumulation of sen-
sory information. These models, called accumulator or 
sequential sampling models, provide significant insight into 
sensory evidence accumulation and behavioral correlates 
of decision making [52]. Accumulator models have been 
used to predict human accuracy and reaction times, applied 
to allow interpretations on practical problems such as the 
effect of aging on performance, and also integrated with 
neurophysiological data to provide a framework to connect 
neuronal and behavioral measures [53]. Attempts to com-
bine these dynamic approaches with cognitive architec-
tures and develop a unified theory has been a subject of 
recent research [52].

In general, no single approach to modeling human cog-
nition will be sufficient for all possible applications, and 

the plethora of models that have been developed over the 
past century all have merit in some domains. At a given 
level of granularity with respect to descriptions of stimuli 
and behavior, there will exist some model that describes 
relevant data as well as possible and more economically 
than is feasible at other levels [42]. For the purposes of 
designing automated systems to aid operators in human 
supervisory control, black-box statistical models are often 
not detailed enough for the development of online control 
schemes, whereas intricate physiological models are usu-
ally too detailed or evolve on time scales that are too accel-
erated to be useful in macroscale operations. Furthermore, 
in supervisory applications, the dynamics of decision 
making are often of more immediate interest than the 
physiological mechanisms that drive sensory evidence 
retrieval and storage.

For these reasons, the remainder of the discussion on 
cognitive modeling is focused on accumulator models that 
seek to capture the sensory evidence accumulation process 
in forced-choice tasks. In addition to the reasons already 
mentioned, accumulator models are relevant because they 
1) have close ties to dynamical systems, 2) are widely used 
in cognitive psychology, 3) are relevant to visual perception 
which is a commonly encountered task in supervisory con-
trol, 4) are abstractions of detailed physiological models 
[54], 5) have been proven to capture a large amount of rele-
vant behavioral phenomena [55]–[57], and 6) appropriately 
illustrate key challenges involved in modeling human 
behavior. This does not imply that other modeling tech-
niques are not pertinent to control, only that accumulator 
models are powerful tools that are reflective of state of the 
art approaches to supervisory control, are conducive to the 

Persistent Surveillance Mission: Human Performance Modeling 

In the design of a human supervisory control system, the choice 
of the human model forms the basis for the cognitive system and 

supports virtually all other operations in the design strategy. This 
section focuses on the design of a performance function, which will 
drive the strategy for the rest of the system design.

This example uses the DDM (1) as the basis for constructing 
the human performance model. In general, human decision mak-
ing will hinge upon a variety of factors not captured by the pure 
DDM. In this example, such exogenous factors are not explic-
itly considered. However, it should be noted that other decision-
making models that do incorporate exogenous factors can also 
be used to construct a performance function in a similar manner.

The accuracy of decisions made by the operator is used as 
a measure of the operator’s performance. Therefore, the prob-
ability of making the correct decision is selected to be the per-
formance metric. The drift rates are assumed to be symmetric, 
that is, the drift rates are n+  and n-  when alternatives H0  and 
H1  are true, respectively. Recalling (2), the performance func-
tion when alternative H0  is true is : [ , ] [ , ],f 0 1 0 1R0
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Given a prior probability r  of the first alternative being true, the 
overall performance : [ , ] [ , ]f 0 1 0 1R 0 "#$  is

 ( , ) ( , ) ( ) ( , ).f t f t f t10 1r r r r r= + -  (S1)

This performance function is a sigmoid function of time.
Denote the thk  region by , , , .k m1Rk f! " ,  The surveillance 

mission is modeled as a sequence of two-alternative choice tasks 
and, accordingly, models the operator performance as in (S1). The 
two alternatives ,H H0 1  in this setting are the presence of an anom-
aly and the absence of an anomaly, respectively. The performance 
of the operator at region Rk  is denoted by : [ , ] [ , ].f 0 1 0 1Rk 0 "#$  
This presentation implicitly assumes that the evidence accumu-
lated in the different regions is mutually independent.
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exploratory nature of this article, and give the unfamiliar 
reader a flavor of issues that arise in cognitive modeling.

Two-Alternative Forced-Choice Tasks
A two-alternative forced-choice task is one in which an opera-
tor must decide between two possible hypotheses. Models 
for two-alternative forced-choice tasks within continuous 
sensory information acquisition scenarios rely on two 
assumptions: evidence is collected over time in favor of 
each alternative and a decision is made once a stopping cri-
terion is met. A few simplistic models, such as the linear 
ballistic accumulator model, assume that evidence toward 
each alternative evolves in a linear and deterministic 
manner toward a decision threshold [58]. Such simplistic 
models allow for analytic solutions that can be analyzed to 
infer changes in drift rates or decision thresholds. Deter-
ministic models are usually insufficient to adequately cap-
ture the complex nature of human cognition, and thus 
virtually all other accumulator models assume that the 
sensory evidence accumulation process has an element of 

randomness. In this stochastic context, several models for 
two-alternative forced-choice tasks have been proposed 
[55]; however, almost all accumulator models are based on 
the drift diffusion model (DDM) [59]–[61]. The DDM is pop-
ular because 1) it is simple and well characterized, 2) it cap-
tures a significant amount of behavioral and neuroscientific 
data, and 3) many other models for two-alternative forced-
choice tasks reduce to the DDM under optimal parameter 
choices [55].

In the most basic version of the DDM, evidence toward 
an alternative is modeled as a variable x R!  that evolves 
according to the stochastic differential equation

 ( ) ( ), ( ) ,dx t dt dW t x x0 0n v= + =  (1)

where R!n  is the drift rate, R 0>!v  is the diffusion rate, 
( )W $  is the standard Wiener process, and x R0 !  is the ini-

tial evidence. For an unbiased operator, the initial evidence 
is ,x 00 =  while for a biased operator x0  captures the odds 
or the prior probability of each hypothesis being true.

For the information aggregation model (1), human deci-
sion making is studied in two paradigms, namely, free 
response and interrogation [55] (see Figure 2). In the free 
response paradigm, the operator waits to make a decision 
until the evidence satisfies a pre-established criterion, 
whereas in the interrogation paradigm, the operator must 
make a decision within a pre-established time window. 
The free response paradigm is modeled via two thresholds 
(positive and negative) and the operator decides in favor of 
the first (second) alternative if the positive (negative) 
threshold is crossed from below (above). In contrast, the 
interrogation paradigm makes use of a single threshold, 
and the operator decides in favor of the first (second) alter-
native if the amount of accumulated evidence is above 
(below) the threshold at the end of the allotted time.

Free Response Paradigm
Typical evolutions of the DDM under the free response 
paradigm are shown in Figure 2(a). For equally likely alter-
natives, the two decision thresholds are chosen symmetri-
cally. If R! !h  represents symmetrically chosen 
thresholds, the expected decision time TDecisi no^ h under the 
free response paradigm is
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The reaction time on a task is ,T TDecision SM+  where T RSM 0>!  
is the time taken by sensory and motor processes unrelated 
to the decision process. With proper choice of parameters, 
the DDM (1) can predict reaction times with some success 
(see Figure 3).

The choice of the threshold is dictated by a tradeoff 
between speed and accuracy. The two most common crite-
ria to capture the speed-accuracy tradeoff are 1) Bayes’ risk 
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FIGURE 2 The curves illustrating decision-making paradigms for the 
drift diffusion model. Each colored line represents an independent 
decision-making task. (a) The free response paradigm for decision 
making. Evidence evolves according to (1), and the operator makes 
a decision once a threshold is crossed. (b) The interrogation para-
digm of decision making. Evidence evolves according to (1), and the 
operator’s decision depends on whether the evidence is above or 
below a threshold after a given amount of time.
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(BR) and 2) reward rate (RR) [55]. BR is defined by 
,BR T PDecision Error1 2p p= +  where , R1 2 !p p  are the cost per 

unit delay in decision and the cost of error, respectively, 
and PError  is the error rate. For the DDM, minimization of 
BR yields a transcendental equation for the threshold [55]
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RR is generally defined by the proportion of correct trials 
divided by the average duration between decisions [62]
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where D R 0! $  is the delay between a correct response and 
the next stimulus and D Rp 0! $  is a penalty delay intro-
duced by an incorrect decision. Similar to the BR, the opti-
mal threshold for RR can be found by minimizing
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These transcendental threshold equations can be solved 
numerically, and 1p  and 2p  can be estimated from empiri-
cal data [55]. The accuracy of these optimal threshold selec-
tion methods in predicting the speed-accuracy tradeoff for 
human subjects has been investigated in [63]. The inter-
ested reader is referred to [64] for a discussion on successes 
and shortcomings of such optimal methods.

The previous discussion pertains to a single two-alter-
native forced-choice task. However, in most engineering 
applications, humans process a sequence of such tasks that 
impose additional complexities. Researchers have found 
that, broadly speaking, human decision making in a 
sequence of two-alternative forced-choice tasks can often 
be effectively modeled by a sequence of drift-diffusion 
accumulators with sequentially updated initial conditions 
and thresholds [65]–[68].

Interrogation Paradigm
Typical evolutions of the DDM under the interrogation 
paradigm are shown in Figure 2(b). The interrogation 
paradigm relies on a single threshold. For a given dead-
line ,T R 0>!  the operator decides in favor of the first 
(second) alternative if the evidence collected until time 

,T  (that is, ( )x T ) is greater (smaller) than a threshold. For 
equally likely alternatives, the threshold is chosen to be 
zero. From (1), the evidence collected until time T  is a 
Gaussian random variable with mean T x0n +  and vari-
ance .T2v  Thus, if R!o  represents the chosen threshold, 
the probability to decide in favor of the first alternative 
under the interrogation paradigm can be written in 
closed form as

 ( ( ) ) ( ( ) ) ,x T x T
T

T x1 1> <P P
0

o o
v

o n
U= - = -

- -c m  (2)

where ( )$U  is the Gaussian cumulative distribution function.

Generalizations of the DDM
A myriad other accumulator models consider generaliza-
tions of the pure DDM. These variants often serve to cap-
ture additional behavioral characteristics that are not 
captured by the dynamics in (1). For example, the Ornstein–
Uhlenbeck (O-U) model [69], [70] incorporates an additional 
linear term in the evidence accumulation equation

 ( ) ( ( ) ) ( ), ( ) ,dx t x t dt dW t x x0 0m n v= + + =  (3)

where .R!m  The sign of m  determines whether evidence 
aggregation accelerates or decelerates with increasing evi-
dence. The O-U model (3) has a fixed point at / ,x n m=-  
and thus this model can represent situations where evi-
dence accumulation asymptotes over time or, in other 
words, situations where the human is never perfectly accu-
rate. This is a feature that the pure DDM does not have 
because (1) implies that in the absence of noise a human 
will always make a correct decision, given enough time. In 
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FIGURE 3 (a) Empirical reaction time data taken from [23]. (b) Deci-
sion times under the free response paradigm, as predicted by an 
appropriately chosen drift diffusion model (1).
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the context of two-alternative forced-choice tasks, if 0<m  
then (3) is the reduction of what is sometimes called the 
leaky competitive accumulator (LCA) model [71]. The LCA 
model is characterized by leaky, stochastic, and competi-
tive information accumulation in nonlinear decision units 
(one for each alternative) and has also been shown to cap-
ture neurally inspired properties, such as lateral inhibition 
and recurrent excitation [72].

Other generalizations, such as the extended DDM [60], 
[73] and the full DDM [74], incorporate additional parame-
ters, including a noise parameter associated with the drift 
rate, a parameter characterizing initial latency, and a 
parameter capturing bias in the initial accumulation pro-
cess. These variants have been shown to more accurately 
model the user response-time distributions than the pure 
DDM [61], [75]. Further variants introduce the use of collaps-
ing thresholds, where the decision-making threshold R!h  
is a function of the form ( ) ,t ce rth = -  where c  and r  are con-
stants representing the initial threshold and the rate of con-
vergence, respectively. These collapsing thresholds can be 
thought of as “urgency signals” that prevents subjects from 
taking an excessive amount of time when drift rates are 
close to zero [74]. In some cases, collapsing threshold 
models can more accurately capture the higher reaction 
times that often occur in trials that result in an incorrect 
decision [76]. Optimality properties of collapsing threshold 
models have been explored in several contexts, including 
nonstationary environments [77], heterogeneous environ-
ments [78], and decision making under deadlines [79].

Discrete-Time Decision Making
The pure DDM is also related to classical hypothesis tests 
from probability theory. In the free-response paradigm, the 
DDM (1) is the continuum limit of the sequential probability 
ratio test (SPRT) [80], a test that can be used when evidence 
is acquired sequentially at time steps .Z 0, ! $  That is, the 
SPRT is equivalent to the DDM in the limit as the time 
between samples tends to zero [81]. Indeed, SPRTs utilize a 
statistic K,  that is incremented with each new observation 

.y,  A decision is made in favor of one of the alternatives 
once a threshold is reached. With symmetric thresholds 

,Thresh!K  unbiased initial evidence, and independent obser-
vations, a standard SPRT for deciding between hypotheses 

,H H0 1  is: 
1: initialize : ;00K =

2: at time ,N, !  collect observation ;y,
3:  integrate evidence : | /log y HP1

1K K= +, , ,- ^ h  
| ;y HP 0
,^ h

 (decide only if the threshold ThreshK  is crossed)
4: if ,–< ThreshK K,  then H0  is true;
5: else if ,> ThreshK K,  then H1  is true;
6: else continue sampling (step 2).

The statistic K ,  plays the role of evidence in favor each 
alternative. For sequentially accumulating data with 
known sampling likelihoods under each hypothesis, the 

SPRT is the optimal statistical test for two-alternative 
forced-choice tasks, in the sense that it achieves a given 
error rate in minimum time [80], [82]. Despite this, some 
researchers argue that the standard SPRT does not capture 
reaction times observed in empirical data [73] and have 
turned to a variety of other variations in attempt to increase 
accuracy. In the interrogation paradigm, the DDM (1) is the 
continuum limit of the Neyman–Pearson hypothesis test 
[83], a test designed to decide among two hypotheses when 
the number of discrete data samples is fixed a priori. Given 
a set of observations { , , , },y y yn1 2 f  the Neyman–Pearson 
test calculates the likelihood ratio

( , , , )
( , , , )
( , , , )

,y y y
H y y y
H y y y
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P
n

n

n
1 2 1

1 2

0
1 2

f
f

f

;

;
K =

and rejects the hypothesis H0  in favor of the hypothesis 
ifH1 K  is less than a threshold. Once again, the statistic K  

plays the role of evidence accumulated in favor of each 
alternative after a fixed amount of sampling. For a fixed 
number of data samples with known likelihoods, the 
Neyman–Pearson test is optimal in that it has the highest 
statistical power [84].

Multi-Alternative Forced-Choice Tasks
A multi-alternative forced-choice task is one in which an oper-
ator or observer must choose among multiple disjoint 
hypotheses. Broadly speaking, researchers have attempted 
to extend many of the same strategies for modeling two-
alternative forced-choice tasks for use with multiple alter-
natives through the use of race models [85], [86]. Race models 
can be thought of as another variant of the pure DDM in 
which each alternative is assigned its own separate accu-
mulator. That is, in a race model for an m-alternative 
forced-choice task, there are m  evidence accumulation 
variables , , ,x x xm1 2 f  representing evidence accumulated 
in favor of each respective alternative. Each of these vari-
ables then evolves according to a random process (such as 
the DDM), and a decision is made in favor of the alternative 
whose corresponding evidence xi  is the first to cross its 
respective evidence accumulation threshold (or has the 
largest value at the deadline in the case of the interrogation 
paradigm). The degree to which the accumulators interact 
varies depending on the problem setup.

Classical race models have exhibited some success in 
capturing behavioral phenomena. However, the multi-
alternative scenario is inherently much more difficult to 
model than the two-alternative case [84]. For example, in 
discrete time, the SPRT is the optimal test for achieving a 
given error rate in minimum time with sequentially accu-
mulating data, but it has been shown that it is difficult to 
create an analogous constant-threshold multihypothesis 
SPRT that is optimal in the same sense [87]. Despite this 
fact, some commonalities are generally accepted, such as 
Hick’s law [88], which states that in choosing between m  
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alternatives, if accuracy is fixed at a high rate, then the 
mean reaction time increases at a rate proportional to 

( )log m  (although the exact form of this relation remains an 
open question). These commonalities are often used in 
attempts to validate models. For example, studies have 
shown that certain variations on the O-U model that are 
designed for multiple hypotheses [71], [84] outperform clas-
sic race models in some respects and capture the dynamics 
predicted by Hick’s law.

More recent models have incorporated the use of 
modern technology. For visual stimuli, physiological sens-
ing tools, namely eye tracking, have been used in the con-
text of race models as well. In this context, it is assumed 
that the relevant parameters that govern the dynamics of 
each accumulator are dependent upon the position of the 
observer’s gaze. For example, it is assumed in [89] that the 
drift rate for a given accumulator is higher when the 
observer’s attention is focused on the alternative in ques-
tion. Other works, such as [90], have begun to use eye-
tracking to explore the connection between visual 
characteristics such as saliency to the evidence accumula-
tion process modeled via race model.

Exogenous Factors
Human performance models discussed thus far only cap-
ture dynamics of evidence aggregation in decision making. 
Exogenous factors, such as workload, fatigue, situational 
awareness, and information retention, among others, also 
affect the decision-making process, as shown in Figure 4. 
For brevity, this article does not include an in-depth discus-
sion of exogenous factors in evidence accumulation models. 
However, to give the reader a flavor for the types of models 
that exist, a few key factors are briefly mentioned. Note that 
these factors are closely linked with those discussed in the 
“Key Challenges” section.

Mental Workload, Stress, and the Yerkes–Dodson Law
Mental workload is the extent to which a task places demands 
on the operator’s cognitive resources [93], with a variety of 
models further reducing the construct into various subcom-
ponents [94]–[96]. Although operator mental workload is 
generally a subjective experience, many researchers attempt 
to capture this phenomena through more objective, quantifi-
able measures. For instance, operator workload is sometimes 
modeled as the utilization ratio (the fraction of recent history 

FIGURE 4 Many factors can affect the decision-making process. 
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during which the operator was busy), with the utilization 
ratio u following the dynamics 

 ( )
( ) ( )

, ( ) ,u t
b t u t

u u0 0
x

=
-

=o  (4)

where : { , }b 0 1R 0> "  represents whether the operator is idle 
or busy, R 0>!x  is the sensitivity of the operator, and 

[ , ]u 0 10 !  is the initial utilization ratio [28]. Typically, system 
design focuses on methods of reducing workload to decrease 
the strain on the operator, but when taken too far this 
approach can result in performance degradation as well.

Closely related to mental workload is operator stress. The 
Yerkes–Dodson law [97], [98] is a classical model that cap-
tures the performance of an operator as a unimodal func-
tion of stress level. A typical representation of this 
relationship is shown in Figure 5(a). The law demonstrates 
that there is a moderate level of stress, dependent on the 
task, that optimizes operator performance, while excessive 
stress (hyperstress) overwhelms the operator and too little 
stress (hypostress) leads to boredom and vigilance decre-
ment [99]. Other work has expanded on this concept through 
more detailed models which differentiate between regions 
of psychological and physiological adaptability [100].

Fatigue, Sleep Cycle, and the SAFTE Model
Fatigue is defined as the feeling of bodily discomfort after 
prolonged activity and is known to have detrimental effects 
on operator performance [101]. Several models have been 
proposed to capture cognitive performance as a function of 
sleep deprivation [102]. One example is the sleep activity 
fatigue task efficiency (SAFTE) model [91], which assumes 
that a fully rested operator has a finite reservoir capacity 
Rc  that depletes over time while the operator is awake and 
replenishes when the operator sleeps. The SAFTE model 
determines the task effectiveness (TE) as
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where Ta  is the number of hours the operator has been 
awake, Td  is the time of the day in hours, K  is reservoir 
drain rate due to wakefulness, , ,a a R1 2 !b  are constants, p  
is the time of the peak in the 24-h circadian rhythm, and 'p  
is the relative time of the 12-h peak. Under this model, if the 
reaction time of a fully rested operator is ,TReaction  then the 
reaction time of the fatigued operator is /TE.TReaction  An 
example TE curve generated using the SAFTE model is 
shown in Figure 5(b).

Information Retention and Situational Awareness
Information retention refers to the fraction of newly acquired 
information the operator remembers over time. Traditionally, 
the curve has been modeled as an exponential decay [103]. 
Some researchers [104] argue that the information retention 
curve should be modeled by a power-law function, while 
others [92] model the curve as a sum of two exponential func-
tions and a constant function. An example of such a curve 
fitted to empirical data from [92] is shown in Figure 5(c).

In many tasks, including supervisory tasks, the operator 
must not only perceive, process, and retain information but 
also apply that knowledge to formulate an accurate mental 
image of his/her current situation. This leads to the notion 
of situational awareness, which can be defined as the sum of 
operator perception and comprehension of process infor-
mation and the subsequent ability to make projections of 
system states on this basis [105]. It has been argued that a 
lack of situational awareness results in poor performance by 
creating large waiting times, that is, the operator takes more 
time to start working on a task [106]. Situational awareness 
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FIGURE 5 Curves illustrating some key exogenous factors. (a) Performance as a function of operator stress, as described by the Yerkes–
Dodson law; (b) the task effectiveness of an operator who wakes up at 6 a.m. after 6 h of sleep, as predicted by the SAFTE model (5) 
using the default parameters in [91]; (c) empirical memory retention data taken from [92], fitted with a curve that is the sum of two expo-
nentials and a constant function.
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is critical as the operator is incapable of making timely and 
effective decisions without an accurate mental representa-
tion of the current and predicted future state of their opera-
tional environment, but can be difficult to moderate.

COORDINATION OF AUTONOMOUS AGENTS
The design of coordination strategies for systems of auton-
omous agents is an issue that is at the heart of control 
theory and has generated a vast amount of research (for 
example, [107]–[111]). Here, the discussion is focused on 
coverage problems in the context of wireless sensor networks 
with a fixed number of nodes (agents), as this class of prob-
lem is applicable in many human supervisory control sce-
narios. Loosely speaking, the coverage problem is this: 
given a compact area of interest RQ 21  and a team of 
agents equipped with sensors capable of gathering infor-
mation about their surroundings, determine a strategy to 
deploy and control the autonomous agents such that some 
coverage metric is maximized. In supervisory control, the 
agents generally can transmit data to a central location 
either by direct or multihop communication. A few of the 
most common coverage problems are discussed and some 
theoretical tools that can aid in solving them are high-
lighted below. The construction of coordination and deci-
sion strategies for the autonomous agent in the example 
surveillance mission can be found in “Persistent Surveil-
lance Mission: Vehicle Routing Strategy and Anomaly 
Detection Algorithms.”

Static Coverage
The most basic coverage problem is that of static coverage, 
that is, determining a priori a location where each of the 
agents will remain for some time. When the area Q  is rela-
tively small, the static coverage problem often reduces to 
the problem of finding a location that maximizes the sens-
ing footprint of the agents. The well-known art gallery prob-
lem [112] is an example of this type of coverage. The classic 
art gallery problem involves simple polygonal environ-
ments and visibility constraints; however, various exten-
sions have been proposed to incorporate issues such as 
holes in the environment [113], additional coverage require-
ments [114], or sensor placement specifications [115].

In many cases, the environment of interest involves an 
element of stochasticity, that is, there is a probability den-
sity function : RQ 0"z $  that encodes the likelihood of 
some event of interest occurring in any subregion. In this 
scenario, the goal is generally to place the sensors in a way 
that maximizes their ability react to events that may occur, 
proportional to the function .z  Often the static sensor 
placement issue reduces to load balancing. That is, each 
point in Q  is assigned to one agent, and the goal is to mini-
mize a multicenter function ( ) ,: 2 RH Qm m

0
Q "# $

( , , ), ( , , ) ( , ) ( ) ,c c P P d k c k dkH m m i
Pi

m

1 1
1 i

f f z=
=

^ h / #

where m N!  is the number of sensors, ( , , )c cm1 f  repre-
sents the location of the sensors, ( , , )P Pm1 f  is a partition of 
Q  (that is, satisfies P Q

i

m

i1
=

=
'  and P Pi j+ 4=  for any ),i j!  

and :d RQ Q 0"# $  is a distance metric. Finding global 
minimizers of the function H  is difficult in general; how-
ever, algorithms exist for finding high-quality approximate 
solutions in most typical cases. For example, if d  is taken to 
be the square of the Euclidean distance, then the optimal 
sensor placement ( , , )c cm1 f  and assignment ( , , )P Pm1 f  
forms a centroidal Voronoi partition. Finding a (not neces-
sarily globally optimal) centroidal Voronoi partition can 
easily be achieved through the Lloyd algorithm [116] and its 
variations. Additional partitioning schemes have also been 
proposed to incorporate constraints on coverage assign-
ments [117], other cost functions [118], and varying com-
munication protocols [119]. A thorough review of static 
coverage approaches in fixed sensor networks is provided 
in [120].

Dynamic Coverage
Dynamic coverage typically refers to those problems in 
which a set of autonomous agents do not remain at fixed 
positions but rather continually move throughout the envi-
ronment to accomplish some task. Dynamic coverage is 
often used to accommodate certain performance goals or 
environmental characteristics that are not well suited to 
static coverage schemes. For instance, large and time-vary-
ing environments (that is, those in which importance 
weights may change or the likelihood of events of interest 
is time varying) may be better suited to dynamic coverage.

The dynamic coverage problem has several flavors, 
including random and nonuniform spatial-temporal fields 
[121], time-varying agent dynamics [122], dynamic vehicle-
routing problems [123], and informative path planning 
[124]–[132]. One particularly relevant class of dynamic cov-
erage problems is persistent coverage or patrolling, where a 
set of vehicles is required to endlessly survey an environ-
ment. This type of coverage arises for applications such as 
the monitoring of oil spills [133], the detection of forest fires 
[134], the tracking of border changes [135], and general 
environmental monitoring [136]. In persistent coverage 
schemes, vehicles continuously visit regions in the envi-
ronment according to some policy that is deterministic or 
stochastic. Each of these cases is briefly discussed below.

Deterministic Policies
For regions of interest that are represented as open subsets 
of Euclidean space, deterministic policies for persistent 
coverage include the construction of predetermined motion 
routines (such as lawn mower patterns), the adaptation the 
static coverage strategies [129], and the modeling of envi-
ronments as random fields and subsequent design of opti-
mal trajectories [137], [138].

In the context of discretized regions (that is, regions of 
interest that are represented as a graph), many deterministic 
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policies rely on 1) computing a tour through the regions and 
2) requiring the vehicles to endlessly move along the tour 
(see, for example, [128], [132], [139], and [140]). In several cases, 
the discrete case is closely related to network location, mul-
tiple traveling salesperson (TSP), graph exploration, or other 
classic vehicle-routing problems. Indeed, almost all tradi-
tional approaches to solving the discrete, deterministic, per-
sistent coverage problem rely on state-space decomposition 
and TSP tour computation [141]. However, recent works have 

looked at non-TSP tours [132], [138] as well as nontour-based 
policies [142].

Deterministic policies are often simple to implement but 
are mostly periodic and predictable, which may be undesir-
able. If, for example, the goal is to detect the existence of an 
intruder, then the intruder may hide when a vehicle is 
nearby and thus, most deterministic policies will fail [143] 
(although a few deterministic strategies that partially 
address this issues do exist, such as those in [144] and [145], 

Persistent Surveillance Mission: Vehicle Routing and Anomaly Detection Algorithms 

This sidebar focuses on the construction of a vehicle routing 
policy to govern motion of the UAV (autonomous agent). To 

this end, a simple routing policy that directs the UAV to a ran-
domly chosen region during each visit is adopted. Recall that the 
goal is to detect anomalies in each of the regions of interest in the 
shortest amount of time, subject to a false-alarm constraint. To 
be consistent with this goal, it is desirable that the probability of 
the UAV traveling to a given region should be proportional to the 
likelihood of that region being anomalous. However, since the de-
cisions made by the human operator may be erroneous, his/her 
input cannot be accepted as a reliable indicator of the presence 
of an anomaly. Therefore, the routing strategy needs a tool to 
accurately determine the likelihood of an anomaly at each region.

The tool chosen for this example is a variation on the standard 
cumulative sum (CUSUM) algorithm [S1] called the ensemble CU-
SUM algorithm [34], which is a statistical quickest-change-detection 
algorithm consisting of a set of m parallel CUSUM algorithms (one 
for each region). Accordingly, the binary decisions by the opera-
tor are treated as Bernoulli random variables whose distribution is 
dictated by the performance function. Subsequently, the ensemble 
CUSUM algorithm is run on these decisions to decide reliably on a 
region being anomalous. The standard CUSUM algorithm requires 
the observations from each region to be independent and identically 
distributed. However, the decisions made by the operator do not sat-
isfy these requirements. Therefore, instead of the standard CUSUM 
algorithm, a CUSUM-like algorithm for dependent observations [S2] 
is used instead. The ensemble CUSUM algorithm maintains a sta-
tistic kK

,  for each region , , ,k m1Rk f! " , and time step .,  The 
statistic at region Rk  is updated using the binary decision of the 
operator whenever a task from region Rk  is processed. If the sta-
tistic associated with a region crosses a threshold ,threshK  then the 
region is declared to be anomalous. The choice of this threshold dic-
tates the accuracy of the detection [S1]. It is assumed that once an 
anomaly has been detected it is removed, and then, consequently, 
the operator’s belief about the region being anomalous resets to the 
default value. Let k,  represent the region index of the th,  task, and 
let kr

,  represent the prior probability of an anomaly at region k  after 
processing the th,  task. The ensemble CUSUM algorithm is

1: initialize : , : ,1 0k
0, K= =  for each , , ;k m1 f! " ,

2: if dec and ,t1 02==, ,  then
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 (detect an anomaly if a threshold is crossed)
4: if ,threshk $K K,

,  then
5:  declare an anomaly at region ;k,
6:  ;0kK =, ,

7: set ;1, ,= +  go to 2.
Having established this anomaly detection tool, a simple rout-
ing policy is employed that sends the UAV to each region with 
a probability proportional to the likelihood of that region being 
anomalous. In particular, the probability to visit region Rk  is ini-
tialized to /q m1k

0 =  and after processing each task, the prob-
ability to visit region Rk  is chosen proportional to / ( ).e e1k k+K K, ,

 
This simple strategy ensures that a region with a high likelihood 
of being anomalous is visited with a high probability. Moreover, 
it ensures that each region is visited with a nonzero probability 
at all times and consequently, an anomalous region is detected 
in finite time.

Note that such a simple vehicle-routing algorithm only de-
termines the probability with which the UAV should visit differ-
ent regions and does not take into account factors such as the 
geographic location of regions, importance weights assigned to 
regions, vehicle travel times between regions, or the difficulty of 
detection at each region. These factors could be incorporated 
into the vehicle routing algorithm [34]; however, for simplicity 
of the presentation, such factors are not considered here. Ve-
hicle travel time and importance weights are, however, taken 
into consideration in the design of the decision support system, 
which is presented in subsequent sidebars. Indeed, vehicle 
travel times are used to determine the rate at which the UAV 
generates imagery to send to the operator for analysis, and im-
portance weights are used in deriving the reward function used 
to optimize time allocations.
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which use ergodic theory to produce vehicle trajectories that 
are largely unpredictable to an outside observer).

Stochastic Coverage Policies
In contrast to deterministic policies, stochastic coverage 
policies are often much less predictable. Although a few 
researchers have adopted elements of stochasticity into 
surveillance of regions that are represented by open sub-
sets of Euclidean space (for example, [146]–[148]), the major-
ity of existing policies assume discretized areas or discrete 
regions of interest (for example, [149]–[151]). In light of this 
fact, the remainder of the discussion is focused on dis-
cretized regions of interest.

Stochastic coverage policies for discrete regions typi-
cally involve an ergodic Markov chain in which each 
region represents a state. Transition probabilities and sta-
tionary distributions are then designed according to an 
appropriate surveillance criterion. In general, the cover-
age criterion depends on the mission objective. For exam-
ple, if the mission objective is the detection of anomalous 
regions, then the surveillance criterion may be chosen to 
minimize the average detection delay [34]. The minimiza-
tion of the average detection delay inherently considers 
the difficulty of detection at each region, the travel times 
between the regions, and the likelihood of each region 
being anomalous.

For a single vehicle, there are two popular schemes to 
construct a Markov chain with a desired stationary distri-
bution (surveillance criterion), namely, the Metropolis–Hast-
ings algorithm and the fastest-mixing Markov chain (FMMC) 
method. The two schemes can be briefly described as fol-
lows. Consider a set of regions modeled by the graph 

( , ),V EG=  where V  is the set of m  nodes (each node cor-
responds to a region) and E  is the set of edges representing 
the connectivity of the regions. Let the surveillance crite-
rion be ( , , ) .q q qm m1 f ! D=  The Metropolis-Hastings algo-
rithm [152] picks the transition matrix ,A  that is, the matrix 
of transition probabilities from each state to every other 
state of the Markov chain, as
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where di  is the number of regions that can be visited from 
region .Ri  For the FMMC method, the transition matrix 
A Rm m! #  with a desired stationary distribution q m! D  is 
determined by solving the semidefinite program [153]
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where Q  is a diagonal matrix with diagonal ,q qroot = 
, , ,q qm1 f^ h  and m1  is the vector of all ones. To achieve 

the coverage criterion at an accelerated rate, a time-varying 
Markov chain can also be constructed in the spirit of [150]. 
Variants on these algorithms exist that also seek to mini-
mize additional heuristics related to the chain, such as the 
mean first-passage time (also known as the hitting time or 
Kemeney constant) [154].

For multiple vehicles, remarkably little is known about 
the design of cooperative surveillance based on “multiple 
Markov chains.” A naive stochastic policy that achieves the 
coverage criterion is to let each vehicle follow the single 
vehicle policy. A drawback of such a naive policy is that 
two or more vehicles may survey the same region simulta-
neously, which may introduce a risk of collisions and non-
optimal coverage strategies. This drawback can be partially 
mitigated by constructing a Markov chain on a lifted space 
from which the undesired states are removed. Decentral-
ized strategies, such as the message passing-based auction 
algorithm in [143], exist for constructing such policies.

INTERFACING HUMANS  
AND AUTONOMOUS AGENTS
Once a model of human behavior has been established and 
the appropriate vehicle-routing policy has been selected, the 
last step in the design of a human supervisory control system 
is the construction of the interface that links the two compo-
nents. This step is essentially “closing the loop” by linking 
the autonomous agents with the human operator. As dis-
cussed, efficient designs must incorporate automated mech-
anisms to facilitate interactions between system components. 
Such mechanisms can take numerous forms, many of which 
can benefit directly from the incorporation of control-theo-
retic tools. This section provides illustrating examples of 
facilitating mechanisms known as decision supports, focusing 
on those that can be derived using control theory. The dis-
cussion concludes by highlighting some key challenges to 
effectively coupling humans and automated agents.

Decision Supports
Researchers have established a simplified four-stage model 
of human cognition consisting of 1) information acquisi-
tion, 2) information analysis, 3) decision and action selec-
tion, and 4) action implementation [158]. These abstract 
functions operate at various levels of granularity within a 
given task and generally interact with each other in a con-
tinuous and complex fashion. Indeed, one cognitive pro-
cess may be used to make decisions on low-level tasks, such 
as where to look next, while a different, simultaneous cog-
nitive process may be working to make a dependent, 
higher-level decision, such as deciding if a target is present. 
As such, there is potential to improve system performance 
through incorporation of automated tools that focus spe-
cifically on aiding decision making and consequently shar-
ing the total cognitive load across system resources.
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In this spirit, a decision support can be defined as any auto-
mated function that supports the decision and action selection 
stage of the cognitive process. In human supervisory con-
trol, this can mean directing operator attention, providing 
timing suggestions to the operator, preprocessing of tasks, 
and/or adjusting automation parameters, among many 
other possibilities. The specific form and potential for suc-
cess of a given decision-support system varies by application 
and system constraints. However, to illustrate how decision 
supports can be integrated at various levels of system opera-
tion, some examples that operate on different decision-mak-
ing tasks and have the potential to drastically improve 
system performance are discussed below. The construction 
of a decision-support system for the example surveillance 
mission is found in “Persistent Surveillance Mission: Deci-
sion Support System,” and some numerical results illustrat-
ing the functionality of the constructed system are found in 
“Persistent Surveillance Mission: Numerical Simulations.”

Attention Allocation as an Optimization Problem
In supervisory tasks in which the operator has multiple 
simultaneous responsibilities, the question of where and 
how the operator should direct her/his attention becomes an 
important component to task success. In visual perception 
tasks, low-level decisions focus on where the operator should 
direct his/her attention within a given image or video.

It is well known in psychology literature that evidence 
accumulation in visual perception is highly dependent 
upon radial eccentricity, that is, the angular distance of a 
stimulus from the foveal region, the point in the visual field 
of highest resolution. The foveal region corresponds to the 
point on the stimulus at which the operator is directly look-
ing. Indeed, due to the high density of foveal receptors 
when compared to the visual periphery (see Figure 6), evi-
dence accumulation is generally much faster when a person 
is looking directly at a stimulus [159].

Suppose a model for a human operator’s accuracy in 
making a decision about a particular target as a function of 
time and radial eccentricity is given and that access to the 
operator’s fixation locations in real time is available (an 
assumption that is not unrealistic, given the increased 
availability and affordability of eye-tracking hardware 
[161]). Assume also that a given image is discretized into m  
disjoint, equally sized regions. In a static image, the amount 
of evidence about some target of interest is finite. There-
fore, a differential equation of the form

( , )x g x ek k=o

can be associated to each region ,k  where xk  is the amount 
of evidence accumulated about the properties of some 
target in region ,k e  is radial eccentricity, and g  is a func-
tion that relates these two variables to the speed at which 
the operator accumulates evidence. Under this construc-
tion, the question of directing operator attention within a 
search task reduces to an optimization problem of the form

minimize Dur

subjec to Evid ,t x
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where Fix (Loc , Dur )i i i=  is a tuple encoding the location and 
duration of the thi  fixation, n N!  is the number of fixations, 
Evidk  is the total available information about the target in 
region , ,k 0 1!a 6 @ is a constant that captures the fraction of 
total information to be collected, and Dur : Dur .Total ii

n
1=
=
/  

In other words, a sequence of fixations can be estimated that 
enables the operator to accumulate a specified fraction of 
available information about a particular image in the short-
est amount of time (in general, it will not be possible to 
acquire all available sensory evidence in finite time). With 
this information, it may be possible to direct operator atten-
tion within image searches (assuming that it is possible to 
construct visual cues that the operator will respond to, an 
issue that will be discussed later).

In application, the function g  could depend on many 
factors, such as visual clutter of the image [162] and task 
difficulty [163]. In addition, when the visual stimulus is a 
video, then the amount of evidence present evolves over 
time, and thus may not be finite. Further, a changing stimu-
lus may alter the evidence accumulation process, and thus 
the model may need to be altered to take into account 
motion characteristics.

Timing as a Resource Allocation Problem
The goal for many supervisory control applications is to 
have a single operator who is capable of processing multiple 
tasks or data streams simultaneously [164]. In such tasks, the 
operator must not only decide how to allocate their attention 
within each task but at a higher level must also decide how 
to allocate attentional resources across tasks. Assuming 
tasks to be processed are stacked in a queue, then the 
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FIGURE 6 The distribution of foveal receptors as a function of 
radial eccentricity. (Used with permission from [160].)
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Persistent Surveillance Mission: Decision Support System 

The design of a decision-support system for the example sur-
veillance problem is now considered. Specifically, a support 

system is considered that uses operator performance to sug-
gest the optimal amount of time to be spent on each task.

Queuing theory has emerged as a popular paradigm to model 
supervisory control systems [20], [23], [24], [27]–[30]. Accordingly, 
it is assumed that the images collected by the UAV at the various 
regions over time are stacked in a queue while they await operator 
analysis. The images arrive to the queue according to a stochastic 
process. A stability requirement is imposed on the queue length, 
namely, the queue length should remain finite for all time. The oper-
ator receives a reward for a correct decision on each task, and op-
erator performance is quantified as the expected reward obtained 
after processing the task. The goal is to suggest time allocations to 
tasks such that the operator’s overall reward per unit task is maxi-
mized. The system is designed under the following assumptions: 1) 
operator performance functions for a task originating from region Rk  
in absence and presence of an anomaly are : [ , ] [ , ]f 0 1 0 1Rk

0
0 "#$  

and : [ , ] [ , ],f 0 1 0 1Rk
1

0 "#$  respectively; 2) based on the impor-
tance of the region, a weight w Rk 0>!  is assigned to each task 
collected from region ;Rk  3) tasks arriving to the queue while the 
th,  task is served are sampled from a probability distribution that 

assigns a probability [ , ]q 0 1k !
,  to region .Rk  Similar to (S1), the 

average performance function : [ , ] [ , ]f 0 1 0 1Rk 0 "#$  at region Rk  
is defined by ( , ) ( ) ( , ) ( , ).f t f t f t1k k k

0 1r r r r r= - +  Under the afore-
mentioned assumptions, each task from region Rk  is characterized 
by the pair ( , ).f wk k

For simplicity, the tasks in the queue are assumed to be pro-
cessed by the operator on a first-come, first-serve basis. Let 
the th,  task in the queue be from region ,Rk,  and let the belief 
of the operator about region Rk  being anomalous before pro-
cessing the th,  task be .k

1r,-  Initially the operator is unbiased 
about each region being anomalous, that is, . ,0 5k

0r =  for each 
, , .k m1 f! " ,  Given a time allocation t R 0>!,  to the th,  task in 

the queue, the operator’s belief after processing the th,  task is 
estimated using the Bayes rule
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where Hk
0  and Hk

1  denote the hypothesis that region Rk  is non-
anomalous and anomalous, respectively, dec { , }0 1!,  is the 
operator’s decision, and (dec | , )tP $, ,  is determined from the 
performance function of the operator

(dec | , ) ( , ).H t f t1P k k k
1 1 1r= =, , ,

,-
, , ,

The event that a region becomes anomalous corresponds to a 
change in the characteristic environment, which may happen at 
an arbitrary time. In a sequential change detection task, if the 
belief of the operator about a region being anomalous is below 

a threshold, then the operator resets its belief to the threshold 
value [S3]. The threshold is chosen to be 0.5. Consequently, the 
belief of the operator at region Rk  after processing the th,  task 
is { . , }.max 0 5k kr r=, ,r

The system should suggest to the operator the amount of 
time to spend on each task. To this end, support system is de-
signed to maximize the infinite-horizon average reward, under 
the finite queue length constraint. The reward :r N R R0 "# $  
obtained by allocating time t  to the th,  task is

( , ) ( , ),r t w f tk k k
1, r= ,-

, , ,

where k,  is the index of the region that generated the th,  task. 
The objective of the decision-support system is to maximize the 
infinite-horizon average reward

 ( , ),lim infV n r t1
avg

n

1
n

,=
,

,

=
" 3+
/  (S2)

while enforcing stability of the queue length. The solution to (S2) 
is computationally intractable in general. However, a dynamic, 
approximate solution can be obtained under a certainty equiva-
lent assumption, which approximates future uncertainties of the 
system by their expected values [155]–[157]. Specifically, the ex-
pected value of the operator’s belief at a future time is equal to 
the operator’s current belief. Accordingly, the vehicle-routing poli-
cy and the performance functions are stationary at all future deci-
sion times. The expected rate of arrival of tasks into the queue 
using current system parameters is / ,Dq q q T1m = +,

, , ,< <^ h  
where q  a vector of region visit frequencies (as determined by 
the vehicle routing policy), D  is a m m#  matrix whose , thi j  entry 
represents the travel time between regions Ri  and ,R j  and T  is 
a vector whose entries represent image-generation times in the 
respective regions. Further, by the strong law of large numbers, 
the expected value of the function Vavg  while the th,  task is pro-
cessed is simply the expected average reward, calculated using 
current system parameters, that is, ( , ),V q w f tavg

reg
k

m

k k k k k1
1r=

, ,

=

-r /  
for some treg

k  representing a stationary amount of time to be al-
lotted to tasks originating from region .Rk  Therefore, under the 
certainty-equivalent assumption, the optimal time allocation to 
the th,  task can be approximated by solving, at each time step,
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(S3)

subsequently choosing .t t reg
k=, ,
t  Note that the first constraint enforc-

es queue length stability [30], and that (S3) is a knapsack problem 
with sigmoid utilities, whose solution can be approximated [30].
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problem of deciding how much time the operator should 
spend on each task in the queue becomes a resource alloca-
tion problem. Indeed, time can be thought of as a resource 
that needs to be distributed among the necessary tasks. The 
inherent dynamics in persistent task analysis missions make 
these resource allocation problems a dynamic optimization. 
The solution to such optimization problems can be com-
puted for small horizon lengths; however, for large horizons, 
such computations are often not tractable. Despite these dif-

ficulties, high-quality suboptimal solutions can still be com-
puted using tools from control theory. 

In a general sense, the infinite-horizon optimization for 
a persistent task analysis mission can be formulated as fol-
lows. Consider a time-varying dynamical system of the 
form evol ( , , ),x x t d1 =, , , , ,+  where N, !  denotes the task 
index, x X!,  is the state variable, t R 0!, $  is the time to be 
devoted to the th,  task, d D!,  is a disturbance, and 
evol : RX D X0 "# #, $  denotes the evolution map of the 

Persistent Surveillance Mission: Numerical Simulations 

The decision-support system designed in the previous side-
bars is now illustrated through a numerical example. The 

sample surveillance mission involves four regions. The matrix 
of travel times (given in generalized time units) between the re-
gions is
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The time to collect information at each region is ten units. It is 
assumed that the performance of the operator is the same at 
each region and that the importance of each region is equal to 
that of all other regions. Let the drift rate in the DDM associated 
with the operator be .0 3n =-  for a nonanomalous region and 

.0 3n =+  for an anomalous region. Let the diffusion rate for the 
DDM associated with the operator be .1v =  Suppose regions 

, , ,R RR1 2 3  and R4  become anomalous at time instants 20, 80, 
140, and 200 units, respectively.

The optimization problem (S3) is solved before process-
ing each task to determine the optimal time allocations for the 
human operator. A sample evolution of the system is shown in 
Figure S2. For simplicity, it is assumed that the human operator 
allocates precisely the suggested amount of time to each task. 
The exact arrival time of each task is dictated by the region selec-
tion policy, information collection times, and UAV travel times. In 
this example, the average rate of arrival over all analysis tasks is 
0.125 tasks per time unit (one task every eight time units). Note 
that the actual rate of arrival is nonuniform and thus varies over 
the course of the mission.

Note that the algorithm keeps the queue length close to uni-
ty. The queue length increases only if there is a high likelihood 
of anomaly at some region. Once an anomaly is detected, the 
allocation policy drops pending tasks in the queue until only 
one task remains. For this example, the threshold for the CU-
SUM algorithm is chosen equal to four, and once an anomaly 
is detected the CUSUM statistic [shown in Figure S2(c)] resets 
to zero. Under the routing policy designed in the previous side-
bars, with high probability, the UAV selects a region with a high 
probability of being anomalous, which is illustrated by the close 
correlation between the CUSUM statistics and the region selec-
tion probability [Figure S2(c) and S2(d)].
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FIGURE S2 A typical evolution of the decision support system. 
(a) Suggested time allocations to each task as a function of the 
task index; (b) the queue length as a function of the task index; 
(c) the alue of the CUSUM statistics associated with regions R1  
(blue), R2  (orange), R3  (purple), and R4  (green) as a function of 
time (generalized units), plotted along with the CUSUM decision 
threshold (red); (d) region selection probabilities for regions R1  
(blue), R2  (orange), R3  (purple), and R4  (green) as a function of 
time (generalized units). Note that tasks arrive to the queue at 
an average rate of one task every eight time units.
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system. Given a stochastic model for ,d N, ,!" ,  the control 
objective is to solve the optimization

 

maximize ( , , ),
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(6)

where x1  is the initial state, t  is the sequence of times 
devoted to each task, :g R RX D0 "# #$  is the stage 
reward, and C  is a constraint set.

In general, the optimization (6) is hard; however, solu-
tions can often be approximated in a tractable way using 
receding-horizon control [157]. Receding-horizon control 
approximates the solution to the infinite-horizon optimiza-
tion (6) by solving a finite-horizon optimization problem at 
each iteration to sequentially determine the control input. 
In the presence of uncertainty, however, future parameters 
required for this finite horizon optimization may not be 
known. A common strategy for addressing this issue is to 
adopt a certainty-equivalent assumption, which replaces 
future uncertainties of the system by their expected values 
[155]–[157]. Specifically, the certainty-equivalent receding-
horizon control scheme determines the control input at 
time ,  by solving the optimization problem
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where { , , }t tn0 1f -t t  is time allocated to each task over the 
horizon, C,  is a modified constraint set, and x j,+r  is the 
certainty-equivalent evolution of the system, that is, the 
evolution of the system obtained by replacing the uncer-
tainty in the evolution at each stage by its expected value, 

,x x=, ,  and d j,+  is the expected value of the uncertainty at 
stage .j,+  The certainty-equivalent receding-horizon con-
trol scheme at iteration ,  solves optimization problem (7) 
and picks .t t0=, t  If the deterministic dynamic program (7) 
can be solved efficiently, then certainty-equivalent reced-
ing-horizon control offers a computationally tractable sub-
optimal solution to problem (6).

In some cases, it may be tractable to solve the optimization 
(7) over very large or even infinite time horizons without 
resorting to additional approximations. For example, suppose 
that tasks are generated from , ,k m1 f! " , different sources 
and stacked in the queue for analysis, and suppose that 

[ , ]q 0 1k !
,  represents the probability that the next task entering 

the queue is generated by the thk  source at time step .,  Further, 
suppose that under the certainty-equivalence assumption the 
utility functions for each source and probabilities 

, , ,q k m1k f!, " , are stationary. In particular, for each k  let 
:f R Rk 0 0"$ $  be a continuous, monotonically increasing 

function representing the utility obtained by spending time t  

on a task generated by the thk  source. It is desired to maximize 
the infinite horizon reward while requiring a finite queue at all 
times. Invoking the strong law of large numbers makes solving 
(7) in the limit as n"3 reduce to solving a knapsack problem
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where 0$m  is the rate of tasks entering the queue (the con-
straint function will ensure that the queue remains finite 
[30]). The control scheme would then choose ,t t reg

k=, ,
t  where 

k,  is the region index of the th,  task. Although the problem 
(8) is simpler at first glance, it may still be difficult to solve 
exactly. For example, when the utility (reward) functions 
associated with knapsack problems are based on accumu-
lator models of human decision making, they may take the 
form of sigmoid functions, that is, the utility functions fk  
are sigmoid functions of time. The knapsack problem with 
sigmoid utilities is an NP-hard problem (although compu-
tationally tractable two-factor solutions have been pro-
posed [31]). If problem (8) can be solved efficiently, an 
approximate solution to (6) can be obtained by solving an 
infinite horizon optimization under the certainty-equiva-
lent assumption at each time step.

Simplifications, such as (8), must be used with caution 
since small modifications to the problem structure may 
cause such a formulation to lose validity. For instance, the 
addition of deadlines on tasks or latency penalties (penal-
ties due to delay in processing a task) break this structure. 
In such scenarios, it may be necessary to go back to solving 
(7) over a short time horizon at each time step using stan-
dard dynamic programming techniques.

Adaptive Automation as a Feedback Control Problem
In addition to attention-allocation issues, at a higher level of 
granularity there is the issue of deciding what system func-
tions should be left to the human operator and what func-
tions should be automated. According to the four-stage 
model in [158], each of the stages of the cognitive process 
may be automated to differing degrees within a single 
system. The choice of what aspects to automate may vary 
based on application, or based on the state of the operator.

In a supervisory role, most tasks in the action implemen-
tation category (such as vehicle motion control) are automat-
ed at a high level; however, even in this case there are design 
decisions about how supervisory system should allow the 
operator to issue commands to automated subsystems [165]. 
For example, the authors of [166] show that a task-based con-
trol scheme in which the operator is only allowed to issue 
high-level commands, in many aspects outperformed a ve-
hicle-based scheme, where the operator can control the mo-
tion of each automated agent individually.
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Studies have shown that great care must be taken in choos-
ing the right level of automation for a given system since 
increased automation does not always lead to better perfor-
mance. Indeed, increased automation can lead to increased 
operator complacency and bias [167]. As a result, researchers 
have begun to study an adaptive approach, in which the level 
of system automation is altered in an attempt to maintain the 
operator’s cognitive state in some desired regime. In this sim-
plified sense, the issue of adaptive autonomy reduces to a con-
trol problem. Indeed, if it can be verified that the level of 
autonomy of a given system has some effect on operator per-
formance, then level of autonomy can be thought of as a con-
trol input that can be used to guide user performance.

For example, suppose the operator’s workload is mod-
eled via the utilization ratio presented in (4). Then, operator 
workload is inversely related to the level of autonomy of a 
given system. The Yerkes–Dodson law suggests that mod-
erate levels of operator workload (stress) lead to the highest 
levels of performance. It is a natural step, therefore, to 
design a feedback control law that adjusts automated func-
tionalities to keep the utilization ratio, and thus the opera-
tor workload, within a moderate regime.

Of course, this type of control approach hinges on a 
myriad assumptions about operator behavior and its rela-
tionship to performance, as well as the ability to accurately 
measure the complexities of human cognition and perfor-
mance in real time. Some of these considerations are dis-
cussed in subsequent sections; however, the underlying 
concept of relating automation parameters to performance 
and using this easily adjustable parameter as a means of 
control is one that has received recent researcher attention 
and will remain an important topic.

Key Challenges
Many of the formulations discussed assumed simplified 
models and optimization strategies that are loosely cou-
pled across system components. Although this framework 
may suffice in some circumstances, in reality, a human 
supervisory control system and an associated decision-
support system operate through a combination of driving 
factors that work together simultaneously. As such, the dis-
cussion is concluded by highlighting a few key challenges 
to improving design strategies and effectively implement-
ing them in practice.

Tightly Coupling System Components
In human supervisory control, the design of a decision-
support system and the design of coordination strategies 

for automated agents are often treated as completely decou-
pled or loosely coupled problems. In many instances there 
could be a tighter coupling in how the performance of deci-
sion supports and autonomous agents influence each other 
through the user. For example, in some operational con-
texts, autonomous agents may have to loiter until the opera-
tor can attend to them. Such operator-induced delays could 
lead to degradation in coverage performance. From a math-
ematical perspective, the problem of scheduling both the 
user and autonomous agents could be posed as a joint opti-
mization problem to achieve overall system objectives. 
Hence, the design of decision support systems and control 
schemes for autonomous agents could be considered jointly. 
Further research is needed to develop appropriate formula-
tions of such problems, incorporating different dynamic 
and performance characteristics, and developing tractable 
computational methods.

Assessing the Operator State
The creation of effective decision supports often hinges 
upon the ability to accurately assess the operator’s cogni-
tive state, including situational awareness, perceived work-
load, and fatigue. However, it is difficult to assess such a 
state with any degree of accuracy using current technology. 
Recent technological advances have made the use of physi-
ological sensors, such as eye-trackers, EEG (measuring cor-
tical electrical activity), and electrocardiogram (measuring 
heart beats), a viable option for providing real-time data in 
many applications [161]. As such, a large body of recent 
research has gone into finding correlations between cogni-
tive activity and objective measures, such as pupil diame-
ter [39], [168], blink rates [169], heart rate [170], [171], and 
EEG activity [172], [173].

Even though these studies have successfully found cor-
relations in certain scenarios, it remains difficult to use 
such findings in practice. One reason is that it is difficult to 
control exogenous factors in real applications. For example, 
researchers have found correlations between pupil diame-
ter variations and cognitive processing, but there are at 
least 23 factors that can affect pupil size [174]. Thus, it is 
hard to rely on pupil diameter alone as a reliable indicator 
of workload in a scenario where outside factors are not 
carefully controlled. Further complicating the issue, many 
physiological responses are highly task dependent or 
dependent upon the individual characteristics of the user. 
A more rigorous understanding of these physiological cor-
relations and user cognitive states, as well as their sources 
of variation, are necessary.

The goal for many supervisory control applications is to have a single operator 
who is capable of processing multiple tasks or data streams simultaneously.
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Graphical User Interface Design
Graphical user interfaces (GUIs) can have a drastic impact 
on operator performance and the overall functionality of 
a system [175]. As such, the issue of designing effective 
user interfaces has been studied in a variety of contexts 
including computer science, marketing [176], human fac-
tors [177], psychology [178], and engineering [179]. 
Researchers have studied a wide range of aspects of the 
interface design problem and its impact on operator per-
formance, including luminosity [180], stimulus specifica-
tions [181], interactive window characteristics [182], and 
many, many others.

The standard means of evaluating GUIs is through 
usability surveys. Some surveys, such as the system usability 
scale survey [183], [184], have been studied extensively and 
provide benchmark statistics. Other researchers have 
turned to objective measures of usability that are more 
directly catered to the particular application under consid-
eration [185]. In the context of supervisory control, GUIs 
play a key role in the success of any system design, and must 
be carefully tested before being employed in application.

Automation Bias and Operator Trust
Many automated systems that are designed to aid opera-
tor performance rely on the use of opportunistic cues or 
suggestions in attempt to guide operator behavior. Such 
forms of indirect control are of no use unless the operator 
responds to them in a meaningful way. Indeed, if the 
operator never takes into account any of the automated 
suggestions, then the whole purpose of providing them is 
defeated. On the other end of the spectrum, if the operator 
always heeds the automated suggestions without ques-
tion, the operator can become complacent and lose situa-
tional awareness, resulting in performance degradation. 
This phenomena, sometimes referred to as automation bias, 
has been studied extensively in attempt to understand its 
effects and the conditions under which it occurs [167], 
[186], [187].

Both operator reluctancy to follow automated prompts 
and automation bias are related to the issue of operator 
trust in automation. This complex phenomena is hard to 
model, due to its dynamic nature and its inherent situa-
tional and interpersonal dependencies [188], [189]. How-
ever, a successful human supervisory control system must 
employ tactics to maintain adequate operator trust, while 
mitigating automation bias.

Individual Differences and Statistical Uncertainty
For the sake of simplicity, most system designers create a 
single, general-purpose model of human cognitive process-
ing, with the intention of using this model for all potential 
operators. However, different operators may have varying 
responses to a given system design, and ignoring the vast 
differences between individuals can greatly reduce accu-
racy in predicting behavior. Indeed, factors such as person-

ality traits [189], past experiences [188], and even the 
operator’s current mood [190] can all affect performance. 
Studies of individual differences seek to resolve these 
shortcomings by identifying the ways in which people 
with distinct attributes react to the same situations in 
unique ways [191]. For example, research has shown that 
the personality trait extraversion moderates the relationship 
between stress and performance. Those with lower extra-
version are more resilient to periods of hypostress, and 
those with higher extraversion are more capable of handing 
hyperstress [192].

Recent research has been somewhat successful in 
identifying specific traits that make a significant differ-
ence in operator interactions with autonomous systems 
[189]. For instance, in the context of supervisory control, 
high spatial ability, attentional control, and video gaming 
experience have all been shown to lead to better perfor-
mance in some aspects of a multiple agent supervisory 
control mission [193]. Despite these results, the relation-
ship between individual operator differences and perfor-
mance remains complex due to task dependencies and 
environmental sensitivity.

In addition to uncertainties caused by individual differ-
ences, there is also, in general, a large amount of statistical 
uncertainty involved in estimating model and system 
parameters. Indeed, even for a particular operator, it may 
be difficult (or impossible) to precisely determine the ideal 
parameters for describing behavior. Errors due to such sta-
tistical uncertainties can get propagated through a system 
design, causing undesirable results. Some models partially 
address this issue by directly incorporating auxiliary 
noise variables. For example, the extended DDM [60], [73] 
and the full DDM [74] introduce noise terms associated 
with the drift rate variable. Other approaches to mitigating 
the effects of uncertainty focus on optimal statistical data-
fitting techniques associated with particular types of 
models [194].

Further complicating the issue, many decision support 
systems hinge on statistical models that make assumptions 
about some underlying process. Violations to these assump-
tions create another source of error. Some researchers have 
explored techniques for relaxing standard statistical 
assumptions with regard to tasks that are commonly 
encountered in supervisory control. For example, tech-
niques for introducing spatial correlations in search tasks 
have been explored in the multi-arm bandit problem [195]. 
However, as in any modeling application, some assump-
tions will generally be unavoidable.

Although some work does exist, a thorough sensitivity 
analysis and characterization of model uncertainty in the 
context of human supervisory control is still largely an 
open problem. It is clear that a more thorough understand-
ing of system robustness with respect to individual differ-
ences, as well as statistical and modeling uncertainties, is 
needed before successful implementation in practice.



76 IEEE CONTROL SYSTEMS MAGAZINE » DECEMBER 2015

CONCLUSIONS
Human supervisory control of robotic teams is an area that 
has attracted a significant amount of research attention in 
recent years and will only continue to grow as sensor and 
robotic technology becomes more advanced. The unique set 
of challenges that this application brings about spans many 
disciplines, including control systems, human factors, and 
psychology. In a broad sense, the human supervisory control 
problem can be broken down into three components: the 
human, autonomous agents, and the interface between them. 
In surveying each of these components and discussing 
examples of relevant theory for each, it becomes apparent 
that well-studied tools from different scientific disciplines 
can work in conjunction with one another to create systems 
that have the potential to drastically increase productivity 
and efficiency in a given application. While many challenges 
still remain, continued collaboration among scientific disci-
plines will allow the maturation of future human supervi-
sory control technology.
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