
Gossip Algorithms for Heterogeneous Multi-Vehicle
Routing Problems

Mauro Franceschellia, Daniele Rosaa, Carla Seatzua, Francesco Bullob

aDep. of Electrical and Electronic Engineering, Univ. of Cagliari, Italy (e-mail:
{mauro.franceschelli, daniele.rosa,seatzu@diee.unica.it})

bDep. of Mechanical Engineering, Univ. of California at Santa Barbara, California, USA
(e-mail: bullo@engineering.ucsb.edu)

Abstract

In this paper we address a class of heterogeneous multi-vehicle task assignment
and routing problem. We propose two distributed algorithms based on gossip
communication: the first algorithm is based on a local exact optimization and
the second is based on a local approximate greedy heuristic. We consider the
case where a set of heterogeneous tasks arbitrarily distributed in a plane has to
be serviced by a set of mobile robots, each with a given movement speed and
task execution speed. Our goal is to minimize the maximum execution time of
robots.

1. Introduction

The traveling salesman problem (TSP) is a well known topic of research and
can be stated as follows: find the Hamiltonian cycle of minimum weight to visit
all the nodes in a given graph. Instructive surveys can be found in [15, 17, 21].
This problem has received great attention for both its theoretical implications
and its several practical applications. The Vehicle Routing Problem (VRP) is a
generalization of the TSP and was firstly introduced in [10]: given a fleet of n
vehicles and a set of locations to be visited, the vehicle routing problem consists
of finding n tours to visit all locations in minimum time.

Several extensions of the TSP and the VRP have been proposed to bet-
ter suit practical applications by introducing several additional constraints and
objectives such as a variable number of vehicles, a finite load capacity, a cost
associated to each node which represents the demand of the costumer, service
time windows and several more. Numerous extensions are well summarized

✩This work has been partially supported by the European Community’s Seventh Framework
Programme under project HYCON2 (Grant Agreement n. FP7-ICT-2009-5/N.257462.) and
in part by ARO grant W911NF-11-1-0092. Daniele Rosa gratefully acknowledges Sardinia
Regional Government for the financial support of his PhD scholarship (P.O.R. Sardegna F.S.E.
Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2007-
2013 - Axis IV Human Resources, Objective l.3, Line of Activity l.3.1.)

Preprint submitted to Elsevier September 24, 2012

in [3, 24, 26]. Finally, several extensions explore a dynamic setting in which
multiple vehicles serve a dynamic number of tasks as discussed in [5].

Multi-vehicle routing problems have a combinatorial nature, as all the possi-
ble tours must be explored to find the optimal configuration. Exact algorithmic
formulations are based, for example, on Integer Linear Programming (ILP) as
described in [18, 26]. General ILP solvers are characterized by an exponential
computational complexity, thus in the last decades many approximate algo-
rithms have been proposed which are characterized by a lower computational
complexity. Examples of heuristics and approximate algorithms are presented
in [9, 12, 14, 20, 22, 24].

In this paper we are interested in an instance of the VRP, called the Heteroge-
neous Multi Vehicle Routing Problem (HMVRP), with the following properties:
the number n of vehicles is given a priori, a set K is given containing k tasks
arbitrarily distributed in a plane, to each task is assigned a servicing cost, each
vehicle is characterized by a movement speed and a task execution speed.

It has been shown in [7] that when comparing the length of the optimal tour
of one vehicle that visits all tasks locations with the multiple vehicle case, the
maximum length of the tours for the multiple vehicle case is proportional to the
tour length of the single vehicle case and proportionally inverse to the number
of vehicles. Both upper and lower bounds with such scaling were given.

In this paper we extend the result in [7] by considering execution times
instead of tour lengths to account for vehicles of different speeds, tasks with
arbitrary execution costs and vehicles with different task execution speeds. We
provide upper and lower bounds to the optimal solution as function of the single
vehicle optimal tour length to put in evidence how the performance is affected
by the number of vehicles.

We propose two distributed and asynchronous algorithms for the HMVRP:
the first one is based on the iterative optimization of the local task assignment
between pairs of vehicles [13], the second one is based on local task exchange of
assigned tasks, one by one, between couples of vehicles [25]. For both algorithms
we provide deterministic bounds to their performance. The proposed approaches
to the HMVRP are distributed algorithms easy to implement in a networked
system and have favorable computational complexity with respect to the ratio
k/n between the number of tasks and vehicles instead of k as in the centralized
approach.

Note that the considered problem can also be seen as a particular instance of
a min/max VRP problem whose main feature is the heterogeneity of the speed
and the tasks execution speed of the vehicles. Related works on the min/max
VRP problem include [1, 19, 2].

Summarizing, the following are the main contributions of this paper.

• We formalize the centralized problem in terms of a mixed integer linear
programming (MILP) problem and extend the bounds in [7] for the multi
TSP to the HMVRP.

• We propose a first distributed algorithm, based on gossip communication

2

and on the solution of local MILP, to solve the HMVRP and characterize
some of its properties.

• We propose a second distributed algorithm to solve HMVRP, based on
gossip communication and on local task exchanges, characterized by a low
computational complexity.

• We provide simulations that show that the proposed algorithms attain a
constant factor approximation of the optimal solution with respect to the
number of vehicles. A detailed comparison among the performances of the
two proposed decentralized solutions is also presented.

2. Problem statement

Consider a set N of n mobile robots scattered in a connected region R in a
plane. Let K be a set of k tasks scattered in region R, that should be assigned
to robots to be executed.

Robots move at different speeds and have different execution speeds of tasks.
Tasks have different costs. In particular, the following notation is used:

• vr is the speed of robot Rr,

• wr is the task execution speed of robot Rr,

• vmin (vmax) is the minimum (maximum) speed of robots,

• wmin (wmax) is the minimum (maximum) task execution speed of robots,

• ci is the cost of the i-th task,

• cmin (cmax) is the minimum (maximum) cost of tasks.

Moreover, dmax is the maximum length of the shortest path between any
two points in the region R.

Robots are supposed to first coordinate themselves to decide upon their task
assignment and then start to serve the tasks autonomously.

To use a notation that is standard in the literature, we assume that robots
are initially positioned in depots and should go back to them after the execution
of tasks. The set of depots is called D and the generic r-th depot is Dr.

Now, if Kr denotes the set of tasks assigned to robot Rr, our goal is to
minimize the objective function:

J = max
r∈N

Jr =
(

TSP (Kr ∪ {Dr})
vr

+

∑
i∈Kr

ci

wr

)
(1)

where TSP (Kr ∪ {Dr}) is the minimum TSP tour length of robot Rr that,
initially positioned in Dr, visits all tasks in Kr and go back to Dr.

In simple words we want to minimize the maximum execution time of the n
robots that have to visit and execute all tasks assigned to them, guaranteeing
that each task is executed by exactly one robot.

3

The above problem can be seen as a generalization of the classical multi-
TSP problem. First, because we are also assuming that tasks should not only
be visited by the robots, but should be processed by them. Secondly, because
the optimization is carried out over an heterogeneous network due to the het-
erogeneity of the agents and the tasks. Similar problems have been recently
addressed in the literature, see e.g. [7], but to the best of our knowledge, never
under the assumption of heterogeneous agents and tasks.

Let us conclude this section with the introduction of some notation that will
be used in the remaining of the paper. Let Kr be the set of tasks assigned to
robot Rr. We denote as K̃r the ordered set with the same elements of Kr, but
whose ordering specifies the order in which tasks in Kr are visited by robot Rr.
Therefore, sets K̃r are the unknown variables of the optimization problem (1).

Finally, let K̃ = {K̃1, . . . , K̃n} be an ordered set of n ordered sets, that
summarizes the generic solution of the considered tasks allocation problem.
The set K̃ is called network state.

3. Optimal centralized solution

In this section we first discuss a centralized strategy that leads to an optimal
solution of the above task assignment problem. Such an approach is based on
mixed linear integer programming (MILP). Then we provide a characterization
of the optimal solution in terms of an upper and a lower bound on the opti-
mal value of the objective function. This will be useful when evaluating the
effectiveness of the decentralized approach proposed in the next section.

To represent all possible directed tours of n robots, let us define a complete
directed graph G = {V, E} where:

• V = N ∪K is the set of n + k nodes;

• E = (N ∪K)× (N ∪K) is the set of (n + k)2 edges representing directed
paths from the depots in which robots are initially placed to tasks, and
viz, and from tasks to tasks1.

Moreover, we define the following binary variables that completely identify a
task allocation and the order in which tasks are executed by robots. In simple
words they completely identify a network state K̃. Since we want to minimize
the total execution times of robots, we always assume that distances among
tasks, and among tasks and depots, are covered through straight lines.

• We assign n binary variables xir to each node i ∈ V; here r ∈ N : if i ∈ N ,
xir = 1 means that robot Rr starts its tour from node i, while if i ∈ K,
xir = 1 means that task i is executed by robot Rr.

1In the sets V and E the generic r-th depot is identified via the r-th element in N . This
has been done for clearity of presentation as it will appear in the following.

4

• We assign n binary variables yijr to each edge (i, j) ∈ E ; here r ∈ N :
yijr = 1 means that robot Rr goes directly from node i to node j in its
path.

Moreover, we introduce the following cost coefficients.

• We assign n costs cir = ci/wr to each node i ∈ K; here r ∈ N : cir

represents the execution time of task i by robot Rr with an execution
speed of wr.

• We assign n costs dijr = lij/vr to each edge (i, j) ∈ E ; here r ∈ N : dijr

represents the time spent by robot Rr to pass the length lij of edge (i, j)
with speed vr.

Proposition 3.1. Let us consider the allocation problem formalized in Sec-
tion 2. An optimal solution can be computed solving the following MILP prob-
lem:

J = min λ
s.t.∑

i∈K
xircir +

∑

(i,j)∈E
dijryijr < λ, ∀r ∈ N (a)

xrr = 1, ∀r ∈ N (b)∑

r∈N
xir = 1, ∀i ∈ K (c)

∑

j∈V
yjir =

∑

j∈V
yijr = xir, ∀i ∈ V, ∀r ∈ N (d)

∑

i/∈S

∑

j∈S
yijr ≥ xqr ∀S ⊆ K,

∀q ∈ S, ∀r ∈ N (e)
λ ∈ R (f)
xir ∈ {0, 1} ∀i ∈ V, ∀r ∈ N (g)
yijr ∈ {0, 1} ∀(i, j) ∈ E , ∀r ∈ N . (h)

Proof: The proof is carried out via a detailed explanation of all the con-
straints and the objective function.

— Constraints (a) and objective function: The left hand side term of (a) is
equal to the total execution time of robot Rr. Thus, given the objective function,
constraints (a) aim to minimize the maximum execution time of robots.

— Constraints (b): These constraints force each robot to move from its
initial position (depot).

— Constraints (c): Each task i must be executed by exactly one robot.
— Constraints (d): If robot Rr executes task i, it must arrive at node i in

some way and at the end of the execution has to leave it. The same holds if
node i models a depot, i.e., i ∈ N .

— Constraints (e): Each robot Rr has to make a single connected tour
visiting all its tasks, so we have to exclude all the disjoint paths. In words
constraint (e) relative to robot Rr, imposes that if robot Rr executes a task

5

i ∈ S ⊆ K, there must be an edge passed by Rr to enter in S. These constraints
are named Subtour Elimination Constraints (SEC) and are typical of vehicle
routing problems and TSP models [3]. ¤

The number of unknowns in the MILP (3.1) is equal to

N = n(n + k)2 + n(n + k) + 1 = O(n3 + nk2 + n2k).

The total number of constraints is O(n2k + nk2k). Indeed we have n con-
straints of type (a), n constraints of type (b), k constraints of type (c), (n+k)n

constraints of type (d), and n
∑k

i=1 i
k!

(k − i)!i!
≤ nk2k constraints of type (e).

The following two theorems provide a characterization of the optimal value
of the performance index J∗.

Theorem 3.2. The optimal solution J∗ of the objective function (1) is upper
bounded by

J∗ ≤ Cup + Dup (2)

where

Cup =
1
n

(
TSP (K)

vmin
+

∑
i∈K ci

wmin

)
, (3)

Dup = 2
dmax

vmin
+

cmax

wmin
. (4)

Proof: The proof is based on an heuristic that can be summarized in the
following main steps.

• Generate an optimal tour that visits all tasks. Obviously, if an agent with
speed vmin and execution speed wmin follows the tour and executes all
tasks, its service time is equal to

Ĵ =
(

TSP (K)
vmin

+
∑

i∈K ci

wmin

)
.

• Divide the tour in n consecutive sub-tours using the following rule. Take
a robot (e.g. R1) at random and make it follow the route of the optimal
single vehicle tour at the previous item, starting from the position of an
arbitrary task. Stop it as soon as its service time Ĵ1 satisfies the condition
Ĵ1 ≥ Ĵ/n. Now, since the largest cost of tasks is equal to cmax, the
smallest execution speed of robots is wmin, and the time taken to travel
between tasks is continuous, it is

Ĵ1 ≤ Ĵ

n
+

cmax

wmin
.

Select at random a new robot (e.g. R2) and put it at the end of the route
of R1 and repeat the same strategy, until all robots are considered. If
there aren’t enough tasks for the robots, simply consider null the service
time for the remaining robots.

6

• Now, if dmax is the maximum length of the shortest path between any
two points in the region R, the execution time Jr of each robot Rr is such
that Jr ≤ Ĵr + 2dmax/vmin. Indeed the total service time of each robot
corresponds to the time it takes to complete its sub-tour along the route
of the optimal single vehicle TSP, plus the time to go from its depot to its
first task and go back to the depot. Therefore, it is

Jr ≤ Ĵ

n
+

cmax

wmin
+ 2

dmax

vmin
, ∀r ∈ N .

Since the optimal solution J∗ of the objective function (1) can only be smaller
or equal than the solution resulting from the above heuristic, for sure it is

J∗ ≤ max
r∈N

Jr ≤ Ĵ

n
+

cmax

wmin
+ 2

dmax

vmin
= Cup + Dup

thus proving the correctness of the upper bound. ¤

Theorem 3.3. The optimal solution J∗ of the objective function (1) is lower
bounded by

J∗ ≥ Clo −Dlo (5)

where

Clo =
1
n

(
TSP (K)

vmax
+

∑
i∈K ci

wmax

)
, (6)

Dlo =
dmax

vmin
. (7)

Proof: Let Sopt =
∑

r∈N J∗r be the sum of all the service times corre-
sponding to an optimal task assignment. Since, by definition J∗ = maxr∈N J∗r ,
obviously it is

J∗ ≥ Sopt

n
. (8)

Now, let Sp
opt be the sum of the contributions to J∗r , with r ∈ N , relative to

the only time spent moving from one task to another one, or from/toward the
depots, without including the time spent to execute tasks.

Obviously, it is

Sopt ≥ Sp
opt +

∑
i∈K ci

wmax
. (9)

Moreover, trivially generalizing the result in [7] to the case of heterogeneous
robots, we have that

Sp
opt +

TSP (D)
vmin

≥ TSP (D ∪K)
vmax

≥ TSP (K)
vmax

(10)

or equivalently

Sp
opt ≥

TSP (K)
vmax

− TSP (D)
vmin

. (11)

7

By equations (9) and (11) it follows that

Sopt ≥ TSP (K)
vmax

− TSP (D)
vmin

+
∑

i∈K ci

wmax

≥ TSP (K)
vmax

− n
dmax

vmin
+

∑
i∈K ci

wmax
.

(12)

Finally, by equations (8) and (12), it is

J∗ ≥ Sopt

n
=

1
n

(
TSP (K)

vmax
+

∑
i∈K ci

wmax

)
− dmax

vmin

= Clo −Dlo

(13)

thus proving the statement. ¤

4. Decentralized solution based on optimal local task assignment

In this section we first propose a decentralized approach to solve the task
allocation problem in Section 2 that is based on gossip. Then, a comparison
among the computational complexity of the proposed algorithm and the cen-
tralized algorithm is provided. Convergence properties of the gossip algorithm
are discussed. Finally, some characterizations of the solution obtained via the
decentralized approach are proposed.

4.1. MILP Gossip algorithm
The idea of the proposed decentralized algorithm is that robots locally bal-

ance their loads according to a gossip interaction rule, i.e., via pairwise commu-
nications, under the following main assumption:

(A1) All robots may interact with all the other robots.
Starting from an initial task assignment, e.g., assuming that robots have the

same number of tasks, a couple of robots is selected at random. Selected robots
optimally balance their load; a new couple of robots is selected and so on, until
no better balancing among robots can be obtained. This can be summarized
in Algorithm 1. The variable Tmax denotes a maximum number of steps to be
executed that is assumed to be large enough so that no further improvement of
the objective function can be obtained.

4.2. Computational complexity of the local optimization
Let us now discuss the advantages in terms of computational complexity

coming from local optimizations using Algorithm 1 with respect to a centralized
optimization.

To this aim, let us first present some preliminary results. In particular,
the following proposition ensures that when the number of iterations of Algo-
rithm 1 increases, the optimal value of the objective function can never increase.
Obviously this does not imply that an optimal solution is obtained.

8

Algorithm 1 MILP Gossip algorithm
1. Tasks are initially assigned to robots so that each robot has either k/n or

k/n + 1 tasks.
2. Let t = 0.
3. While t ≤ Tmax

(a) Choose at random two robots r and q. Let them solve the MILP
(3.1) where N = {r, q} and K = Kr ∪ Kq.

(b) If the new task assignment leads to a smaller total execution time,
then update the assignments of robots r and q accordingly,
else leave them unchanged.

(c) Let t = t + 1 and go back to Step 3.
4. All robots process their own set of tasks following the order specified by

the optimal local solution.

Proposition 4.1. Let Jgossip(t) be the maximum execution time of robots com-
puted after t iterations of Algorithm 1. For any t ≥ 0, it is Jgossip(t + 1) ≤
Jgossip(t).

Proof: Let Rr and Rq be the two robots selected at time t + 1. By Algo-
rithm 1 this means that only the tasks allocation of such robots may change,
while the load of all the other robots keeps unaltered. Now, since at Step 3.a
of Algorithm 1 tasks are assigned to robots Rr and Rq so as to minimize the
maximum execution time among them, this implies that the maximum execu-
tion time among Rr and Rq either decreases or it keeps unaltered at time t + 1.
Moreover, the maximum execution time among all robots may decrease at time
t + 1 if and only if either Rr or Rq, or both, are the robots to which it corre-
sponds the maximum execution time among all robots at time t. Indeed with
no loss of generality, we may assume that Rr is the “critical” robot at time t,
i.e., the robot to which it corresponds the maximum execution time among all
robots at time t. Three different cases may occur at time t + 1, after the new
tasks allocation. First, Rr may still be the robot with the maximum execution
time, but in such a case for sure, its execution time cannot be larger than that
at time t. Secondly, robot Rq may be at time t+1 the robot with the maximum
execution time but for sure its execution time cannot be larger than that of
robot Rr at time t. Finally, at time t+1, neither to Rr nor to Rq it corresponds
the maximum execution time among robots. This implies that a third robot,
e.g., Rp, has become the critical one at time t + 1. In any case for sure its
execution time is smaller than that of robot Rr at time t, since by assumption
robot Rr was the critical robot at time t. ¤

Let us now provide an upper bound on the value of the maximum execution
time of robots resulting from Algorithm 1 at a generic iteration t. To this aim,
we first recall some deterministic upper bounds to the maximum length of the
shortest path (SP) between a set K of k locations in a unit square area, that

9

are due to [11] and [16], respectively:

SP (K) ≤
√

2
√

k + 7/4, (14)

and
SP (K) ≤ 0.984

√
2
√

k + 11. (15)

To the best of our knowledge the above two upper bounds are the best
actually proposed in the literature. Moreover, we cannot a priori say which of
the above bounds is the most strict one. Indeed the bound in [16] has a smaller
multiplicative factor with respect to [11], but has a larger additive constant. In
the following, we focus on upper bound (14), but obviously similar results can
be repeated considering (15).

Proposition 4.2. Let Jgossip(t) be the maximum execution time of robots com-
puted after t iterations of Algorithm 1, then ∀ t ≥ 0 it is

Jgossip(t) ≤
(√

2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin
+

(
k

n
+ 1

)
cmax

wmin
.

Proof: By Algorithm 1 at time t = 0 the maximum number of tasks that
can be assigned to a robot is equal to k/n+1. Moreover, since each robot starts
its path from its depot and has to come back to it, then by equation (14), for
any r ∈ N it is

TSP (Kr(0) ∪ {Dr}) ≤
(√

2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax. (16)

Note that the additional term
√

2 between parenthesis comes from the fact
that to form a Euclidean TSP tour from a path in a unit square it is sufficient
to connect the start and end point to form a cycle, thus increasing the size of
the path of at most

√
2 in the unit square. Moreover, dmax comes from the fact

that in our problem statement depots and robots are not distributed in a square
of unitary edge, but in a region R that is contained in a square of edge dmax

being by definition dmax the maximum length of the shortest path between any
two points in R.

Finally, since by assumption
∑

i∈Kr(0)

ci ≤
(

k

n
+ 1

)
cmax, it follows that

Jgossip(0) ≤
(
√

2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin
+

(
k

n
+ 1

)
cmax

wmin

that proves the statement being by Proposition 4.1 Jgossip(t) ≤ Jgossip(0) for
all t ≥ 0. ¤

Let us now provide a proposition that characterizes the maximum number
of tasks that are assigned to robots at a generic iteration t of Algorithm 1.

10

Proposition 4.3. Let Kmax(t) = maxr∈N |Kr(t)| be the maximum number of
tasks that are assigned to robots at a generic iteration t of Algorithm 1. For any
t ≥ 0 it is:

Kmax(t) ≤ wmax

cmin

[(
√

2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin

+
(

k

n
+ 1

)
cmax

wmin

]
.

(17)

Proof: By Proposition 4.2, for all t ≥ 0, it holds

Jgossip(t) ≤
(
√

2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin
+

(
k

n
+ 1

)
cmax

wmin
. (18)

Now, it is

Jgossip(t) ≥ Kmax(t)cmin

wmax
(19)

since the execution time of Kmax(t) tasks is greater or equal than that we have
if such tasks are at a null distance from the robot that has to process them,
all tasks have a cost equal to cmin and the robot who process them has an
execution speed equal to wmax. By equations (18) and (19) the statement of
the proposition follows. ¤

An important remark needs to be done. The above proposition provides an
upper bound on the maximum number of tasks that can be assigned to a robot
at any iteration. For particular values of the parameters it may happen that the
upper bound given by Proposition 4.3 is not significant because it is larger than
k. However, this only occurs for very particular cases, while for most of the
significant and general situations where the number of tasks is sufficiently large,
robots and tasks are sufficiently distributed in R and their costs and speeds are
in reasonable ratio, Proposition 4.3 enables us to conclude that

Kmax(t) = O(k/n).

Now, since local optimization considers two robots at a time, the number of
tasks that are involved in a local optimization is surely smaller or equal than
2Kmax(t). This means that the number of unknowns of the MILP that should
be solved at the generic iteration t of Algorithm 1 is

Ngossip = O(k2/n2)

rather than N = O(n3 + nk2 + n2k) as in the centralized case. Moreover,
the number of constraints is O(k2k/n/n) rather than O(n2k + nk2k) as in the
centralized case.

11

4.3. Finite time and almost sure convergence
We now introduce two definitions to formalize two important properties of

gossip communication schemes, namely deterministic persistence and stochastic
persistence. Similar definitions have been recently proposed in [4]. As usual in
this framework, we assume that the possible interactions among agents are mod-
eled by an undirected graph G = {V, E} where agents correspond to vertices,
and an edge exists if and only if the interaction among the agents corresponding
to the incidence nodes is possible. Obviously, assumption (A1) implies that in
our case it is E = V × V . At each iteration t of the gossip algorithm a different
edge is selected. In the following we denote as e(t) the edge selected at time t,
while the set of edges selected in the time interval [t1, t2] is denoted as ē(t1, t2),
i.e., we have

ē(t1, t2) =
t2⋃

t=t1

e(t).

Definition 4.4 (Deterministic persistence).
A gossip communication scheme is said to be deterministically persistent if

∀t ≥ 0 there exists a finite T > 0 such that

∀e′ ∈ E, Pr(e′ ∈ ē(t, t + T)) = 1

or equivalently, ē(t, t + T) = E. ¥

Deterministic persistence implies that, if we consider a finite but sufficiently
large time interval, then for sure all arcs are selected at least once during such
interval.

Definition 4.5 (Stochastic persistence).
A gossip communication scheme is said to be stochastically persistent if

∀t ≥ 0 there exists a finite T > 0 and a probability p ∈ (0, 1) such that

∀e′ ∈ E, Pr(e′ ∈ ē(t, t + T)) ≥ p

where Pr(·) denotes a probability. ¥

In simple words, stochastic persistence implies that, if we consider a finite but
sufficiently large time interval, then each edge has a probability greater or equal
than a finite value p of being selected during such an interval.

Theorem 4.6. Let K̃(t) be the network state resulting at time t from the exe-
cution of Algorithm 1. If the gossip communication scheme satisfies the deter-
ministic persistence property then, for every initial task assignment, there exists
a network state K̃∗gossip and a finite time T > 0 such that K̃(t) = K̃∗gossip, for
all t ≥ T .

Proof: Let us present some preliminary comments.
— First, K̃∗gossip is an invariant network state for the state evolution following

Algorithm 1. This follows from Step 3.b of Algorithm 1.

12

— Secondly, if at a given time the network state is updated then the previous
network state is no more visited during the algorithm evolution. This also
follows from Step 3.b of Algorithm 1 and the monotonicity property expressed
by Proposition 4.1.

— Thirdly, the number Nn,k of admissible network states is finite since both
the number of robots and the number of tasks are finite.

Now, with no loss of generality we assume that at the initial time t = 0 it
is K̃r 6= K̃∗gossip,r for all r = 1, . . . , n, i.e., no robot is in its final assignment. If
the communication scheme among agents is deterministically persistent, since
the graph modeling the possible interactions among robots is fully connected
and the number Nn,k of admissible network states is finite, then for sure after
some finite time T0 the robot with the maximum cost in the final assignment
reaches its final assignment. Let Rr be such a robot. By Step 3.b of Algorithm 1
this implies that the assignment of Rr is no more changed during the algorithm
evolution, i.e., K̃r(t) = K̃∗gossip,r for all t ≥ T0.

Analogously, after some further finite time T1 the final assignment is reached
by the robot with the second largest cost, and so on, until all robots have reached
their final assignment. Since all Ti’s are finite, this proves that the final network
state K̃∗gossip is reached in a finite time T =

∑n
i=1 Ti. ¤

Theorem 4.7. Let K̃(t) be the network state resulting at time t from the execu-
tion of Algorithm 1. If the gossip communication scheme satisfies the stochastic
persistence property, then, for every initial task assignment, there exists a net-
work state K̃∗gossip and almost surely a finite time T > 0 such that K̃(t) = K̃∗gossip

for all t ≥ T , i.e., the network state converges almost surely in finite time to
K̃∗gossip.

Proof: We prove this theorem following the same arguments an in [6]. The
proof is based on verifying the following three facts:

(i) K̃∗gossip is an invariant network state for the state evolution following Al-
gorithm 1;

(ii) K̃(t) is a Markov process on a finite number of states;

(iii) starting from any initial network state K̃(0), there is a positive probability
for the network state to reach K̃∗gossip in a finite number of steps.

Let us now check the above three properties in order.
— (i) As already discussed in Theorem 4.6, this follows from Step 3.b of

Algorithm 1.
— (ii) As already discussed in the proof of Theorem 4.6, the number of

admissible network states Nn,k is finite, being finite both the number of robots
and the number of tasks. Markovianity immediately follows from the fact that
subsequent random selection of edges are independent.

— (iii) This issue can be proved using similar arguments as in Theorem 4.6
with the only difference that now the communication scheme is stochastically
persistent, rather than deterministically persistent. This implies that for any

13

initial network state K̃(0) there is a finite probability that after some finite time
T0 the robot with the maximum cost in the final assignment reaches its final
assignment, that is no more changed during the algorithm evolution. The same
holds for the robot with the second largest execution cost in the final assignment,
and so, until the invariant network state K̃∗gossip is reached. Since the number
of possible states is finite, item (iii) holds. ¤

4.4. Performance characterization of the MILP algorithm
Algorithm 1 does not guarantee the convergence to an optimal solution.

However, some results can be given to characterize its solution at the equilib-
rium, i.e., after a number of iterations that is sufficiently large so that no better
balancing among robots may be obtained. In particular, the following theo-
rem provides a characterization of the maximum distance among the processing
times of robots that have locally balanced their loads.

Theorem 4.8. Let J∗gossip,r and J∗gossip,q, respectively, be the total execution
times of two generic robots Rr and Rq resulting from the application of Algo-
rithm 1. It holds

|J∗gossip,r − J∗gossip,q| ≤ Krq = 2
drq

max

vrq
min

+
crq
max

wrq
min

(20)

where drq
max is the maximum distance among tasks in Kr and tasks in Kq, vrq

min =
min{vr, vq}, and wrq

min = min{wr, wq}.
Proof: We prove the statement by contradiction, i.e., we assume that

|J∗gossip,r − J∗gossip,q| > Krq.

With no loss of generality, we assume that it is J∗gossip,r > J∗gossip,q. Now, let
z be the task in Kr whose distance with respect to tasks in Kq is minimum.
Remove z from Kr and put it in Kq. Let J̃r and J̃q be the resulting execution
times of robots r and q, respectively. Obviously, we have

J̃q ≤ J∗gossip,q +
cz

wq
+ 2

drq
max

vq
= J∗gossip,q + Krq (21)

where the inequality follows from the fact that the optimal TSP of robot q is
surely smaller than the path obtained by simply adding twice the path from the
closest task in Kq to z. Now, by the contradictory assumption, we have

J∗gossip,r > J∗gossip,q + Krq (22)

thus (21) can be rewritten as

J̃q < J∗gossip,r. (23)

As a consequence

max{J̃q, J̃r} < max{J∗gossip,q, J
∗
gossip,r}. (24)

14

However, this contradicts the assumption that J∗gossip,r and J∗gossip,q are the
time executions corresponding to an optimal task assignment, thus proving the
statement. ¤

Corollary 4.9. Let J∗gossip,r and J∗gossip,q, respectively, be the total execution
times of two generic robots Rr and Rq resulting from the application of Algo-
rithm 1. It holds

|J∗gossip,r − J∗gossip,q| ≤ Dup (25)

where Dup is defined as in equation (4).

Let us now provide a theorem that gives an upper bound on the maximum
execution time resulting from the application of Algorithm 1. First, we introduce
the following Lemma necessary to the proof of Theorem 4.11.

Lemma 4.10. Let Sgossip(t) be the sum of all Ji’s at iteration t of Algorithm 1.
Then

∀t > 0, Sgossip(t) ≤
(√

2

√
k

n
+ 1 +

7
4

+
√

2

)
ndmax

vmin
+

∑
j∈K cj

wmin
. (26)

Proof: By definition Sgossip(t) =
∑n

i=1 Ji(t). Since

Ji(t) =
TSP (Ki(t) ∪ {Di})

vi
+

∑
j∈Ki

cj

wi
,

it is

Sgossip(t) =
n∑

i=1

TSP (Ki(t) ∪ {Di})
vi

+
n∑

i=1

∑
j∈Ki

cj

wi
.

By considering the worst case scenario in which each agent has speed vi =
vmin and task execution speed wi = wmin for i = 1, . . . , n, we have the following
straightforward upper bound

Sgossip(t) ≤
n∑

i=1

TSP (Ki(t) ∪ {Di})
vmin

+

∑
j∈K cj

wmin
. (27)

To each robot ki(t) = |Ki(t)| tasks are assigned at any given time. By
exploiting the result by Few [11] and [16] given in eq. (14) and eq. (15), and
taking into account that such results refer to a unit square area, the maximum
tour length that each robot has to drive to visit all its assigned tasks is

TSP (Ki(t) ∪ {Di}) ≤
(
α
√

ki + 1 + β
)

dmax (28)

where α, β ∈ R are appropriate constants that depend on the considered bound.
Thus, we may now write

Sgossip(t) ≤ αdmax

vmin

n∑

i=1

(√
ki(t) + 1

)
+

nβdmax

vmin
+

∑
j∈K cj

wmin
. (29)

15

The only term in eq. (29) that is affected by the task assignment to the robots
is

∑n
i=1

(√
ki(t) + 1

)
. We now find the task assignment that maximizes the

bound in eq. (29) by solving the following optimization problem:

max
∑n

i=1

(√
ki + 1

)
s.t.∑n

i=1 ki = k
ki ≥ 0 i = 1, . . . , n
ki ∈ N i = 1, . . . , n

(30)

Any solution to Problem (30) found by relaxing the constraint to have integer
variables is an upper bound to the solution of the given problem. We therefore
solve Problem (30) by relaxing the integer constraint using Lagrange multipliers:

f(k1, . . . , kn, λ) =
n∑

i=1

(√
ki + 1

)
+ λ

(
n∑

i=1

ki − k

)
(31)

By setting partial derivatives of the objective function (31) to zero we get

∂f(k1, . . . , kn, λ)
∂ki

=
1

2
√

ki + 1
+ λ = 0 i = 1, . . . , n

∂f(k1, . . . , kn, λ)
∂λ

=

(
n∑

i=1

ki − k

)
= 0

(32)

Thus, for any i, j ∈ N , it is

1
2
√

ki + 1
=

1
2
√

kj + 1
,

i.e., the maximum of function (31) is found for ki = k
n for all i ∈ N . Therefore,

an upper bound to the solution of Problem (30) is

n∑

i=1

(√
ki + 1

)
≤

n∑

i=1

(√
k

n
+ 1

)
= n

√
k

n
+ 1.

Finally, by substituting the solution of (31) into (29)

Sgossip(t) ≤ αn

(√
k

n
+ 1 + β

)
dmax

vmin
+

∑
j∈K cj

wmin
. (33)

If we consider the results by Few (14) we get

Sgossip(t) ≤
(√

2

√
k

n
+ 1 +

7
4

+
√

2

)
ndmax

vmin
+

∑
j∈K cj

wmin
. (34)

¤

16

We are now ready to state one of the main results of this paper.

Theorem 4.11. The maximum execution time J∗gossip resulting from the appli-
cation of Algorithm 1 satisfies

J∗gossip ≤
(
√

2

√
k

n
+ 1 +

7
4

+
√

2

)
dmax

vmin
+

1
n

∑
i∈K ci

wmin
+ Dup. (35)

Proof: Let Sgossip(t) be the sum of all Ji’s at iteration t of Algorithm 1.
By Lemma 4.10 we have

Sgossip(t) ≤
(
√

2

√
k

n
+ 1 +

7
4

+
√

2

)
ndmax

vmin
+

∑
j∈K cj

wmin
(36)

Let J∗gossip,min be the smallest execution time between the vehicles after the
execution of Algorithm 1. Corollary 4.9 implies J∗gossip,min ≥ J∗gossip − Dup.
Moreover, ∀t ≥ 0 it obviously is

J∗gossip,min(t) ≤ 1
n

Sgossip(t) (37)

thus
J∗gossip ≤ J∗gossip,min + Dup ≤ 1

n
Sgossip(t) + Dup

≤
(
√

2

√
k

n
+ 1 +

7
4

+
√

2

)
dmax

vmin
+

1
n

∑
i∈K ci

wmin
+ Dup.

(38)

proving the statement. ¤

4.5. Asymptotic behavior
We now study what is the performance to expect from the proposed algo-

rithm in the limit cases in which the ratio between tasks and robots goes to
infinity. In particular we obtain the following result.

Proposition 4.12. Let J∗gossip be the maximum execution time resulting from
the application of Algorithm 1 and let J∗ be the optimal solution to the HMVR
problem. Then

lim
k
n→∞

J∗gossip

J∗
≤ cmax

cmin

wmax

wmin
. (39)

Proof: By taking the ratio between the upper bound to J∗gossip given in
Theorem 4.11 and the lower bound of the optimal solutions to the HMVR
problem J∗ given in eq.(5) we get

lim
k
n→∞

J∗gossip

J∗
≤

(
√

2

√
k

n
+ 1 +

7
4

+
√

2

)
dmax

vmin
+

1
n

∑
i∈K ci

wmin
+ Dup

1
n

(
TSP (K)

vmax
+

∑
i∈K ci

wmax

)
−Dlo

. (40)

17

The term 1
n

TSP (K)
vmax

, being at the denominator, can be lower bounded by zero.

The term
1
n

∑
i∈K ci

wmin
at the numerator can be upper bounded by k

n
cmax

wmin
while

the equivalent term
P

i∈K ci

wmax
at the denominator can be lower bounded by k

n
cmin

wmax
.

Therefore, we get

lim
k
n→∞

J∗gossip

J∗
≤

(
√

2

√
k

n
+ 1 +

7
4

+
√

2

)
dmax

vmin
+

k

n

cmax

wmin
+ Dup

1
n

TSP (K)
vmax

+
k

n

cmin

wmax
−Dlo

. (41)

The term k
n dominates both on the constants and on the term

√
k
n , thus we get

lim
k
n→∞

J∗gossip

J∗
≤ cmax

cmin

wmax

wmin
. (42)

proving the statement. ¤

5. An heuristic gossip algorithm

In this section we present a new algorithm, called the Decentralized Heuristic
Algorithm, and discuss its convergence properties and computational complexity
in comparison with the algorithm in the previous section.

The robots update their states following Algorithm 2, while the task ex-
change rule is described in Algorithm 3. The basic idea is as follows. When
two robots are selected at step 3.a of Algorithm 2, the two agents start to bal-
ance their execution time by the iterative execution of Algorithm 3. At each
execution of Algorithm 3 only two scenarios are possible:

• the sets of assigned tasks of the two robots do not change;

• one task is given by the robot with the higher execution time to the other
robot.

Note that the determination of the possible exchanges is made by the compu-
tation of the Approximated Euclidean TSP (ATSP), thus, unlike in the MILP
gossip algorithm, this approach involves polynomial time algorithms. There ex-
ist a vast literature on polynomial time algorithms to compute approximations
to the Euclidean TSP such that

ATSP ≤ αTSP

where TSP denotes the value of the optimal TSP and α represents the worst
case ratio. In [23] some heuristics for the TSP problem are summarized. Many
heuristics are based on the computation of the Minimum Spanning Tree (MST)
among the nodes and guarantee a worst case ratio of α = 2 with a running

18

time of O(m2), where m denotes the number of nodes to be visited. Another
polynomial time heuristic based on MST which provides a value of α = 1.5 is
the Christofides algorithm described in [8], which is characterized by a running
time of O(m3).

We observe that the STOP of Algorithm 3 ensures that after the execution
of Algorithm 3 it holds

max{Jr(t + 1), Jq(t + 1)} ≤ max{Jr(t), Jq(t)}
whatever is the choice of the algorithm to compute the value of the ATSP .

Algorithm 2 Decentralized Heuristic Algorithm
1. Tasks are initially arbitrarily assigned to robots.
2. Let t = 0.
3. While t ≤ Tmax

(a) Select two robot Rp and Rr at random.
(b) Apply Algorithm 3 repeatedly on Rp and Rr until no more task

exchanges are possible.
(c) Let t = t + 1 and go back to Step 3.

4. All robots process their own set of tasks following the order specified by
the local solution of an ATSP Algorithm.

As a final remark we note that conditions can be given on the gossip com-
munication scheme which allow the robot to converge to stable task assignment
in a finite time. In particular, the following two theorems can be given, whose
proofs are omitted here because they follow the same lines of Theorems 4.6 and
4.7, respectively.

Theorem 5.1. Let K̃(t) be the network state resulting at time t from the exe-
cution of Algorithm 2. If the gossip communication scheme satisfies the deter-
ministic persistence property then, for every initial task assignment, there exists
a network state K̃∗heur and a finite time T > 0 such that K̃(t) = K̃∗heur, for all
t ≥ T .

Theorem 5.2. Let K̃(t) be the network state resulting at time t from the execu-
tion of Algorithm 2. If the gossip communication scheme satisfies the stochastic
persistence property, then, for every initial task assignment, there exists a net-
work state K̃∗heur and almost surely a finite time T > 0 such that K̃(t) = K̃∗heur

for all t ≥ T , i.e., the network state converges almost surely in finite time to
K̃∗heur.

5.1. Computational complexity of the local optimization
In this section we discuss about the advantages of the proposed heuristic in

terms of computational complexity with respect to the MILP gossip algorithm.
Let us begin with the analysis of the computational complexity of the single

task exchange rule in Algorithm 3. The following proposition characterizes the
running time of Algorithm 3.

19

Algorithm 3 Local Balancing between robots Rr and Rq

- INPUT: Kr(t) and Kq(t).
- OUTPUT: Kr(t + 1) and Kq(t + 1).
- ASSUMPTION: We assume, with no loss of generality, that Jr(t) > Jq(t).
- STEPS:

1. Let Kex = ∅, Kv = Kr and F = 0.
2. While F = 0 and Kv 6= ∅

• Select i ∈ Kv randomly.

• Let Kv = Kv \ {i}.
• Compute

Jnew =
ATSP (Kq ∪ {i})

vq
+

∑
j∈(Kq∪{i}) cj

wq
.

• If Jnew < Jr(t)

(a) Kex = Kex ∪ {i}.
(b) F = 1.

End While.

- STOP:

• Kq(t + 1) = Kq(t) ∪ Kex and Kr(t + 1) = Kr(t) \ Kex.

•
Jq(t + 1) =

ATSP (Kq(t + 1))
vq

+

∑
j∈(Kq(t+1)) cj

wq
,

Jr(t + 1) = min
{

Jr(t)−
∑

i∈Kex
ci

wr
,

ATSP (Kr(t + 1))
vr

+

∑
j∈(Kr(t+1)) cj

wr

}
.

20

Proposition 5.3. Assume to compute the ATSP using, at step 2 of Algo-
rithm 3, an algorithm with a running time of O(kp). The worst case running
time of Algorithm 3 is O(kp+1).

Proof: The maximum number of nodes assigned to a robot is k, thus at
each iteration of the while loop of Algorithm 3 the running time of the algorithm
to compute the ATSP is at maximum O(kp). The while loop can be repeated
at maximum k times, as there may be at maximum k tasks exchange. Thus the
total running time of Algorithm 3 is k · O(kp) = O(kp+1). ¤.

An important property of the proposed heuristic is presented in the following
proposition.

Proposition 5.4. Let Jheur(t) = maxi∈N Ji(t) be the maximum execution time
of robots at time t resulting from the execution of Algorithm 2. The following
holds

∀t ∈ N, Jheur(t + 1) ≤ Jheur(t).

Proof: The proof directly follows from the update rules of Algorithm 3.
Let Rr and Rq be the couple of robots selected by Algorithm 2 at time t with
execution time respectively Jr(t) and Jq(t). Let Rmax be the robot with the
maximum execution time at time t ≥ 0, so it is Jmax(t) = Jheur(t). Now, by
Algorithm 3 is holds max{Jr(t + 1), Jq(t + 1)} ≤ max{Jr(t), Jq(t)}, and only
two cases may occur

• if Rr, Rq 6= Rmax, Jheur(t + 1) = Jheur(t), i.e., the maximum execution
time does not change;

• if either Rr = Rmax or Rq = Rmax, Jheur(t + 1) ≤ Jheur(t), i.e., the
maximum execution time may be reduced.

¤

A similar property was discussed for the MILP gossip algorithm as well: at
each iteration of the local optimization rule the maximum execution time can
not increase. Note that in the MILP gossip algorithm each local optimization
requires to solve a MILP problem, which is an exponential time algorithm.
Proposition 5.3 shows that the proposed heuristic is based on a local balance
with a considerably smaller computational complexity than the MILP gossip
algorithm.

We conclude this section with some considerations about the total number
of local interactions required to reach a final task assignment. We conjecture
that the expected number of iterations of Algorithm 2 required to converge are
of the same order as the number of iterations required in the MILP gossip algo-
rithm. Our conjecture is based on the following observations. The execution of
Algorithm 3 leads to a different task assignment only if the maximum execution
time among the involved robots can be decreased, otherwise the task assign-
ment does not change. In the proposed framework if at time t the execution of

21

Algorithm 3 leads to a decrement of the maximum execution time, the network
state K̃(t) changes to a new one K̃(t + 1). It follows from Proposition 5.4 that
K̃(t) is no more visited during the algorithm evolution. This property holds for
the MILP gossip algorithm as well. Starting from an initial network state K̃(0),
in both decentralized solutions all the possible network states may be visited
before to reach the equilibrium state. For that reason we can reasonably con-
jecture that the MILP gossip algorithm and Algorithm 2 have computational
complexity of the same order in terms of total number of iterations. Our con-
jecture is supported also by the results of some simulations presented in the
following.

5.2. Characterizations of the heuristic solution
In this section we focus on some properties of J∗heur, i.e., the solution of

Algorithm 2 at the equilibrium, when no better balancing among robots may
be obtained. As the MILP gossip algorithm, Algorithm 2 does not guarantee
the convergence to an optimal solution. Firstly we present a theorem that
characterizes the maximum distance among the execution times of two robots
that have locally balanced their loads. Then we provide an upper bound on the
maximum execution time resulting from the application of Algorithm 2.

Theorem 5.5. Let J∗r,heur and J∗q,heur, respectively, be the total execution times
of two generic robots Rr and Rq resulting from the application of Step 2 of
Algorithm 2. It holds

|J∗r,heur − J∗q,heur| ≤ Krq = 2
drq

max

vrq
min

+
crq
max

wrq
min

(43)

where drq
max is the maximum distance among tasks in Kr and tasks in Kq, vrq

min =
min{vr, vq}, and wrq

min = min{wr, wq}.
Proof: Let Rr and Rq be a couple of robots selected in Algorithm 2 at

time t with execution time respectively Jr(t) and Jq(t) after t iterations. By
step 2 of Algorithm 2 robots Rr and Rq exchange tasks one by one until no
more exchanges are possible. Assume, without lack of generality, that at time
t it holds Jr(t) > Jq(t). Now, let us assume to exchange one task from Rr to
Rq. Surely the execution time of Rr decreases, thus Jr(t + 1) ≤ Jr(t). On the
contrary, the execution time of robot Rq increases but the resulting value is such
that:

Jq(t + 1) ≤ Jq(t) +
crq
max

wq
+ 2

drq
max

vq
.

Thus, by exchanging one task a reduction of the maximum execution time is
guaranteed if

Jq(t) +
crq
max

wq
+ 2

drq
max

vq
≤ Jr(t).

In other words, if

Jr(t)− Jq(t) ≥ cmax

wq
+ 2

drq
max

vq

22

then there exists at east task that can be exchanged such that

max{Jq(t + 1), Jr(t + 1)} < max{Jq(t), Jr(t)}.
Since the number of possible task assignments is finite and at each iteration

of Algorithm 3 the local maximum may be decreased due to a task exchange,
some of these configurations are never visited again. Thus we have that in finite
time

|J∗r,heur − J∗q,heur| ≤ Krq = 2
drq

max

vrq
min

+
crq
max

wrq
min

¤

By Theorem 5.5 and the fact that each robot interacts with any other suffi-
ciently often, a significant result follows.

Corollary 5.6. Let J∗r,heur and J∗q,heur, respectively, be the total execution times
of two generic robots Rr and Rq resulting from the application of Algorithm 2.
It holds

|J∗r,heur − J∗q,heur| ≤ Dup (44)

where
Dup = 2

dmax

vmin
+

cmax

wmin
.

¤

Finally, the following result can be proved using the same arguments as in
the proof of Theorem 4.11.

Theorem 5.7. Let J∗heur be the value of the objective function (1) resulting
from the execution of Algorithm 2. It is

J∗gossip ≤
(√

2

√
k

n
+ 1 +

7
4

+
√

2

)
dmax

vmin
+

1
n

∑
i∈K ci

wmin
+ Dup. (45)

where Dup = 2
dmax

vmin
+

cmax

wmin
.

Proof: Follows the same steps of Theorem 4.11. ¤

6. Numerical simulations

In this section we present some numerical results comparing the performance
of the proposed heuristic and the performance of the MILP gossip algorithm.
We first analyze the value of J∗heur and J∗gossip for different values of k and n,
comparing them with the lower and upper bounds, given in eq. (2) and eq. (5),
respectively. We then compare the convergence time of the two decentralized
solutions either in terms of number of iterations required or in terms of absolute
time.

23

0
10

20
30

40
50

0
10

20
30

40
50

0

10

20

30

40

50

60

Number of Tasks
Number of Robots

J*
heur

J*
gossip

C
lo

−D
lo

C
up

+D
up

Figure 1: J∗heur, J∗gossip and the upper bound (2) and the lower bound (5) of the centralized
solution.

In all the experiments robots and tasks are randomly scattered in a square
box of side 5. Costs of tasks are integer values randomly generated with uniform
distribution in the interval [1, 5]. Speeds vi and wi are real values randomly
generated with uniform distribution in [1, 2]. In both decentralized algorithms
the edge selection is performed in a uniformly random way. The MILP problems
are solved using the MATLAB optimization tool glpk, while the results related
with Algorithm 2 are obtained using our own MATLAB script. The value of
the ATSP is computed by calculating a minimum spanning tree and adding
shortcuts in the induced cycle, thus approximating the optimal TSP length by
a factor of α = 2.

In Fig.1 are reported the results of the comparison between the following
values:

• the value of J∗heur, obtained by the execution of Algorithm 2;

• the value of J∗gossip obtained by the execution of Algorithm 1;

• the upper and lower bound of the centralized approach given respectively
by (2) and (5).

For each couple (n, k) of n robots and k tasks, J∗heur, J∗gossip and the two bounds
are the mean values of 10 experiments. Simulations show that the maximum
service time obtained with the two approaches lies always between the upper
and the lower bound of the centralized approach. Moreover, the performance
of the two approaches are similar. It can be observed that Algorithm 1 leads to
better results than Algorithm 2 when the ratio k

n is high.
In Fig. 2, Fig. 3 and Fig. 4 the execution times of Algorithm 2 are compared

with the execution times of Algorithm 1. In particular, Fig. 2 and Fig. 3 show

24

5

6

7

8

9

10

10

12

14

16

18

20

0

100

200

300

400

Number of Tasks kNumber of Robots n

N
um

be
r

of
 it

er
at

io
ns

MILP gossip Algorithm

Figure 2: Number of iterations required to reach an equilibrium state with MILP gossip
algorithm.

the execution time respectively of the MILP gossip algorithm and Algorithm 2 in
terms of number of iterations, while in Fig. 4 the comparison is made in terms
of time in seconds spent by MATLAB to execute the Algorithms. The two
figures confirm that the proposed framework has a computational complexity
considerably lower than the MILP gossip algorithm.

The results in Fig. 2 and Fig. 3 confirm also the conjecture that we have
discussed in the final part of Section 5.1: the execution time in terms of number
of iterations are of the same order in Algorithm 2 and in the MILP gossip
algorithm.

Finally we focus on the execution time of Algorithm 2 in seconds and in terms
of number of cycles. Figure 5 shows the number of iterations while Figure 6
shows the execution time in seconds for Algorithm 2 for different values of k in
a system with n = 10 robots.

Figure 5 shows that the expected number of iterations of Algorithm 2 grows
linearly with the number of tasks if the number of robots is kept constant. On
the other hand, in Figure 6 is shown that the actual computational time is of the
order of O(n3) seconds. This is due to the fact that the complexity of the task
exchange according to the heuristic grows linearly with the number of tasks for
each iteration of Algorithm 2 thus accounting for at least a quadratic grow of
computational time, the remaining difference can be accounted by the software
implementation and execution in Matlab.

7. Conclusions and future work

In this paper we proposed upper and lower bounds for the cost of the opti-
mal solution to the HMVRP which considers vehicles with different movement

25

5

6

7

8

9

10

10

12

14

16

18

20

0

100

200

300

400

Number of Tasks
Number of Robots

N
um

be
r

of
 it

er
at

io
ns

Algorithm 2

Figure 3: Number of iterations required to reach an equilibrium state with Algorithm 2.

5
6

7
8

9
10

10
12

14
16

18
20

0

200

400

600

800

1000

Number of RobotsNumber of Tasks

E
xe

cu
tio

n
T

im
e

(s
ec

)

MILP gossip Algorithm
Algorithm 2

Figure 4: Execution time of MILP gossip algorithm and Algorithm 2.

26

0 100 200 300 400 500 600 700
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of Tasks k

N
um

be
r

of
 it

er
at

io
ns

Figure 5: Number of iterations of Algorithm 2 for n = 10 and different values of k

0 100 200 300 400 500 600 700
−500

0

500

1000

1500

2000

Number of Tasks k

E
xe

cu
tio

n
tim

e
(s

ec
)

Exeution time
3rd order polynomial regression

Figure 6: Execution time of Algorithm 2 for n = 10 and different values of k

27

and task execution speed and tasks with different servicing costs. We extended
to our framework the bounds for the multi-vehicle routing problem in [7]. Fur-
thermore, we proposed two algorithms based on gossip to solve the HMVRP in
a distributed fashion exploiting only pairwise task exchanges between vehicles.
The first algorithm is based on local, asynchronous and pairwise optimizations
to improve the local task assignment. The second one is an heuristic with linear
complexity with respect to the number of tasks. The computational complexity
of the first method scales with exponential complexity with respect to the ratio
between the number of tasks and vehicles, improving with respect to a cen-
tralized optimization that scales exponentially with the number of tasks. The
proposed algorithms have been characterized in terms of finite-time almost sure
convergence and in terms of minimum guaranteed performance.

We validated through simulations that the proposed algorithms compute
a solution that scales with the number of robots within a constant factor of
approximation with respect to the optimal centralized solution.

As future work we plan to extend the framework to a dynamic case in which
robots start to move and serve tasks while the decentralized optimization is
being executed and new tasks appear in the region.

References

[1] D. Applegate, W. Cook, S. Dash, and A. Rohe. Solution of a min-max vehi-
cle routing problem. Forschungsinstitut für Diskrete Mathematik, Rheinis-
che Friedrich-Wilhelms-Universität, 2001.

[2] E.M. Arkin, R. Hassin, and A. Levin. Approximations for minimum and
min-max vehicle routing problems. Journal of Algorithms, 59(1):1–18, 2006.

[3] T. Bektas. The multiple traveling salesman problem: an overview of for-
mulations and solution procedures. Omega, 34(3):209–219, 2006.

[4] F. Bullo, R. Carli, and P. Frasca. Gossip coverage control for robotic
networks: Dynamical systems on the space of partitions. SIAM Journal on
Control and Optimization, July 2011. to appear.

[5] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. Dynamic
vehicle routing for robotic systems. Proceedings of the IEEE, 99(9):1482–
1504, 2011.

[6] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri. Communication
constraints in the average consensus problem. Automatica, 44 (3):671–684,
2008.

[7] J. Carlsson, D. Ge, A. Subramaniam, A. Wu, and Y. Ye. Solving min-
max multi-depot vehicle routing problem. Lectures on global optimization,
55:31–46, 2009.

28

[8] N. Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, DTIC Document, 1976.

[9] J.F. Cordeau, M. Gendreau, G. Laporte, J.Y. Potvin, and F. Semet. A
guide to vehicle routing heuristics. Journal of the Operational Research
Society, pages 512–522, 2002.

[10] G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Manage-
ment science, pages 80–91, 1959.

[11] L. Few. The shortest path and the shortest road through n points. Math-
ematika, 2(2):141–144, 1955.

[12] M.L. Fisher and R. Jaikumar. A generalized assignment heuristic for vehicle
routing. Networks, 11(2):109–124, 1981.

[13] M. Franceschelli, D. Rosa, C. Seatzu, and F. Bullo. A gossip algorithm for
heteroeneous multi-vehicle routing problems. In 4th IFAC Conf. on Anal-
ysis and Design of Hybrid Systems, Eindhoven, Netherlands, June 2012.

[14] M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the
vehicle routing problem. Management science, pages 1276–1290, 1994.

[15] G. Gutin and A. P. Punnen. The Traveling Saleman Problem and Its
Variations, volume 12 of Series in Combinatorial Optimization, Springer.
Kluwer Academic Publishers, 2002.

[16] H. J. Karloff. How long can a Euclidean traveling salesman tour be? SIAM
Journal on Discrete Mathematics, 2(1):91–99, 1989.

[17] G. Laporte. The traveling salesman problem: An overview of exact
and approximate algorithms. European Journal of Operational Research,
59(2):231–247, 1992.

[18] G. Laporte. The vehicle routing problem: An overview of exact and approx-
imate algorithms. European Journal of Operational Research, 59(3):345–
358, 1992.

[19] G. Laporte. Fifty years of vehicle routing. Transportation Science,
43(4):408–416, 2009.

[20] G. Laporte, M. Gendreau, J.Y. Potvin, and F. Semet. Classical and modern
heuristics for the vehicle routing problem. International transactions in
operational research, 7(4-5):285–300, 2000.

[21] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy-Kan, and D. B. Shmoys.
The Traveling Saleman Problem: A Guided Tour of Combinatorial Opti-
mization. Wiley Series in Discrete Mathematics and Optimization. John
Wiley and Sons, 1985.

29

[22] R. Nallusamy, K. Duraiswamy, R. Dhanalaksmi, and P. Parthiban. Op-
timization of multiple vehicle routing problems using approximation algo-
rithms. Arxiv preprint arXiv:1001.4197, 2010.

[23] C. Nilsson. Heuristics for the traveling salesman problem. Department of
Computer Science, Linkoping University, 2003.

[24] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems.
Computers & Operations Research, 34(8):2403–2435, 2007.

[25] D. Rosa, M. Franceschelli, C. Seatzu, and F. Bullo. A gossip based heuristic
algorithm for heteroeneous multi-vehicle routing problems. In 3rd IFAC
Workshop on Distributed Estimation and Control in Networked Systems,
Santa Barbara, California, USA, September 2012.

[26] P. Toth and D. Vigo. The Vehicle Routing Problem, volume 9 of Mono-
graphs on Discrete Mathematics and Applications. SIAM, 2002.

30

