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Abstract— We revisit the classic slow coherency and area
aggregation approach to model reduction in power networks.
The slow coherency approach is based on identifying sparsely
and densely connected areas of a network, within which
all generators swing coherently. A time-scale separation and
singular perturbation analysis then results in a reduced low-
order system, where coherent areas are collapsed into aggregate
variables. Here, we study the application of slow coherency
and area aggregation to first-order consensus systems and
second-order power system swing dynamics. We unify different
theoretic approaches and ideas found throughout the literature,
we relax some technical assumptions, and we extend existing
results. In particular, we provide a complete analysis of the
second-order swing dynamics – without restrictive assumptions
on the system damping. Moreover, we identify the reduced
aggregate models as generalized first or second-order Laplacian
flows with multiple time constants, aggregate damping and
inertia matrices, and possibly adverse interactions.

I. INTRODUCTION

A power network is a large-scale and complex dynamical
system. Here the attribute “complex” refers to both rich
dynamics of the individual system component as well as
their non-trivial interaction through the network. In order
to tackle this complexity for analysis, control design, and
monitoring schemes, it is of interest to construct reduced-
order models which preserve the dynamics of interest. In
this paper, we are interested in electromechanical inter-area
dynamics, which are associated with the dynamics of power
transfers and involve groups of generators oscillating relative
to each other. In a heavily stressed grid, poorly damped inter-
area oscillations can even become unstable, see the blackout
of August 10, 1996 in the Western American network [1].

To arrive at a better understanding of the complex inter-
area dynamics of a large-scale power grid, a natural approach
is to collapse groups of coherent machines into single equiv-
alent machines and study the dynamics of such a reduced
model. Intuitively, these coherent groups can be identified as
strongly connected components of the weighted graph, and
entire geographic areas of a power grid can be aggregated to
single equivalent models. The approach outlined above has
been made precise in the pioneering work on slow coherency
by Chow et al., see the seminal papers [2]–[6] among others.
Slow coherency theory considers power network models,
such as the RTS 96 in Figure 1, that are naturally parti-
tioned into areas, which are internally densely connected and
weakly connected among another. Next, aggregate variables
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Fig. 1. Illustration of RTS 96 power network with three areas. Here the
square nodes are the generators and the circles the load buses of the network.

are defined for each area corresponding to the area’s center
of mass (or inertia). These aggregate variables describe
the collective area dynamics, and they are complemented
by a set of local variables representing the incoherency
within the areas. A singular perturbation analysis shows that
the long-term inter-area dynamics are determined by the
aggregate variables. A recent application of slow coherency
theory is measurement-based identification of the aggregate
models for monitoring and control purposes [7].

In [2] and [3] the foundations of area aggregation are laid
out for first and second-order linear interconnected systems
with diffusive coupling. These networked systems corre-
spond to either consensus dynamics [8], [9] or the electrome-
chanical swing dynamics of network-reduced power systems
[10], [11]. Recently, the methods developed in [2], [3] have
been extended to non-linearly coupled first-order systems
[12]. The second-order case has been heavily investigated
in the context of power systems [2]–[6]. In [4] a sparsity-
based technique is developed to identify coherent areas, and
in [5] the singular perturbation and aggregation presented
in [3] has been further refined. The articles [3]–[5] do not
take the system damping into account, which is a technically
inconvenient obstacle in the aggregation analysis. In [6], a
singular perturbation analysis of a second-order dissipative
system carried out, but the resulting slow and fast systems
are required to have high frequency oscillations. Thus, some
strong structural conditions on the initial system have to be
met. Finally, in [2] an approach to second-order dissipative
systems is presented, which is based on a restrictive uniform
damping assumption and on an incomplete analysis.

In this paper, we review the different existing approaches



[2]–[6], [12] to slow coherency in a unified language. We
analyze the two cases of first-order consensus dynamics
and second-order swing dynamics in power networks. We
combine and extend the existing analysis approaches, and we
remove some technical assumptions commonly made in the
literature, such as regularity assumptions and assumptions on
the graph connectivity. We also formally extend the existing
theory to weighted graphs. More importantly, we provide a
complete and detailed analysis of area aggregation for the
second-order case with damping. The resulting aggregate
model equals the one proposed in [2], [6], but we do not
assume restrictive structural constraints or uniform damping.
Finally, motivated by remarks in [3], we identify the reduced
aggregate models as generalized consensus systems [8], [13]
with multiple time constants (in the first-order case), aggre-
gate damping and inertia matrices (in the second-order case),
and possibly adverse interactions among the aggregate nodes
(corresponding to negative coupling weights). We illustrate
our developments with a simulations of the RTS 96 system.

In the interest of space we omit the explicit proofs and
calculations in this paper, and we refer the reader to [14].

This paper is organized as follows. Section II presents the
problem setup and summarizes the area aggregation process
for consensus systems. Section III identifies the aggregate
model as a generalized Laplacian system. Section IV ex-
tends the results from the first-order consensus dynamics to
the second-order swing equations. Section V illustrates our
theoretical results with a simulation study. Finally, Section
VI concludes the paper. The remainder of this section recalls
some preliminaries and introduces some notation.

A. Preliminaries and notation

Vectors and matrices: Let 1n and 0n be the n-dimensional
vectors of unit and zero entries, respectively. Let In ∈ Rn×n
be the n-dimensional identity matrix. For a symmetric matrix
A = AT ∈ Rn×n we write A � 0, A � 0, A ≺ 0, and
A � 0 if A is positive definite, positive semidefinite, negative
definite, negative semidefinite, respectively. Given an array
{xi}i∈{1,...,n}, let x ∈ Rn be the associated vector, and let
diag(x) ∈ Rn×n be the associated diagonal matrix. For a
function f : Rn → R and a constant M ∈ R, we use the
notation f(x) ∈ O(M) if there exists k > 0 and x0 ∈ Rn
such that |f(x)| ≤ k · |M | for all ‖x‖∞ > ‖x0‖∞.

Sets: Given a discrete set X , denote its cardinality by |X |.
Algebraic graph theory: Consider a connected, undirected,

and weighted graph G = (V, E ,W ), where V = {1, . . . , n}
is the set of nodes, E ⊂ V×V is the set of undirected edges,
and W = WT ∈ Rn×n is the adjacency matrix with entries
wij > 0 if {i, j} ∈ E and wij = 0 otherwise. Throughout
the paper, we implicitly assume that all nonzero edge weights
are uniformly non-degenerate and bounded, that is, there are
w,w ∈ R such that for all {i, j} ∈ E , 0 < w ≤ wij ≤ w.

The following graph matrices and their properties will
be of interest to us [15]. The degree matrix D ∈ Rn×n
is the diagonal matrix with elements dii =

∑n
j=1,j 6=i wij .

The Laplacian matrix L = LT ∈ Rn×n is defined by L =
D −W , and it satisfies L � 0 and L1n = 0n. If a number
` ∈ {1, . . . , |E|} and an arbitrary direction is assigned to each

edge {i, j} ∈ E , the (oriented) incidence matrix B ∈ Rn×|E|
is defined component-wise by Bk` = 1 if node k is the sink
node of edge ` and by Bk` = −1 if node k is the source node
of edge `; all other elements are zero. For x ∈ Rn, the vector
BTx has components xi − xj corresponding to the oriented
edge from j to i. If diag({wij}{i,j}∈E) is the diagonal matrix
of edge weights, then L = B diag({wij}{i,j}∈E)BT . If the
graph is connected, then Ker (BT ) = Ker (L) = span(1n)
and all n− 1 non-zero eigenvalues of L are strictly positive.

II. AGGREGATION AND SLOW COHERENCY

In this section, we introduce the problem setup in slow
coherency analysis and present a brief yet complete analysis
of time-scale separation and area aggregation.

A. Mathematical models and problem setup

Consider a connected, undirected, and weighted graph
G = (V, E ,W ) with n nodes, Laplacian matrix L, and
incidence matrix B. Associated to this graph, we consider
two different dynamical systems. The first system is the
widely adopted consensus protocol [3], [12], [13]. Consider
n autonomous agents. Each agent i ∈ {1, . . . , n} is equipped
with a local state variable xi, and the agents exchange their
states according to the first-order consensus dynamics

ẋ = −Lx . (1)

A spectral analysis [13] of the consensus dynamics (1) re-
veals that asymptotically all agents synchronize to a common
consensus state, that is, limt→∞ xi(t) = limt→∞ xj(t) =
x∞ ∈ R for all i, j ∈ {1, . . . , n}. In particular, the
asymptotic consensus state is given by x∞ =

∑n
i=1 xi(0)/n.

A natural extension of the first-order consensus protocol
(1) to a second-order mechanical system can be achieved
as follows. With each node i ∈ {1, . . . , n}, we associate an
inertia coefficient Mi > 0 and a damping coefficient Di > 0.
Let M ∈ Rn×n and D ∈ Rn×n be the diagonal matrices of
inertia and damping coefficients, and consider the second-
order dissipative consensus dynamics

Mẍ = −Dẋ− Lx . (2)

Our enabling application of interest for the second-order
consensus dynamics (2) is given by the electromechanical
swing dynamics of large-scale electric power networks [2]–
[6], [10]. Here each node i ∈ {1, . . . , n} corresponds to a
synchronous generator or a load (modeled as a synchronous
motor) with inertia Mi damping Di, and rotor angle xi, and
L is the incremental admittance matrix, arising from a Jaco-
bian linearization and Kron reduction [11] of the nonlinear
power network dynamics. For the remainder of the paper, we
refer to system (2) simply as power network dynamics.

In the following, we will assume that the graph G is
partitioned in r areas, that is, V =

⋃r
α=1 Vα with Vα

being the node set of area α. We denote the number of
nodes in area α by mα = |Vα|. The edge set of area α
is given by Eα = E

⋂
{Vα × Vα}. We assume that the

partition is such that each subgraph (Vα, Eα) is connected
for α ∈ {1, . . . , r}. Finally, we define the internal set edge



Eint by Eint =
⋃r
α=1 Eα and the external edge set Eext by

Eext = E \ Eint. Notice that E = Eint ∪ Eext.
Accordingly, define the external adjacency matrix WE ∈

Rn×n with elements wEij = wij if {i, j} ∈ Eext and
the internal adjacency matrix by W I = W − WE ∈
Rn×n. The associated degree matrices are DE ∈ Rn×n
with dEii =

∑n
j=1,j 6=i w

E
ij and DI ∈ Rn×n with elements

dIii =
∑n
j=1,j 6=i w

I
ij . Finally, define the internal Laplacian

LI = DI − W I ∈ Rn×n and the external Laplacian
LE = DE −WE ∈ Rn×n. By construction, we obtain

L = LI + LE . (3)

Accordingly, define BI and BE as the incidence matrices
B associated to LI = BI diag({wij}{i,j}∈Eint)B

I and LE =
BE diag({wij}{i,j}∈Eext)B

E , respectively.
In the following, we will be particularly interested in

the case, where each of the r areas is internally densely
connected, and distinct areas are sparsely connected among
another. Given such a partition of the graph, it is reasonable
to expect that nodes within each area strongly interact
with each other and quickly synchronize their states xi(t)
according to the inner-area dynamics induced by LI . On the
other hand, we also expect that nodes from disjoint areas
interact only weakly, and the long-term behavior of (1) and
(2) will depend mostly on inter-area dynamics induced by LE

rather than inner-area dynamics. In the following subsections
we make this intuition precise and formalize the particular
notions of dense and sparse connections, time-scale separa-
tion, as well as inter-area and inner-area dynamics.

B. Characterization of connectivity and sparsity
We quantify the trade-off of internally densely connected

and externally sparsely connected areas by two numerical
parameters: a node parameter and an area parameter.

For each area α ∈ {1, . . . , r} and each node i ∈ Vα, define
the internal degree cIα,i and the external degree cEα,i by

cIα,i =
∑
{i,j}∈Eα

wij and cEα,i =
∑
{i,j}∈Eext

wij .

The node parameter d is then given by the worst-case ratio
of the internal and external degree over all nodes and areas:

d =
maxα∈{1,...,r},i∈Vα c

E
α,i

minα∈{1,...,r},i∈Vα c
I
α,i

=
cE

cI
. (4)

For each area α ∈ {1, . . . , r}, define the internal edge weight
γIα and the external edge weight γEα by

γIα =
∑
{i,j}∈Eα

wij and γEα =
∑
{i,j}∈Eext∩i∈Vα

wij .

Analogously to the node parameter, we aim to define an area
parameter by the worst-case ratio of the internal and external
edge weight. Notice that γIα ≥ mcI , with m = minα(mα),
and mα is the number of nodes in area α.

We define the area parameter δ by

δ =
maxα∈{1,...,r} γ

E
α

mcI
=

γE

mcI
(5)

The two parameters d and δ characterize and quantify the
trade-off between connectivity inside the areas and among

separate areas. Clearly, if d � 1, then each node has more
internal than external weighted connections. Likewise, if
δ � 1 each area has more internal than external weighted
connections. In this paper, we assume that the graph G is
partitioned such that d� 1 and δ � 1, see for instance the
RTS 96 power network example in Figure 1. We refer to [2],
[4] for constructive algorithms to identify such a partitioning.

C. Time-scale separation and singular perturbation analysis
In the following, we will focus on the first-order consensus

dynamics (1) and decompose them into fast local dynamics
within each area and network-wide slow motions between
the areas. We will postpone the analysis of the second-order
power network dynamics (2) to Section IV.

To describe the slow inter-area motion, we define the slow
aggregate variable yα ∈ R by the center of mass of area α:

yα =
∑
i∈Vα

xαi
mα

=
1

mα
1Tmαx

α, α ∈ {1, . . . , r} (6)

where xαi is the ith component of x for i ∈ Vα and xα =
[xα1 , . . . , x

α
mα ]T . Accordingly, y ∈ Rr is the concatenated

vector of slow aggregate variables defined by

y = M−1a UTx (7)

where Ma = diag(m1, . . . ,mr) ∈ Rr×r and U is the block-
diagonal matrix U = blkdiag(1m1

, . . . , 1mr ) ∈ Rn×r.
The fast inner-area motion is given by a weighted differ-

ence between the state of the nodes in each area, and different
metrics have been proposed for this weighted difference [3],
[12]. Here, we present the definition from [12] and define
the fast local variable zα ∈ Rmα−1 of area α as

zα = Qαx
α , α ∈ {1, . . . , r} , (8)

where the matrix Qα ∈ Rmα−1×mα is defined by

Qα =


−1 + (mα − 1)v 1− v −v . . . −v
−1 + (mα − 1)v −v 1− v . . . −v

...
...

...
. . .

...
−1 + (mα − 1)v −v −v . . . 1− v


with v =

mα−
√
mα

mα(mα−1) < 1 . Accordingly, let Q =

blkdiag(Q1, . . . , Qr) ∈ Rn−r×n, and let z ∈ Rn−r be the
vector of fast variables zα defined by

z = Qx (9)

Compared to other choices of fast variables [3], the construc-
tion in (8) features the following convenient properties.

Lemma 2.1: (Properties of Qα) Consider the matrix Qα
in (8). The matrix Qα features zero row sums and orthonor-
mal rows, that is, Qα1mα = 0 and QαQTα = Imα−1.

From (7) and (9), we obtain the transformation of the
original state x into the aggregate and local variables:[

y
z

]
=

[
C
Q

]
x , (10)

where C = M−1a UT . Due to Lemma 2.1, the inverse of the
transformation (10) is explicitly given by

x =
[
U QT

] [y
z

]
(11)



By means of the coordinate transformation (10)-(11), the
dynamics (1) read in local and aggregate variables as[

ẏ
ż

]
=

[
A11 A12

A21 A22

] [
y
z

]
, (12)

where we used the fact that LIU = 0n and the shorthands

A11 = −CLEU , A12 = −CLEQT ,
A21 = −QLEU , A22 = −Q(LI + LE)QT .

(13)

The submatrices in (13) are obtained using the Laplacian
decomposition (3) and from the fact C and U span the left
and right nullspace of LI , respectively.

Lemma 2.2: (Order relations I) The ∞-norms (row
sums) of the submatrices in (13) satisfy

‖A11‖∞ = ‖CLEU‖∞ ∈ O(cIδ) ,

‖A12‖∞ = ‖CLEQT ‖∞ ∈ O(cIδ) ,

‖A21‖∞ = ‖QLEU‖∞ ∈ O(cId) ,

‖A22‖∞ = ‖Q(LI + LE)QT ‖∞ ∈ O(cI)
In comparison with the corresponding result in [3], Lemma
2.2 provides an upper bound on ‖A22‖∞ without additional
assumptions, such as placing a lower bound on |Eα|.

Lemma 2.2 suggests a two time-scale separation of the
transformed dynamics (12) into the fast time scale tf = cIt
and the slow time scale ts = δtf . Furthermore, Lemma 2.2
suggests a rescaling of the submatrices in (12) as follows:

A11 =
A11

cIδ
, A12 =

A12

cIδ
,

A21 =
A21

cId
, A22 =

A22

cI
.

(14)

Notice that all submatrices Aij are scale-free, that is, each
‖Aij‖∞ ∈ O(1) for i, j ∈ {1, 2}.

Lemma 2.3: (Regularity) The matrix A22 is non-singular.
In comparison to the analogous results in [3] and in [12],
Lemma 2.3 shows the non singularity of A22 without addi-
tional assumptions such as d� 1.

By rescaling the submatrices in (12) as in (14) and rescal-
ing time as ts = δtf , the system (12) can be equivalently
rewritten in singular perturbation standard form

dy

dts
= A11y +A12z ,

δ
dz

dts
= dA21y +A22z .

(15)

A standard singular perturbation analysis [16, Section 11]
applied to (15) yields the slow reduced system (defined for
the slow aggregate variable y and in the scale ts) as

dys
dts

= (A11 − dA12A
−1
22 A21)ys = A0ys , ys(0) = y(0) .

(16)
The corresponding fast boundary layer system (defined for
the fast local variable z and in the scale tf ) is obtained as

dzf
dtf

= A22zf , zf (0) = z(0) + dA−122 A21y(0) . (17)

Tikhononov’s Theorem [16, Theorem 11.2] applied to the
singularly perturbed system (15) then yields the following
result whose proof can be found in [3, Theorem 3.1].

Theorem 2.4: (Singular perturbation approximation I)
Consider the singularly perturbed system (15) with solution
denoted by

(
y(ts), z(ts)

)
, the boundary layer system (17)

with solution denoted by zf (tf ), as well as the slow reduced
system (16) with solution ys(ts). There exist δ∗, d∗ > 0 such
that for all 0 < δ ≤ δ∗, 0 < d ≤ d∗ the slow and fast motions
of (15) are (16) and (17), respectively, and their solutions
approximate the solution of (15) as follows:

y(ts) = ys(ts) +O(δd) ,

z(ts) = −dA−122 A21ys(ts) + zf (tf ) +O(δd) .
(18)

III. PROPERTIES OF THE AGGREGATE MODEL

In this section, we analyze the properties of the aggregate
model (16), where each area is collapsed into a single
aggregate node. The system matrix of the aggregate model
(16) can be rewritten in an insightful way by defining

La , U
TLEU ,

LIa , U
TLEQT (QLQT )−1QLEU ,

Lred , (La − LIa) .

(19)

Lemma 3.1: (Reformulation of the aggregate model I)
The aggregate model (16) reads equivalently as

Ma
dys
dt

= −Lred ys . (20)

Notice that the aggregate model (20) is presented in time
scale t. This formulation avoids the dependency on the
parameter δ, and it will illuminate the connections between
the aggregate model (20) the original model (1). Our analysis
of the aggregate model is organized as follows: first, we show
that the matrices La, LIa and Lred share some similarities with
Laplacian matrices. Second, we state a convergence result
connecting the aggregate the original model.

In the following, we refer to a matrix A ∈ Rn×n as
a generalized Laplacian matrix if it is symmetric, positive
semidefinite, it features a simple zero eigenvalue and it
has zero row and column sums. Notice that a generalized
Laplacian matrix necessarily has positive diagonal elements,
but compared to a conventional Laplacian matrix it may
have also positive off-diagonal elements corresponding to
negatively weighted edges in the associated graph.

In the following, we term the matrix Lred = La − LIa in
(20) as the reduced Laplacian matrix. This terminology is
justified by the following results.

Theorem 3.2: (Laplacian properties of the aggregate
model I) Consider the matrices La, LIa, and Lred defined
in (19), respectively. The following properties hold:

1) La is a Laplacian matrix;
2) LIa is a symmetric and positive semidefinite matrix

with zero row and column sums; and
3) Lred is a generalized Laplacian matrix.
Remark 1: (Graphs associated to the reduced Lapla-

cian matrices) The reduced Laplacian is obtained as the
difference of the Laplacians La and LIa. The matrix La is the



Laplacian corresponding to the aggregate graph, where each
area is collapsed into a single node. The matrix LIa shows the
contribution of the area-internal topology and weights to the
reduced Laplacian Lred. Whereas La is a Laplacian matrix
with positive edge weights, the matrix LIa itself as well as
Lred can possibly feature negative edge weights. Hence, the
reduced system can possibly feature adverse interactions. �

Corollary 3.3: (Consensus convergence) Consider the
aggregate model (20) and the original consensus model (1).
The following statements hold:

1) The aggregate model (20) synchronizes exponentially to

ys∞ · 1r =

∑r
α=1mαyα(0)∑r

α=1mα
· 1r .

2) The consensus model (1) synchronizes exponentially to

x∞ · 1n =

∑n
i=1 xi(0)

n
· 1n .

Moreover, we have that ys∞ = x∞.

IV. AGGREGATION IN POWER NETWORKS

In the following, we extend the results derived in the
Sections II and III from the first-order consensus system (1)
to the second-order system (2), which models the electrome-
chanical swing dynamics of an interconnected power grid.

Analogous to Subsection II-B, we define the quantities d
and δ as in (4) and (5). We deviate from the first-order model
(1) by accounting for different generator inertia coefficients,
and we define the slow aggregate variable by

y = Cax = M−1a UTMx ,

where Ma , UTMU and Ca = M−1a UTM . Thus, yα
corresponds to the center of inertia angle of the area α. We
maintain the fast local variable z = Qx and obtain[

y
z

]
=

[
Ca
Q

]
x ,

[
ẏ
ż

]
=

[
Ca
Q

]
ẋ .

The inverse coordinate transformation then reads as

x =
[
U M−1QT (QM−1QT )−1

] [y
z

]
.

This inverse transformation is the extension of (11) account-
ing for non-identical inertia coefficients, and it has been
presented in [5] with a different matrix Q. Accordingly,
we also define the diagonal matrix Da , UTDU ∈ Rr×r
representing the aggregate damping of each area.

The power network dynamics (2) can then be equivalently
reformulated in the fast and slow variables as[

ÿ
z̈

]
= −

[
M−1
a Da 0r×(n−r)

QM−1DU QM−1DQT

] [
ẏ
ż

]
−
[

M−1
a La M−1

a UTLEM−1QT (QM−1QT )−1

QM−1LEU QM−1LM−1QT (QM−1QT )−1

] [
y
z

]
.

(21)

The submatrices which multiply the vector
[
yT , zT

]T
in

(21) have a similar structure as those in (13). Analogous to

the matrix Q, we define Q̃ , (QM−1QT )−1Q satisfying
QM−1Q̃T =In−r and Q̃U=0n−r×r. Consider the matrices

Ã11 =
−M−1a La

cIδ
, Ã12 =

−M−1a UTLEM−1Q̃T

cIδ

Ã21 =
−QM−1LEU

cId
, Ã22 =

−QM−1LM−1Q̃T

cI
.

(22)

Lemma 4.1: (Order relations and regularity II) The∞-
norms (row sums) of the submatrices in (22) satisfy

‖Ã11‖∞ ∈ O(cIδ) , ‖Ã12‖∞ ∈ O(cIδ) ,

‖Ã21‖∞ ∈ O(cId) , ‖Ã22‖∞ ∈ O(cI) .

Moreover, the matrix Ã22 is non-singular.
Analogous to the first-order system (1), we apply a change

of time scale to bring the model (21) to singular perturbation
standard form. For the double integrator system (21), the time
scales to describe the fast and the slow motion are

tf = cIt , ts =
√
δtf =

√
δcIt .

Accordingly, we define
[
ȳT , ˙̄yT

]T
=
[
yT , ẏT /

√
δ
]T

.
Lemma 4.2: (Power network model in singular per-

turbation standard form) Consider the power network
dynamics (2) rewritten as in (21), the matrices in (22) and
the parameters δ and d defined in (5) and in (4), respectively.
System (21) then reads equivalently as

d

dts


ȳ
˙̄y√
δz√
δż

=


0 Ir

cI
0 0

Ã11 −D̃1 Ã12 0

0 0 0
In−r
cI

dÃ21 −
√
δQM−1DU

cI
Ã22 −QM

−1DQT

cI


ȳ˙̄yz
ż

,
(23)

where the submatrix D̃1 =
M−1
a Da

cI
√
δ

converges to a bounded
and positive definite diagonal matrix as δ → 0.

System (23) has the same structure as system (15), and a
singular perturbation analysis yields the slow reduced system

d

dts

[
ȳs
˙̄ys

]
= (R11 −R12R

−1
22 R21)s =

[
0 Ir

cI

Ã0 −D̄1

] [
ȳs
˙̄ys

]
,

[ȳs(0) ˙̄ys(0)]T = [ȳ(0) ˙̄y(0)]T , (24)

where Ã0 = Ã11 − dÃ12Ã
−1
22 Ã21, D̄1 = limδ→0

M−1
a Da

cI
√
δ

is
a bounded and positive definite diagonal matrix, and

R11 =

[
0 Ir

cI

Ã11 −D̄1

]
, R12 =

[
0 0

Ã12 0

]
,

R21 =

[
0 0

dÃ21 0

]
, R22 =

[
0 In−r

cI

Ã22 −QM
−1DQT

cI

]
.

The corresponding fast boundary layer system is obtained as

d

dts

[
zf
żf

]
= R22

[
zf
żf

]
[
zf (0)
żf (0)

]
=

[
z(0)
ż(0)

]
+ dR−122 R21

[
ȳ(0) ,
˙̄y(0)

]
.

(25)

The analog of Theorem 2.4 is then as follows:
Theorem 4.3: (Singular perturbation approximation II)

Consider the singularly perturbed system (23) with solution
denoted by

(
ȳ(ts), ˙̄y(ts), z(ts), ż(ts)

)
, the boundary layer



system (25) with solution denoted by zf (tf ), żf (tf ), as well
as the slow reduced system (24) with solution ȳs(ts), ˙̄ys(ts).

There exist δ∗, d∗ > 0 such that for all 0 < δ ≤ δ∗,
0 < d ≤ d∗ the slow and fast motions of (23) are (24)
and (25), respectively, and their solutions approximate the
solution of (23) as follows:[
ȳ(ts)
˙̄y(ts)

]
=

[
ȳs(ts)
˙̄ys(ts)

]
+O(

√
δd) ,[

z(ts)
ż(ts)

]
= dR−122 R21

[
ȳs(ts)
˙̄ys(ts)

]
+

[
zf (tf )
żf (tf )

]
+O(

√
δd) ,

=

[
−dÃ−122 Ã21 0

0 0

] [
ȳs
˙̄ys

]
+

[
zf (tf )
żf (tf )

]
+O(

√
δd) .

The system matrix of the second-order aggregate model (24)
can be rewritten in an insightful way analogously to (20).

Theorem 4.4: (Reformulation and Laplacian properties
of the aggregate model II) Let Ma = UTMU and Da =
UTMU be the aggregate inertia and damping matrices. Then
the aggregate model (24) reads equivalently as

Maÿ = −Daẏ − L̃redy , (26)

where L̃red is a generalized Laplacian matrix.

V. SIMULATION RESULTS FOR RTS 96 POWER SYSTEM

We validate the theoretical developments in this article
with the RTS 96 power network model shown in Figure 1.
The RTS 96 consists of n = 33 generators obeying the swing
dynamics (2), the algebraic load flow is absorbed into the
network parameters through Kron reduction [11], and the
initial angles and frequencies are chosen to be aligned within
each area. For illustrative purposes, we slightly increased the
nominal generator damping constants (to reduce large oscil-
lation amplitudes resulting in cluttered plots) and weakened
the inter-area line connections by a factor 0.5 in the linearized
model (corresponding to a steady state with large inter-area
power transfers) resulting in δ = 0.3955.

The detailed simulation results are reported in Figure 2 and
Figure 3. Despite the fact that δ is not infinitesimally small, it
can be observed that generators within an area swing coher-
ently, and the reduced model (24) accurately approximates
the aggregate behavior of the original model (23).

Fig. 2. Evolution of RTS 96 power network dynamics. All nodes within
an area are plotted with the area color indicated in Figure 1.

VI. CONCLUSIONS

We studied area aggregation and model reduction of first-
order consensus and second-order power network dynamics
based on slow coherency. We unified different solutions

Fig. 3. Evolution of aggregate variable y(ts) in original model (23) of each
area (plotted with the area color indicated in Figure 1) and the aggregate
variable ȳ(ts) in the reduced model (24) (plotted in black).

found in the literature on slow coherency and area ag-
gregation, we relaxed some technical assumptions, and we
extended earlier results. Finally, we identified the corre-
sponding reduced aggregate models as generalized Laplacian
systems with multiple time constants, aggregate damping and
inertia matrices, and possibly adverse interactions.

Our results point in an interesting future research direction,
namely a graph-theoretic analysis relating the Laplacian of
the original model and the generalized Laplacian of the
reduced aggregate model. We are deeply convinced that a
deeper understanding of the inter-area dynamics serves as a
solid foundation for future control design.
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tion analysis of systems with sustained high frequency oscillations,”
Automatica, vol. 14, no. 3, pp. 271–279, 1978.

[7] A. Chakrabortty, J. H. Chow, and A. Salazar, “A measurement-based
framework for dynamic equivalencing of large power systems using
wide-area phasor measurements,” IEEE Transactions on Smart Grid,
vol. 2, no. 1, pp. 56–69, 2011.

[8] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic
Networks. Princeton University Press, 2009.

[9] F. Garin and L. Schenato, “A survey on distributed estimation and
control applications using linear consensus algorithms,” in Networked
Control Systems, ser. LNCIS, A. Bemporad, M. Heemels, and M. Jo-
hansson, Eds. Springer, 2010, pp. 75–107.

[10] P. W. Sauer and M. A. Pai, Power System Dynamics and Stability.
Prentice Hall, 1998.

[11] F. Dörfler and F. Bullo, “Kron reduction of graphs with applications
to electrical networks,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 60, no. 1, pp. 150–163, 2013.

[12] E. Bıyık and M. Arcak, “Area aggregation and time-scale modeling
for sparse nonlinear networks,” Systems & Control Letters, vol. 57,
no. 2, pp. 142–149, 2007.

[13] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[14] D. Romeres, “Novel results on slow coherency in power networks,”
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