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Abstract

We study a class of non-convex optimization problems involving sigmoid functions. We show that sigmoid functions impart a
combinatorial element to the optimization variables and make the global optimization computationally hard. We formulate versions
of the knapsack problem, the generalized assignment problem and the bin-packing problem with sigmoid utilities. We merge
approximation algorithms from discrete optimization with algorithms from continuous optimization to develop approximation

algorithms for these NP-hard problems with sigmoid utilities.
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1. Introduction

With the inception of the National Robotic Initiative [2], the re-
search in the field of human-robot interaction has burgeoned.
Design of robotic partners that help human operators better in-
teract with the automaton has received significant emphasis. In
complex and information rich operations, one of the key roles
for these robotic partners is to help human operators efficiently
focus their attention. For instance, consider a surveillance op-
eration that requires human operators to monitor the evidence
collected by autonomous agents [3, 4]. The excessive amount
of information available in such systems often results in poor
decisions by human operators [5]. In this setting, the robotic
partner may suggest to operators the optimal duration (atten-
tion) to be allocated to each piece of evidence. To this end, the
robotic partner requires efficient attention allocation algorithms
for human operators.

In this paper we study certain non-convex resource allocation
problems with sigmoid utilities. Examples of sigmoid utility
functions include the correctness of human decisions as a func-
tion of the decision time [6, 7, 8], the effectiveness of human-
machine communication as a function of the communication
rate [8], human performance in multiple target search as a func-
tion of the search time [9], advertising response as a function of
the investment [10], and the expected profit in bidding as a
function of the bidding amount [11]. We present versions of
the knapsack problem (KP), the bin-packing problem (BPP),
and the generalized assignment problem (GAP) in which each
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item has a sigmoid utility. If the utilities are step functions,
then these problems reduce to the standard knapsack problem,
the bin-packing problem, and the generalized assignment prob-
lem [12, 13], respectively. Similarly, if the utilities are concave
functions, then these problems reduce to standard convex re-
source allocation problems [14]. We will show that with sig-
moid utilities optimization problems become a hybrid of dis-
crete and continuous optimization problems.

KPs [15, 12, 13] have been extensively studied. Considerable
emphasis has been on the discrete KP [12] and KPs with con-
cave utilities [16]. Non-convex KPs also have received a signif-
icant attention. Kameshwaran et al. [17] study KPs with piece-
wise linear utilities. Moré et al. [18] and Burke et al. [19] study
KPs with convex utilities. In an early work, Ginsberg [20] stud-
ies a KP in which items have identical sigmoid utilities. Free-
land et al. [21] discuss the implications of sigmoid functions on
decision models. They present an approximation algorithm for
the KP with sigmoid utilities that replaces the sigmoid functions
with their concave envelopes and solves the resulting convex
problem. In a recent work, Agrali et al. [22] consider the KP
with sigmoid utilities and show that this problem is NP-hard.
They relax the problem by constructing concave envelopes of
the sigmoid functions and then determine the global optimal
solution using branch and bound techniques. They also develop
a fully polynomial-time approximation scheme (FPTAS) for the
case in which decision variables are discrete.

Attention allocation for human operators has been a topic of
increased research recently. In particular, the sigmoid per-
formance functions of the human operator serving a queue of
decision-making tasks have been utilized to develop optimal at-
tention allocation policies for the operator in [23, 24]. Bertuc-
celli et al. [25] study an optimal scheduling problem in human
supervisory control. They determine a sequence in which the

December 16, 2013



tasks should be serviced so that the accumulated reward is max-
imized.

We study optimization problems with sigmoid utilities. In the
context of resource allocation problems, we show that a sig-
moid utility renders a combinatorial element to the problem,
and the amount of resource allocated to the associated item
under an optimal policy is either zero or more than a critical
value. Thus, optimization variables have both continuous and
discrete features. We exploit this interpretation of optimization
variables and merge algorithms from continuous and discrete
optimization to develop efficient hybrid algorithms.

We study versions of the KP, the GAP and the BPP in which
utilities are sigmoid functions of the resource allocated. In par-
ticular, we study the following problems:

First, given a set of items, a single knapsack with a fixed amount
of the resource, and the sigmoid utility of each item, determine
the optimal resource allocation to each item.

Second, given a set of items, multiple knapsacks, each with
a fixed amount of resource, and the sigmoid utility of each
item-knapsack pair, determine the optimal assignments of items
to knapsacks and the associated optimal resource allocation to
each item.

Third, consider a set of items with their sigmoid utilities, and an
unlimited number of bins with a fixed amount of the resource
available at each bin. Determine the minimum number of bins,
and a mapping of each item to some bin such that an optimal
allocation in the first problem is non-zero for each item in every
bin.

These problems model situations in which human operators are
looking at the feeds from a camera network and are deciding
whether some malicious activity is present. The first prob-
lem determines the optimal duration operators should allocate
to each feed such that their overall performance are optimal.
The second problem determines the optimal feed assignments
to identical and independently working operators as well as
the optimal duration allocation for each operator. Assuming
that the operators work in an optimal fashion, the third prob-
lem determines the minimum number of operators required and
feed-assignments to operators such that each operator allocates
a non-zero duration to each feed.

For clarity of presentation, discussions herein address these
problems in the context of human decision-making. Follow-
ing up on the examples of sigmoid performance functions men-
tioned earlier, the solutions to these problems can also be used
to determine optimal human-machine communication policies,
search strategies, advertisement duration allocation, and bid-
ding strategies.

The major contributions of this work are fourfold. First, we
investigate the root-cause of combinatorial effects in optimiza-
tion problems with sigmoid utilities. We show that for a sig-
moid function subject to a linear penalty, the optimal allocation
jumps down to zero with increasing penalty rate. This jump

in the optimal allocation imparts combinatorial effects to opti-
mization problems involving multiple sigmoid functions.

Second, we study the KP with sigmoid utilities and determine
a constant factor approximation algorithm for it. Our approach
relies on the above combinatorial interpretation of the sigmoid
functions and utilizes a combination of approximation algo-
rithms for the binary KP and algorithms for continuous uni-
variate optimization.

Third, we study the GAP with sigmoid utilities. We first show
that the GAP with sigmoid utilities is NP-hard. We then use a
KP-based algorithm for the binary GAP to develop an equiva-
lent algorithm for the GAP with sigmoid utilities.

Fourth and finally, we study the BPP with sigmoid utilities. We
first show that the BPP with sigmoid utilities is NP-hard. We
then utilize the solution of the KP with sigmoid utilities to de-
velop a next-fit-type algorithm for the BPP with sigmoid utili-
ties.

The remainder of the paper is organized in the following way.
We highlight the root cause of combinatorial effects in opti-
mization problems with sigmoid utilities in Section 2. We study
the knapsack problem with sigmoid utilities, the generalized as-
signment problem with sigmoid utilities, and the bin-packing
problem with sigmoid utilities in Sections 3, 4, and 5, respec-
tively. Our conclusions are presented in Section 6.

2. Sigmoid Functions and Linear Penalties

In this section we formally define sigmoid functions, explore
their connections with human decision-making, and study the
maximization of a sigmoid function with a linear penalty.

2.1. Sigmoid functions
A Lipschitz-continuous function f : R,y — Ry defined by
fO = foxOLE <) + fan (DL > 1),

where f.yx and f.,y are monotonically non-decreasing convex
and concave functions, respectively, 1(-) is the indicator func-
tion, and 7™ is the inflection point. The sub-derivative of a sig-
moid function is unimodal and achieves its maximum at 7",
Moreover, lim,,., df(f) = 0, where df represents the sub-
derivative of the function f. A typical graph of a smooth sig-
moid function and its derivative is shown in Figure 1.
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Figure 1: A typical graph of a smooth sigmoid function and its derivative.

Remark 1 (Non-smooth sigmoid functions). For ease of pre-
sentation, we focus on smooth sigmoid functions in this paper.
Our analysis extends immediately to non-smooth functions by
using the sub-derivative instead of the derivative. g



Remark 2 (Non-monotonic sigmoid functions). In several
interesting budget allocation problems, e.g., [26], the sigmoid
utilities are not non-decreasing functions. The algorithms pro-
posed in this paper involve certain performance improvement
heuristics that exploit the monotonicity of the utility function
and hence, do not apply to problems with such sigmoid utilities.
However, the proposed algorithms without the performance im-
provement heuristics apply to such problems, and the obtained
solution is within a constant factor of the optimal. g

2.2. Sigmoid functions and human decision-making

As discussed in the introduction, sigmoid functions model the
utility in several contexts. Herein, we focus on one particular
context, namely, human decision-making, and detail the signif-
icance of sigmoid functions. Consider a scenario in which a
human subject is exposed to a noisy stimuli for a given amount
of time. Then the human subject makes a decision on the pres-
ence or absence of a signal in the stimuli. In this scenario, the
probability of the human decision being correct as a function
of the allocated time is modeled well by a sigmoid function.
We now briefly describe some models from the human-factors
and the cognitive psychology literature that suggest that a sig-
moid function is an appropriate measure of the correctness of
the human decision:

Pew’s model: For a two-alternative forced choice task, the
probability of the correct decision D; given that the hy-
pothesis H; is true and ¢ units of time have been spent to
make the decision is:

_ Po
]P;(D1|H1’ t) - 1+ e_(at_b) ’
where pg € [0, 1], a, b € R are some parameters specific to
the human operator [7]. Thus, according to Pew’s model,

the probability of the correct decision is a sigmoid function
of the time spent to make the decision.

Drift diffusion model: For a two alternative forced choice
task, conditioned on the hypothesis H;, the evolution of
the evidence for decision making is modeled as a drift-
diffusion process [6]. That is, for a given drift rate 8 € R,
and a diffusion rate o € R, the evidence A at time ¢ is
normally distributed with mean Bt and variance o%t. The
decision is made in favor of H; if the evidence is greater
than a decision threshold n € R.y. Therefore, the condi-
tional probability of the correct decision D given that the
hypothesis H; is true and ¢ units of time have been spent
to make the decision is:

—(A=p1?

e 2wk dA,

1 oo
PO = ——— [
V2ro?t Iy
which is a sigmoid function of the time spent to make the
decision.

Log-normal model: Reaction times of a human operator in
several missions have been studied [27] and are shown to
follow a log-normal distribution. In this context, a relevant

performance function is the probability that the operator
reacts within a given time. This corresponds to the cumu-
lative distribution function of the log-normal distribution,
which is a sigmoid function of the given time.

2.3. Maximum of a sigmoid function subject to a linear penalty

In order to gain insight into the behavior of sigmoid functions,
we start with a simple problem with a very interesting result.
We study the maximization of a sigmoid function subject to a
linear penalty. In particular, given a sigmoid function f and a
penalty rate ¢ € R, we study the following problem:

maximize f@®) —ct. (D

The derivative of a sigmoid function is not a one-to-one map-
ping and hence, it is not invertible. We define the pseudo-
inverse of the derivative of a sigmoid function f with inflection
point ", 7 : R,y — Rsg by

ﬁmz{mwe&ﬂfm=%iU€@fW% -

0, otherwise.

Lemma 1 (A sigmoid function with a linear penalty). For the
optimization problem (1), the optimal allocation t* is

1 := argmax{f(B8) — B | B € {0, fT(c)}}.

Proof. The global maximum lies at the point where the first
derivative is zero or at the boundary. The first derivative of the
objective function is f'(f) — c. If f’(f") < c, then the objective
function is a decreasing function of time, and the maximum is
achieved at * = 0. Otherwise, a critical point is obtained by
setting the first derivative to zero. We note that f'(f) = ¢ has
at most two roots. If there are two roots, then only the larger
root lies in the region where the objective function is concave
and hence corresponds to a maximum. Otherwise, the only root
lies in the region where the objective function is concave and
hence corresponds to a local maximum. The global maximum
is determined by comparing the local maximum with the value
of the objective function at the boundary 7 = 0. 0

The optimal solution to problem (1) for different values of
penalty rate ¢ is shown in Figure 2. The optimal allocation
jumps down to zero at a critical penalty rate. This jump in the
optimal allocation gives rise to combinatorial effects in prob-
lems involving multiple sigmoid functions.

Definition 1 (Critical penalty rate). For the optimization prob-
lem (1), the maximum penalty rate that yields a non-zero solu-
tion is referred to as the critical penalty rate. Formally, for a
given sigmoid function f and a penalty rate ¢ € R, let the so-
lution of the problem (1) be t;i’c. Then, the critical penalty rate
¢ is defined by

lpf = max{c € Ry | tj’,a € Rop}).
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Figure 2: Optimal allocations to a sigmoid function as a function of the linear
penalty

3. Knapsack Problem with Sigmoid Utilities

In this section, we consider the KP with sigmoid utilities. We
first define the problem and then develop an approximation al-
gorithm for it.

3.1. KP with Sigmoid Utilities: Problem Description

Consider a single knapsack and N items. Let the utility of item
e {l,...,N}beasigmoid function f; : Ryg — Ryg. Given the
total available resource T € R.q, the objective of the KP with
sigmoid utilities is to determine the resource allocation to each
item such that the total utility of the knapsack is maximized.
Formally, the KP with sigmoid utilities is posed as:

N
maﬁizrglize ; Tfe(te)
N (3)

N
subject to Z t <T.
=1

In (3), without loss of generality, we assume that the decision
variables in the resource constraint and the sigmoid utilities in
the objective function are unweighted. Indeed, if the weights
on the decision variables in the resource constraint are non-
unity, then the weighted decision variable can be interpreted
as a new scaled decision variable; while a weighted sigmoid
utility is again a sigmoid utility.

The KP with sigmoid utilities models the situation in which a
human operator has to perform N decision-making tasks within
time 7. If the performance of the human operator on task ¢ is
given by the sigmoid function f;, then the optimal duration allo-
cation to each task is determined by the solution of problem (3).
We now state the following proposition from [22]:

Proposition 2 (Hardness of the KP with sigmoid utilities). The
KP with sigmoid utilities is NP-hard, unless P = NP.

We now present a simple example to illustrate that a naive con-
cave relaxation of the KP with sigmoid utilities (3) may lead to
an arbitrarily bad performance.

Example 1 (Performance of a naive concave relaxation).
Consider an instance of the KP with sigmoid utilities in which
each sigmoid utility is identical and is defined by f(¢) = 1/(1 +
exp(—t+5)). Let the total available resource be 7' = 8 units and
the number of items be N = 10. The optimal solution obtained
using the procedure outlined later in the paper is to allocate the
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Figure 3: A sigmoid function and the associated concave envelope.

entire resource to a single item and accordingly, allocate zero
resource to every other item. The value of the objective func-
tion under such an optimal policy is 0.9526.

We now consider the solution to this problem obtained by a
popular concave relaxation scheme. In particular, we consider
the solution obtained by replacing each sigmoid function with
its concave envelope (see Figure 3). An optimal solution to the
resulting relaxed maximization problem is 7, = T /N, for each
¢ € {1,...,N}. The value of the objective function under this
solution is 0.1477. Thus, the concave envelope-based policy
performs badly compared to an optimal policy. In fact, the per-
formance of the concave envelope-based policy can be made
arbitrarily bad by increasing the number of items. g

Example 1 highlights that a naive concave envelope based ap-
proach may yield an arbitrarily bad performance. While such a
performance can be improved using existing branch-and-bound
methods [22], but in general, branch-and-bound methods may
have an exponential run time. In the following, we develop an
approximation algorithm for the KP with sigmoid utilities that
is within a constant factor of the optimal and has a polynomial
run time.

3.2. KP with Sigmoid Utilities: Approximation Algorithm

We define the Lagrangian L : RY X Ryo x RY; — R for the
knapsack problem with sigmoid utilities (3) by

N N
Lit,a.p) = Y filt) +a(T = ) 1) +p"t,
t=1 =1

where @ € Ryp and u € Rgo are Lagrange multipliers associ-
ated with the resource constraint and non-negativity constraints,
respectively. Let ti[“f be the inflection point of the sigmoid func-
tion f; and f; be the pseudo-inverse of its derivative as defined
in equation (2). We define the maximum value of the deriva-
tive of the sigmoid function f; by a; = f;(}"). We also define
amax = max{a, | € € {1,...,N}}. We will later show that @ is
the maximum possible value of an optimal Lagrange multiplier
associated with the resource constraint.

We define the set of inconsistent sigmoid functions by 7 = {£ €
{I1,...,N} | £"" > T}, i.e., the set of sigmoid functions for which
any feasible allocation is in the convex part of the sigmoid func-
tion. Similarly and accordingly, we define the set of consistent
sigmoid functions as {1,...,N} \ 7. We will show that for an
inconsistent sigmoid function, the optimal allocation is either
zero or T. We denote the j-th element of the standard basis of
RN by e;.



Since constraints in (3) are linear, the solution to (3) is regu-
lar, and hence the Karush-Kuhn-Tucker (KKT) conditions for
optimality hold [28]. We will show that for a fixed value of
the Lagrange multiplier @ and consistent sigmoid functions, the
KKT conditions reduce the optimization problem (3) to the a-
parametrized KP defined by:

N
maximize Z xefe( f;(a))
=1
al 4)
subject to Z xpf;(a) <T
=1
xp €{0,1}, Vle{l,...,N}.

Define F : (0, @max] — Rs as the optimal value of the objective
function in the a-parametrized KP (4).

For a fixed value of «, (4) is a binary KP which is NP-hard. We
now relax (4) to the following a-parametrized fractional KP:

N

maximize " xfe(f] (@)

=1

N (5
subject to Z ng;(a) <T
=1
xp €[0,1], V€e{l,...,N}.

Define Fip : (0, amax] — Ryp as the optimal value of the ob-
jective function in the a-parametrized fractional KP (5). For a
given a, the solution to problem (5) is obtained in the following
way:

(i). sort tasks such that

filf @)
>

Ah@)  fyUy@)
fi@) i 7 fle

(ii). find k := min{j € {1,...,N}| zf fT(a/)>T}
(iii). the solution is x}* = xLP =...=x=1Lx"=T-

o fi"'(a))/f,j(a), and x,];f =l == kaP 0.

A 2-factor solution to the binary KP (4) is obtained by perform-
ing the first two steps in the above procedure, and then picking
the better of the two sets {1,...,k — 1} and {k} (see [15, 12] for
details). Let Fypprox : (0, @max] — Ry be the value of the ob-
jective function in the @-parametrized knapsack problem under
such a 2-factor solution.

If the optimal Lagrange multiplier « is known, then the afore-
mentioned procedure can be used to determine a solution to (3)
that is within a constant factor of the optimal. We now focus on
the search for an efficient Lagrange multiplier . We will show
that an efficient solution can be computed by picking the max-
imizer of Fp as the Lagrange multiplier. The maximizer of a
continuous univariate function can be efficiently searched, but
unfortunately, F1p may admit several points of discontinuity. If
the set of points of discontinuity is known, then the maximizer
over each continuous piece can be searched efficiently. There-
fore, we now determine the set of points of discontinuity of the
function Fp.

Lemma 3 (Discontinuity of Fyp). The maximal set of points of
discontinuity of the function Fyp is {a1, ..., ay}.

Proof. Foreach a € [0, amax ], the @-parametrized fractional KP
is a linear program, and the solution lies at one of the vertex of
the feasible simplex. Note that if fg(a) is a continuous function
for each € € {1, ..., N}, then the vertices of the feasible simplex
are continuous functions of @. Further, the objective function is
also continuous if fg (@) is a continuous function for each ¢ €
{1,...,N}. Therefore, FLp may be discontinuous only if f; (@)
is discontinuous for some ¢, i.e., only if a € {ay,...,ay}. O

In summary, we will show that if each sigmoid function is con-
sistent, then the allocation to each sigmoid function can be writ-
ten in terms of the Lagrange multiplier @, and the KP with sig-
moid utilities (3) reduces to the a-parametrized KP (4). Fur-
ther, an efficient Lagrange multiplier o] , can be searched in the
interval (0, @max], and the af ,-parametrized KP can be solved
using standard approximation algorithms to determine a solu-
tion within a constant factor of the optimal. The search of
an efficient Lagrange multiplier is a univariate continuous op-
timization problem and a typical optimization algorithm will
converge only asymptotically, but it will converge to an arbi-
trarily small neighborhood of the efficient Lagrange multiplier
in a finite number of iterations. Thus, a factor of optimality
within an € neighborhood of the desired factor of optimality,
for any € > 0, can be achieved in a finite number of iterations.

In Algorithm 1, we utilize these ideas to obtain a solution
within (2 + €)-factor of the optimal solution for the KP with
sigmoid utilities. The algorithm comprises four critical steps:
(i) it searches for the Lagrange multiplier o, that maximizes
Frp; (i) it determines a constant-factor solution to the a; p-
parametrized KP; (iii) it then compares Fypprox(@fp) With the
values of the objective function corresponding to the alloca-
tions of the form Tej, j € {1,..., N}, and picks the best among
these policies; and (iv) it involves a performance-improvement
heuristic in which the unemployed resource is allocated to the
most beneficial item.

Note that step (iii) takes care of inconsistent sigmoid utilities.
In particular, we will show that the allocation to an item with
an inconsistent sigmoid utility is either zero or T, and thus, if
a non-zero resource is allocated to an item with an inconsistent
sigmoid utility, then every other item is allocated zero resource.

We now establish the performance of Algorithm 1. We define
an e-approximate maximizer of a function as a point in the do-
main of the function at which the function attains a value within
€ of its maximum value. We now analyze Algorithm 1. We note
that if the sigmoid utilities are non-smooth, then the standard
KKT conditions in the following analysis are replaced with the
KKT conditions for non-smooth optimization problems [29].
Theorem 4 (KP with sigmoid utilities). The following state-
ments hold for the KP with sigmoid utilities (3) and the solution
obtained via Algorithm 1:

(1). the solution is within a factor of optimality (2 + €), for any
€>0;
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Algorithm 1: KP with Sigmoid Utilities: Approximation Algorithm
Sfe,e{l,. NLT €Ryo;

: optimal allocations ¢* € RQ’O;

Input
Output
% search for optimal Lagrange multiplier
o p < argmax{FLp(@) | @ € [0, ¥max]};
determine the 2-factor solution x* of aj ,-parametrized knapsack problem ;
% determine best inconsistent sigmoid function
find ¢* « argmax{f,(T)| €€ I};
% pick the best among consistent and inconsistent tasks
if fp+(T) > Fapprox(@] p) then
L t=Tep ;
else
1 xifi ) Vee(l, .. N}

% heuristic to improve performance
% pick the best sigmoid function to allocate the remaining resource

€ argmax {fe(t] + T = 3N, ) = feD | € {1, N};

A

ey i

¢ _yN
t[+T Zj:ltjy

(ii). if an e-approximate maximizer over each continuous piece
of Frp can be searched using a constant number of func-

tion evaluations, then Algorithm 1 runs in O(N?) time.

Proof. See Appendix. O

Corollary 5 (Identical sigmoid functions). If the sigmoid util-
ities in the KP with sigmoid utilities (3) are identical and equal
to f, then an optimal solution t* is an N-tuple with m* entries
equal to T /m* and all other entries zero, where

(6)

m* = argmax

m f(T/m).

Proof. 1t follows from Algorithm 1 that for identical sigmoid
utilities the optimal non-zero resource allocated is the same for
each item. The number of items with the optimal non-zero re-
source is determined by equation (6), and the statement fol-
lows. O

Discussion 1 (Search of the optimal Lagrange multiplier).

The approximate solution to the KP with sigmoid utilities in
Algorithm 1 involves the search for of ,, the maximizer of func-
tion Fip. It follows from Lemma 3 that this search corresponds
to the global maximization of N univariate continuous func-
tions. The global maximum over each continuous piece can be
determined using the P-algorithm [30, 31]. If stronger proper-
ties of FiLp can be established for a given instance of the KP
with sigmoid utilities, then better algorithms can be utilized,
e.g., (i) if each continuous piece of Fyp is differentiable, then
the modified P-algorithm [32] can be used for global optimiza-
tion; (ii) if each continuous piece of Fip is Lipschitz, then one
of the algorithms in [33] can be used for global optimization. [J
Example 2. Given sigmoid functions f;(f) = we/(1 +
exp(—act + by)), € € {1,...,10} with parameters and associated

weights

ap)=(1,2,1,3,2,4,1,5,3,6),
. bio) = (5,10,3,9,8, 16, 6,30,6, 12),
W) = (2,5,7,4,9,3,5,10,13,6).

a:(al,..
b=(b,..

andw = (wy,..

Let the total available resource be 7 = 15 units. The optimal
solution and the approximate solution without the heuristic in
step 6 of Algorithm 1 are shown in Figure 4. The approximate
solution with the heuristic in step 6 of Algorithm 1 is the same
as the optimal solution. The value functions F, Fypprox, and Frp

are shown in Figure 5. 0
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Figure 4: Optimal allocations and the approximate optimal allocations without
the performance-improvement heuristic.

Max Objective Function

Lagrange Multiplier «

Figure 5: Exact and approximate maximum value of the objective function.
The functions FLp, F, Fapprox are shown by solid brown line, black dotted line,
and blue dashed line, respectively. The points of discontinuity of the function
Fp are contained in the set {a,...,ay}.

Remark 3 (Multiple-choice KP with sigmoid utilities). Con-
sider m disjoint classes {Ny, ..., N} of items and a single knap-
sack. The multiple-choice KP is to select one item each from
every class such that the total utility of the selected items is
maximized for a given total available resource. Let the total
available resource be T' € R., and let the utility of allocating
aresource t € Ry to item 7 in class N; be a sigmoid function
fij : Ryo = Ryo. The multiple-choice KP with sigmoid utilities



is posed as:

m

maximize Z Z Jij@ixi;

i=1 jeN;
m
subject to Z Z tiixii <T
! L £ @)
i=1 jeNn;
Dix=1ie(l,...,m)
JEN;

x,-je{O,l}, iE{l,...,m},jGNi.

Given a set of classes of tasks, the multiple-choice KP with sig-
moid utilities models a situation where a human operator has
to process one task each from every class within time 7. The
performance of the operator on task i from class N; is given
by the sigmoid function f;;. Different tasks in a given class
may be, e.g., observations collected from different sensors in a
given region. The methodology developed in this section ex-
tends to the multiple-choice KP with sigmoid utilities (7). In
particular, problem (7) can be reduced to an a-parameterized
multiple-choice knapsack problem, and the LP relaxation based
2-factor approximation algorithm for the binary multiple choice
knapsack problem [15] can be utilized to determine a 2-factor
algorithm for problem (7). g
Remark 4 (Allocation in queues with sigmoid utilities). The
KP with sigmoid utilities (3) also models the resource alloca-
tion problem in queues with sigmoid server performance func-
tions. In particular, consider a single server queue with a gen-
eral arrival process and a deterministic service process. Let the
tasks arrive according to some process with a mean arrival rate
A. Let the tasks be indexed by the set {1,..., N}, and let each
arriving task be sampled from a stationary probability vector
{p1,..., pn}, 1.e., at any time the next task arriving to the queue
is indexed ¢ with probability p,. Let the performance of the
server on a task with index ¢ be a sigmoid function f; of the ser-
vice time. A stationary policy for such a queue always allocates
a fixed duration 7, € Ry to a task with index ¢. An optimal sta-
tionary policy is a stationary policy that maximizes the expected
performance of the server while keeping the queue stable. The
stability constraint on the queue implies that the average alloca-
tion to each task should be smaller than 1/4. Accordingly, the
optimal stationary policy is determined by:

N
maxilglize Z pefe(te)
2
=1

1

N
subject to Z pete < T

=1

which is a KP with sigmoid utilities. 0

4. Generalized Assignment Problem with Sigmoid Utilities

In this section, we consider the GAP with sigmoid utilities. We
first define the problem and then develop an approximation al-
gorithm for it.

4.1. GAP with Sigmoid Utilities: Problem Description

Consider M bins (knapsacks) and N items. Let T; be the total
available resource at bin j € {1,..., M}. Let the utility of item
i €{l,..., N} when assigned to bin j be a sigmoid function f;; :
Rso — Ry of the allocated resource #;;. The GAP with sigmoid
utilities determines the optimal assignment of the items to the
bins such that the total utility of the bins is maximized. Note
that unlike the assignment problem, the generalized assignment
problem does not require every item to be allocated to some bin.
Formally, the GAP with sigmoid utilities is posed as:

M N
maximize Z Jii@ipxij
1

j=1 i=

N

subject to Ztijx,-jSTj,je{l,...,M} ®)
i=1

M

Dixp<lie{l, .., N)

j=1

xij€{0,1}, ie{l,...,N},je{l,..., M}

The GAP with sigmoid utilities models a situation where M hu-
man operators have to independently serve N tasks. The perfor-
mance of operator j on task i is given by the sigmoid function
fij, and she works for a total duration T;. The solution to the
GAP determines optimal assignments of the tasks to the oper-
ators and the associated optimal duration allocations. We now
state the following result about the hardness of the GAP with
sigmoid utilities:

Proposition 6 (Hardness of GAP with sigmoid utilities). The
GAP with sigmoid utilities is NP-hard, unless P = NP.

Proof. The statement follows from the fact that the KP with
sigmoid utilities is a special case of the GAP with sigmoid util-
ities, and is NP-hard according to Proposition 2. U

4.2. GAP with Sigmoid Utilities: Approximation Algorithm

We now propose an approximation algorithm for the GAP with
sigmoid utilities. This algorithm is an adaptation of the 3-factor
algorithm [34] for the binary GAP and is presented in Algo-
rithm 2. We first introduce some notation. Let F be the matrix
of sigmoid functions f;;,i € {1,...,N},j € {1,...,M}. Let F\
denote the £-th column of the matrix F. For a given matrix E, let
us denote E.j.,, k < m as the sub-matrix of E comprising of all
the columns ranging from the k-th column to the m-th column.
For a given set of allocations #;;,i € {1,...,N},j € {1,..., M}
andasetA C{l,...,N}, 1; j represents the vector with entries
tij,1 € A. Similarly, for a given set Iupproc S {1,...,N}, F Lunproc
represents the vector with entries Fj,i € Iunproc. Let KP(-, -) be
the function which takes a set of sigmoid utilities and the total
available resource as inputs and yields allocations according to
Algorithm 1.

Algorithm 2 calls a recursive function GAP(-,-) with the input
(1, F) to compute an approximate solution to the GAP with sig-
moid utilities. The output of Algorithm 2 comprises a set A



describing assignments of the items to the bins and a matrix #
describing the associated duration allocations.

The function GAP(-,-) takes an index ¢ € {1,..., M} and the
matrix of sigmoid utilities fé,i e {l,...,N},j e {L,...,M}
as the input and yields assignments of the items to the bin set
{¢, ..., M} and the associated duration allocations. The function
GAP(¢, F) first determines a temporary set of assignments and
the associated duration allocations for the £-th bin using Algo-
rithm 1 with the sigmoid utilities in the first column of F©© and
the total available resource at the £-th bin.

The function GAP then decomposes the matrix F© into two ma-
trices E' and E? such that F© = E' + E?. The matrix E' is
constructed by (i) picking its first column as the first column of
F©_ (i) picking the remaining entries of the rows associated
with the items temporarily assigned to the ¢-th bin as the value
of the sigmoid function in the first column computed at the as-
sociated temporary allocation, and (iii) picking all other entries
as zero. The matrix E? is chosen as E> = F(© — E'. The key
idea behind this decomposition is that the matrix E> has all the
entries in the first column equal to zero, and thus, effectively
contains only M — ¢ columns of sigmoid utilities.

The function GAP then removes the first column of E? | assigns
the resulting matrix to F“*D_ and calls itself with the input
(¢ + 1, F“D). The recursion stops at £ + 1 = M, in which
case F*D is a column vector, and the assignments with the
associated allocations are obtained using Algorithm 1.

Algorithm 2 also involves a performance-improving heuristic.
According to this heuristic, if the total available resource at a
bin is not completely utilized and there are tasks that are not as-
signed to any bin, then a KP with sigmoid utilities is solved us-
ing the remaining amount of the resource and unassigned tasks.
Likewise, if the total available resource at a bin is not com-
pletely utilized and each task has been assigned to some bin,
then the remaining resource is allocated to the most beneficial
task in that bin.

We now establish performance bounds for the proposed algo-
rithm:

Theorem 7 (GAP with sigmoid utilities). The following state-
ments hold for the GAP with sigmoid utilities (8) and the solu-
tion obtained via Algorithm 2:

(i). the solution is within a factor (3 + €) of the optimal, for
any € > 0; and

(ii). Algorithm 2 runs in O(N*M) time, provided the solution
to the KP with sigmoid utilities can be computed in O(N?)
time.

Proof. The proof is an adaptation of the inductive argument
used in [34] to establish the performance of a similar algorithm
for the binary GAP. We note that for a single bin, the GAP re-
duces to the knapsack problem and Algorithm 1 provides a so-
lution within (2 + €)-factor of the optimal. Consequently, Algo-
rithm 2 provides a solution within (2 + €)-factor of the optimal,
and hence, within (3 + €)-factor of the optimal.

20
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Algorithm 2: GAP with Sigmoid Utilities: 3-factor Approximation

i Tiiedl, ..., N} jell,...,M};
: assignment set A = {Ay, ..., Ay} and allocations ¢ € RgOXM;

Input
Output
% Initialize

FO « F,

% Call function GAP

allocations [A, ¢] < GAP(1, F(D);

% heuristic to improve performance
% assign unassigned tasks to unsaturated bins
Lunproc < {1,..., N}\ UkM=1 Ag;

foreach j e {1,...,M}do
if Yiea; tij < Tj and |lupproc| > O then
% solve KP with unprocessed tasks
[A_,i] “— KP(F]UHP‘_OCJ‘, Tj - ZieA/ t,'j);
| Aj<—AjUA; Z‘Aj(—f;
else if ZiEAj tij < Tj and |lynproc| = O then
% allocate remaining resource to the most rewarding task

v argmax{fij(tij + Tj — Xiea, tij) | i € Ajl:

| v i+ Tj = Ziea; tijs

L Lunproc —{l,...,N}\ (A1 U...UA,);

% Function definition
function [A©, t©] « GAP(¢, F©)
9% Determine temporary the allocations for bin £ using Algorithm 1
[A,7] « kP(F"), Tp);
foreachie{l,...,Nyand je{l,....M - {+ 1} do

FO@f), ifieAand j# 1,

(3 e
El(n) — {FP0, ifj=1,
0, otherwise;

EX (1) « FO) - E'(0);

if £ < M then

% remove first column from E* and assign it to F(+D
t+1 2 .

FOD B s

[ACHD (D]  GAP(L + 1, FHD);

Ap = ANUY A

AD — ApuAED;

foreach i ¢ AnUM

_ k=(+1 Ay do
L i < 0;

t(f) «— [i t(f‘*])]

>

else
L A — Aand tO « ¢,

Assume by the induction hypothesis that Algorithm 2 provides
a solution within (3 + €)-factor of the optimal for L bins. We
now consider the case with (L+1) bins. The performance matrix
F has two components, namely, E' and E>. We note that first
column of E? has each entry equal to zero, and thus, E? cor-
responds to a GAP with L bins. By the induction hypothesis,
Algorithm 2 provides a solution within (3 + €)-factor of the opti-
mal with respect to performance matrix E2. We further note that
the first column of E! is identical to the first column of F and
Algorithm 1 provides a solution within (2 + €)-factor of the op-



timal with respect to this column (bin). Moreover, the best pos-
sible allocation with respect to other entries can contribute to
the objective function an amount at most equal to Y. | fii (£])).
Consequently, the solution obtained from Algorithm 2 is within
(3 + e)-factor of the optimal with respect to performance matrix
E'. Since the solution is within (3+€)-factor of the optimal with
respect to both £ I'and E2, it follows that the solution is within
(3 + e)-factor of the optimal with respect to E' + E? (see The-
orem 2.1 in [34]). The performance improvement heuristic fur-
ther improves the value of the objective function and improves
the factor of optimality. Consequently, the established factor of
optimality still holds. This establishes the first statement.

The second statement follows immediately from the observa-
tion that Algorithm 2 solves 2M instances of knapsack problem
with sigmoid utilities using Algorithm 1. O

Example 3. Consider the GAP with M = 4 bins and N = 10
items. Let the sigmoid utility associated with bin i and item j
be f;;(t) = 1/(1 +exp(~t + b;;)), where the matrix of parameters
b,‘j is

1 7 2 3 8 7 5 1 3 6
b—7 9 8 8 6 1 7 4 5 4

6 10 1 2 3 1 9 7 9 5|

9 2 481 2 5 8 6 8

Let the vector of the total resource available at each bin be
T =[5 10 15 20]. The resource allocations to different items
obtained using Algorithm 2 are shown in Figure 6. The as-
signment sets of items to bins are A; = {8},A, = {10}, A3 =
{1,3,4,5},and A4 = {2,6,7,9}. O

—
<

Clrl L]

1 2 3 4 5 6 7 8 9 10
Task

Optimal Allocation
o

Figure 6: Allocations for the GAP obtained using Algorithm 2.

5. Bin-packing Problem with Sigmoid Utilities

In this section, we consider the BPP with sigmoid utilities. We
first define the problem and then develop an approximation al-
gorithm for it.

5.1. BPP with Sigmoid Utilities: Problem Description

Consider a set of N items with sigmoid utilities fr,{ €
{1,...,N}, and an unlimited number of bins, each with a re-
source T € R.o. The BPP with sigmoid utilities determines the
minimum number of bins K € N and assignments of of items
to bins 1 : {1,...,N} — {1,..., K} such that the KP with sig-
moid utilities associated with each bin and items assigned to it
allocates a non-zero resource to each item in the bin. Formally,

let A; be the set of items assigned to bin i € {1,..., K}, that is,
A; ={je{l,....,N} | Y(j) = i}. Then, the BPP with sigmoid
utilities finds the minimum K and sets A;,i € {1,..., K} such
that the optimal solution to the following KP with sigmoid util-
ities, for each i € {1,..., K}, allocates a non-zero resource to
each item ¢ € A;:

maximize Z Jfe(te)

CeA;

subject to Z tp <T.
ted;

(€))

The BPP with sigmoid utilities determines the minimum num-
ber of identical operators, each working for a total duration 7',
required to optimally serve each of the N tasks characterized by
sigmoid functions f;,€ € {1,...,N}.

We will establish that the standard BPP is a special case of the
BPP with sigmoid utilities, and consequently, the BPP with sig-
moid utilities is NP-hard. To this end, we need to determine
an amount of the resource 7' such that each item in a given
set A; is allocated a non-zero resource by the solution to (9)
obtained using Algorithm 1. We denote the critical penalty
rate for the sigmoid function f; by ¥, € € {1,...,N}, and let
Ymin = minfe [ £ €{1,..., N}}

Lemma 8 (Non-zero allocations). A solution to the optimiza-
tion problem (9) allocates a non-zero resource to each sigmoid
function f;, € € A;ie{l,...,K}, if

T2 f Win).

teA;

Proof. It suffices to prove that if T = ;4. fg(zﬁmin), then Y min
is the optimal Lagrange multiplier o], in Algorithm 1. Note
that if a non-zero resource is allocated to each task, then the so-
lution obtained from Algorithm 1 is the optimal solution to (3).
Since, #; = f; (Ymin), € € A; are feasible non-zero allocations,
VUmin 18 @ Lagrange multiplier. We now prove that i, is the
optimal Lagrange multiplier. Let A; = {1,...,q;}. By contra-
diction, assume that ¢* is not the globally optimal allocation.
Without loss of generality, we assume that the global optimal
policy allocates zero resource to sigmoid function f,, and let #
be the globally optimal allocation. We observe that

ai-1
D fil@) + £,(0)
=1
a1
< 0 R@) + fult) = Ymin, (10)
=1
a; a1
< TR+ D [ = ) = dmintl, (1)
=1 (=1

= Z Flt;) + Z Yinlle — 1}) = Z F)
=1 =1 =1

where inequalities (10) and (11) follow from the definition
of the critical penalty rate and the concavity to the sigmoid



1

function at f;, respectively. This contradicts our assumption.
Hence, ¢* is the global optimal allocation and this completes
the proof. O

We now state the following result about the hardness of the BPP
with sigmoid utilities:

Proposition 9 (Hardness of the BPP with sigmoid utilities).
The BPP with sigmoid utilities is NP-hard, unless P = NP.

Proof. Consider an instance of the standard BPP with items
of size a; < T,i € {l,...,N} and bins of size 7. It is well
known [12] that the BPP is NP-hard. Without loss of general-
ity, we can pick N sigmoid functions f;,i € {1,..., N} such that
f;(lﬂmm) = qa;, for each i € {1,...,N} and some ¥, € R.g.
It follows from Lemma 8 that such an instance of the BPP
with sigmoid utilities is in a one-to-one correspondence with
the aforementioned standard BPP. This establishes the state-
ment. O

5.2. BPP with Sigmoid Utilities: Approximation Algorithm

We now develop an approximation algorithm for the BPP with
sigmoid utilities. The proposed algorithm is similar to the stan-
dard next-fit algorithm [12] for the binary BPP. The algorithm
iteratively performs three critical steps: (i) it adds an item to the
current bin; (ii) if after the addition of the item, the optimal pol-
icy for the associated KP with sigmoid utilities allocates a non-
zero resource to each item in the bin, then it assigns the item
to the current bin; (iii) otherwise, it opens a new bin and allo-
cates the item to the new bin. This approximation algorithm is
presented in Algorithm 3. We now present a formal analysis of
this algorithm. We introduce following notations. Let K* be the
number of bins used by the optimal solution to the bin-packing
problem with sigmoid utilities, and let Kpex.¢ be the number of
bins used by the solution obtained through Algorithm 3.

Algorithm 3: BPP with Sigmoid Utilities: Approx. Algorithm

cfe,ef{l,...,N}, T eRy;
: number of required bins K € N and assignments T;

Input
Output

K« LA «{k

.....

solve problem (9) for i = K, and find ¢* ;
% if optimal policy drops a task, open a new bin

if t;. =0, for some j € Ak then
| K K+1;Ag < (L)

Y() « K;

Theorem 10 (BPP with sigmoid utilities). The following state-
ments hold for the BPP with sigmoid utilities (9), and its solu-
tion obtained via Algorithm 3:

(i). the optimal solution satisfies the following bounds

N
Khextfit = K > T ; min{T, t}“f}.

10

(ii).

the solution obtained through Algorithm 3 satisfies

N
Kt < 72 D mintT ) - 1)

(iii). Algorithm 3 provides a solution to the BPP with sigmoid

utilities within a factor of optimality

max{2 min{T, f; (Ymin)} | € € {1,..., N}
max{min{T, t;“f} | €efl,...,N}}

bl

Algorithm 3 runs in O(N?) time, provided the solution to
the KP with sigmoid utilities can be computed in O(N?)
time.

@iv).

Proof. 1t follows from Algorithm 1 that if tit,"f < T, then the op-
timal non-zero allocation to the sigmoid function f; is greater
than tié,“f. Otherwise, the optimal non-zero allocation is equal
to T. Therefore, if each sigmoid function gets a non-zero al-
location under the optimal policy, then at least Y} min{T, £}
resource is required, and the lower bound on the optimal K*
follows.

It follows from Lemma 8 that if ¢, = f; (¥ min) amount of the
resource is available for task ¢, then a non-zero resource is al-
located to it. Therefore, the solution of the bin-packing prob-
lem with bin size T and items of size {min{T7, f;(ll/min)} | € €
{1,..., N}} provides an upper bound to the solution of the BPP
with sigmoid utilities. The upper bound to the solution of this
bin-packing problem obtained through the standard next-fit al-
gorithm is (2 Z?’zl min{T, f; (¥min)} — 1)/T, and this completes
the proof of the second statement.

The third statement follows immediately from the first two
statements, and the last statement follows immediately from
the fact that Algorithm 1 is utilized at each iteration of Algo-
rithm 3. O

Example 4. For the same set of sigmoid functions as in Ex-
ample 2 and T = 20 units, the solution to the BPP with sigmoid
utilities obtained through Algorithm 3 requires Kyext.fir = 3 bins,
and the associated allocations to each task in these bins are
shown in Figure 7. g

= 8§ .
8 . :
= 0 K ' o
/B T R -
S Vo
o 1 1 I 1 H H H
1 2 3 4 5 6 7 8 9 10

Task

Figure 7: Allocations to items in each bin. The dot-dashed black lines represent
items assigned to the first bin, the solid red lines represent items assigned to the
second bin, and the dashed green line represent items assigned to the third bin.



6. Conclusions and Future Directions

We studied non-convex optimization problems involving sig-
moid functions. We considered the maximization of a sigmoid
function subject to a linear penalty and showed that the opti-
mal allocation jumps down to zero at a critical penalty rate.
This jump in the allocation imparts combinatorial effects to
the constrained optimization problems involving sigmoid func-
tions. We studied three such problems, namely, the KP with
sigmoid utilities, the GAP with sigmoid utilities, and the BPP
with sigmoid utilities. We merged approximation algorithms
from discrete optimization with algorithms from continuous
optimization to develop hybrid approximation algorithms for
these problems.

There are many possible extensions of this work. A simi-
lar strategy for approximate optimization could be adopted for
other problems involving sigmoid functions, e.g., the network
utility maximization problem, where the utility of each source is
a sigmoid function. Other extensions include problems involv-
ing general non-convex functions and optimization in general
queues with sigmoid characteristics.
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Appendix

A-1. Proof of Theorem 4

We apply the Karush-Kuhn-Tucker necessary conditions [35]
for an optimal solution:
Linear dependence of gradients

gg(t*,a/*,u*) = fit;)) —a" +u; =0, foreach £ € {1,...,N}.
(A.1)

Feasibility of the solution
T-1yt">0 andt* >0. (A.2)



Complementarity conditions

" (T -1t = 0. (A.3)
uyt; =0, foreach £ e(l,...,N}. (A4)
Non-negativity of the multipliers
a >0, u >0. (A.5)
Since f7 is a non-decreasing function, for each £ € {1,..., N},

the resource constraint should be active, and thus, from comple-
mentarity condition (A.3) @* > 0. Further, from equation (A.4),
if 7 # 0, then u; = 0. Therefore, if a non-zero resource is allo-
cated to the sigmoid function f;,n € {1,..., N}, then it follows
from equation (A.1)

f,;(t;) =a". (A.6)

Assuming that each f; is consistent, i.e., " < T, for each ¢ €

{1,..., N}, the second order condition [35] yields that a local
maxima exists at £* only if
) <0 & >0t (A7)

The equations (A.6) and (A.7) yield that the optimal non-zero
allocation to the sigmoid function f; is

= fi@). (A.8)
Given the optimal Lagrange multiplier «*, the optimal non-zero
allocation to the sigmoid function f;, is given by equation (A.8).
Further, the optimal set of sigmoid functions with non-zero al-
locations is the solution to the a*-parametrized KP (4). We
now show that a* is the maximizer of F. Since, at least one
task is processed, fli(t}f) = q, for some ¢ € {1,...,N}. Thus,
a € [0, @max]- By contradiction assume that @ is the maximizer
of F, and F(@) > F(a*). This means that the allocation cor-
responding to @ yields higher reward than the allocation corre-
sponding to a*. This contradicts equation (A.8).

If #nf > T, for some € € {1,...,N}, then equation (A.7) does
not hold for any #, € [0, T]. Since, f; is convex in the interval
[0, T'], the optimal allocation is at the boundary, i.e., #; € {0, T'}.
Therefore, as exemplified in Figure 8, the optimal allocation is
either Te; or lies at the projection of the simplex on the hyper-
plane #, = 0. The projection of the simplex on the hyperplane
t, = 0 is again a simplex and the argument holds recursively.

To establish the first statement we note that af , is the maxi-

mizer of Fp, and the a-parametrized fractional KP is a relax-

ation of the a-parametrized KP, hence
FLP(G'EP) > FLp(a’*) > F((Z*) (A9)

We further note that o is the maximizer of F' and Fapprox is @
suboptimal value of the objective function, hence

* * * 1 *
F(a*) > F(Q’LP) = Fapprox(a'Lp) = EFLP(Q'LP)a (A.10)
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Figure 8: Possible locations of the maximum are shown in green stars and solid
green line. The maximum possible allocation 7' is smaller than the inflection
point of the third sigmoid function. For any allocation to the third sigmoid
function, the corresponding entry in the Hessian matrix is positive, and the
optimal allocation to the third sigmoid function is 0 or 7. Optimal allocation to
the first and the second sigmoid function may lie at the vertex of the simplex,
or at a location where the Jacobian is zero and the Hessian matrix is negative
definite.

where the last inequality follows from the construction of
Fapprox (see 2-factor policy for the binary knapsack problem
in [12]). The value of the objective function at ' in Algorithm 1
is equal t0 Fypprox(@]p). The allocation ¢' may not saturate
the entire resource 7. Since, the sigmoid functions are non-
decreasing with the allocated resource, entire resource must be
utilized, and it is heuristically done in step 6 of Algorithm 1.
This improves the value of the objective function and the fac-
tor of optimality remains at most 2. Finally, since a numerical
method will only compute an e-approximate maximizer of Fyp
in finite time, the factor of optimality increases to (2 + €).

To establish the last statement, we note that each evaluation
of Frp requires the solution of the @-parametrized fractional
KP and has O(N) computational complexity. According to
Lemma 3, the maximum number of points of discontinuity of
F1p is N + 1. Therefore, if e-approximate maximizer over each
continuous piece of Fip can be searched using a constant num-
ber of function evaluations, then O(N) computations are needed
over each continuous piece of Frp. Consequently, the Algo-
rithm 1 runs in O(N?) time. O



