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Abstract: In this paper we propose a novel algorithm based on gossip to solve the Heterogeneous
Multi-Vehicle Routing (HMVR) problem. A set of tasks is arbitrarily placed in a plane and a
set of robots has to cooperate to minimize the maximum time required to visit and execute all
tasks. Each task and each robot has different cost/speed. The proposed algorithm exploits only
pairwise asynchronous communications between robots and attempts to balance the routing
and execution cost of the tasks assignment of each robot through an heuristic. The proposed
heuristic exploits polynomial time approximation algorithms to solve the Travelling Salesman
Problem (TSP). Some characterization of the convergence properties of the algorithm are given
together with extensive simulations to corroborate the results.

1. INTRODUCTION

The Multi-Vehicle Routing (MVR) problem has been ad-
dressed with several approaches that differ in the control
architecture, the vehicle model and the number of limita-
tions considered such as finite load capacity, service time
windows, variable number of vehicles, placements of depots
and several more, for instance in Toth and Vigo [2002],
Laporte [1992b], Bektas [2006], Pisinger and Ropke [2007],
Bullo et al. [2011].

Solutions to the MVR problem are often based on ap-
proaches that deal with variations of the Traveling Sales-
man Problem (TSP). Interesting surveys can be found in
Lawler et al. [1985], Gutin and Punnen [2002], Laporte
[1992a]. Extensions that deal with the multi-TSP problem
can be found in Carlsson et al. [2009].

In this paper we consider a heterogeneous problem in
which the total number of robots n is known a priori, each
robot has different speed and task execution speed and
the set of tasks K is arbitrarily distributed in a plane,
each task with different size/cost. Furthermore we are
interested in the development of a distributed algorithm
that implements decentralized decision making, thus we
consider the framework of gossip algorithms, such as
described in Boyd et al. [2005], that consists in a set of local
interaction rules that pair of the vehicles asynchronously
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execute to update their tasks assignment and thus reduce
their maximum execution time.

In Franceschelli et al. [2011] the HMVR problem was
addressed with an algorithm based on gossip in which,
at each iteration, a pair of vehicles solves a mixed integer
linear programming (MILP) problem that minimizes the
maximum local execution time by optimizing the cost of
both the vehicle route and the tasks assignment.

In this paper, the results in Franceschelli et al. [2011]
are extended by proposing a different local interaction
rule that provides similar performance and that does not
require the solution of a MILP problem at each iteration,
thus greatly reducing the computational complexity and
the algorithm scalability with respect to the number of
tasks.

It is shown that the performance of the proposed algorithm
scales as O (k/n). Furthermore we provide simulations
showing that the achieved performance is within the upper
and lower bounds to the optimal performance charcater-
ized in Franceschelli et al. [2011].

Summarizing, the paper is structured as follows.

• In Section 2 we formalize HMVR problem and intro-
duce the adopted notation.

• In Section 3 the main contribution of this paper is
presented, namely an algorithm based on gossip that
improves the results in Franceschelli et al. [2011], and
characterize some of its properties.

• In Section 4 extensive simulations are provided to
characterize the performance of the proposed algo-
rithm.

• In Section 5 concluding remarks are given.



2. PROBLEM STATEMENT

Let us consider a set N of n mobile robots and a set
K of k tasks scattered in a region R. Each robot Rr is
characterized by a speed vr and a tasks execution speed
wr. Moreover each robotRr starts from a depotDr, the set
of n depots is called D. Each task i has cost ci. The k tasks
should be assigned to the n robots to be executed: robots
are supposed to first coordinate themselves to improve
their tasks assignment and then start to serve the tasks
autonomously. The Heterogeneous Multi-Vehicle Routing
(HMVR) problem, can be stated as follows: find an optimal
assignment of the k tasks to the n robots in order to
minimize the service time of all the tasks, which is a
minimization of the following quantity

J = max
r∈N

Jr =

(

TSP (Kr ∪ {Dr})

vr
+

∑

i∈Kr
ci

wr

)

(1)

where

• Kr is the set of tasks assigned to robot Rr,
• vmin (vmax) is the minimum (maximum) speed of
robots,

• wmin (wmax) is the minimum (maximum) task exe-
cution speed of robots,

• ci is the cost of the i-th task,
• cmin (cmax) is the minimum (maximum) cost of tasks.
• dmax is the maximum length of the shortest path
between any two points in the region R.

The optimization problem in eq. (1) can be solved
using Mixed Integer Linear Programming (MILP). In
Franceschelli et al. [2011] we have proposed the MILP
Gossip Algorithm, it consists in a distributed strategy to
solve the HMVR problem exploiting gossip based on asyn-
chronous pairwise optimizations and the iterative solution
of MILP problems to update the local tasks assignments
of the robots. The MILP Gossip Algorithm leads to a
suboptimal solution of the HMVR problem, with some
advantages:

• the local interactions are much less complex than the
centralized solution;

• the distributed algorithm is scalable with respect to
the number of robots and allows parallelization.

In general, simulations show that the performance of the
MILP gossip algorithm is within the bounds of the optimal
centralized solution J∗:

J∗ ≤ Cup +Dup (2)

where

Cup =
1

n

(

TSP (K)

vmin

+

∑

i∈K ci

wmin

)

, (3)

Dup = 2
dmax

vmin

+
cmax

wmin

. (4)

The optimal centralized solution is also lower bounded as
follows:

J∗ ≥ Clo −Dlo, (5)

where

Clo =
1

n

(

TSP (K)

vmax

+

∑

i∈K ci

wmax

)

. (6)

Furthermore, in most of the cases, the solution obtained
with gossip is very close to the centralized solution.

The main limit of the MILP gossip algorithm is that, if the
number of tasks assigned to the robots involved in the local
update is large, the computation of the optimal solution
of the MILP problem requires high computational effort,
and, in many real systems, agents do not have enough
resources to solve such problems.

In this paper, we address the HMRV problem by proposing
an alternative local update rule with respect to the MILP
gossip algorithm which leads to similar performance with
much less computational complexity.

3. A GOSSIP BASED HEURISTIC FOR THE HMVR
PROBLEM

In this section we present the Decentralized Heuris-
tic Algorithm, then we discuss its convergence proper-
ties and computational complexity in comparison with
Franceschelli et al. [2011].

The robots update their states following Algorithm 1,
while the task exchange rule is described in Algorithm 2.
The basic idea is as follows. When two robots are selected
at step 3.a of Algorithm 1, the two agents start to
balance their execution time by the iterative execution of
Algorithm 2. At each execution of Algorithm 2 only two
scenarios are possible:

• the sets of assigned tasks of the two robots do not
change;

• one task is given by the robot with the higher execu-
tion time to the other robot.

Note that the determination of the possible exchanges
is made by the computation of the Approximated TSP
(ATSP ), thus, unlike in the MILP gossip algorithm, this
approach can be solved with polynomial time algorithms.
There exist a vast literature on polynomial time algorithms
to compute an ATSP such that

ATSP ≤ αTSP

where TSP denotes the value of the optimal TSP and
α represents the worst case ratio. In Nilsson [2003] some
heuristics for the TSP problem are summarized. Many
heuristics are based on the computation of the Minimum
Spanning Tree (MST) among the nodes and guarantee
a worst case ratio of α = 2 with a running time of
O(m2 log2(m)), where m denotes the number of nodes to
be visited. To the best of our knowledge, the polynomial
time heuristic based on MST which provides the best value
of α is the Christofides algorithm described in Christofides
[1976], which is characterized by a worst case ratio of
α = 1.5 and a running time of O(m4).

Algorithm 1 Decentralized Heuristic Algorithm

(1) Tasks are initially arbitrarily assigned to robots.
(2) Let t = 0.
(3) While t ≤ Tmax

(a) Select two robot Rp and Rr at random.
(b) Apply Algorithm 2 repeatedly on Rp and Rr until

no more tasks exchange is possible.
(c) Let t = t+ 1 and go back to Step 3.

(4) All robots process their own set of tasks following
the order specified by the local solution of the ATSP
Algorithm.



Algorithm 2 Local Balancing between robots Rr and Rq

- INPUT: Kr(t) and Kq(t).
- OUTPUT: Kr(t+ 1) and Kq(t+ 1).
-ASSUMPTION: We assume, with no loss of generality,
that Jr(t) > Jq(t).
- STEPS:
(1) Let Kex = ∅, Kv = Kr and F = 0.
(2) While F = 0 and Kv 6= ∅

• Select i ∈ Kv randomly.
• Let Kv = Kv \ {i}.
• Compute

Jnew =
ATSP (Kp ∪ {i})

vp
+

∑

j∈(Kp∪{i}) cj

wp

.

• If Jnew < Jr
(a) Kex = Kex ∪ {i}.
(b) F = 1.

End While.
- STOP: Kp(t+1) = Kp(t)∪Kex and Kr(t+1) = Kr(t) \
Kex.

3.1 Finite time and almost sure convergence

In this section we characterize the convergence properties
of Algorithm 1. We prove that, there exist some conditions
which allow Algorithm 1 to converge to an equilibrium
state in finite time. Our proofs are based on the con-
cepts of deterministic persistence and stochastic persis-
tence. Furthermore we show that the analysis presented
in Franceschelli et al. [2011] can be easily adapted to
Algorithm 1.

The interactions among agents are modeled by an undi-
rected graph G = {V,E} where nodes represent robots,
and the edge (r, q) belongs to E if the interaction among
robots Rr and Rq is possible. We assume that all robots
may interact with all the other robots, thus E = V × V .
We denote e(t) as the edge selected randomly at time t,
while the set of edges selected in the time interval [t1, t2]
is denoted as ē(t1, t2), i.e., it is

ē(t1, t2) =

t2
⋃

t=t1

e(t).

Definition 3.1. (Deterministic persistence). A gossip com-
munication scheme is said to be deterministically persis-
tent if ∀t ≥ 0 there exists a finite T > 0 such that

∀e′ ∈ E, Pr(e′ ∈ ē(t, t+ T )) = 1

or equivalently, ē(t, t+ T ) = E. �

Deterministic persistence implies that, if we consider a
finite but sufficiently large time interval, then for sure all
arcs are selected at least once during such an interval.

Definition 3.2. (Stochastic persistence). A gossip com-
munication scheme is said to be stochastically persistent
if ∀t ≥ 0 there exists a finite T > 0 and a probability
p ∈ (0, 1) such that

∀e′ ∈ E, Pr(e′ ∈ ē(t, t+ T )) ≥ p

where Pr(·) denotes a probability. �

Stochastic persistence implies that, if we consider a finite
but sufficiently large time interval, then each edge has a
probability greater or equal than a finite value p of being
selected during such an interval.

For the following analysis we need to introduce the concept
of network state. Given the set Kr of tasks assigned to
robot Rr we denote as K̃r the ordered set with the same
elements of Kr, but whose ordering specifies the order
in which tasks in Kr are visited by robot Rr. Now, let
K̃ = {K̃1, . . . , K̃n} be an ordered set of n ordered sets, that
summarizes the generic solution of the considered tasks
allocation problem. The set K̃ is called network state.

The following theorems describe some conditions on the
gossip communication scheme which allows the robot to
converge to a stable tasks assignment in a finite time.
Proofs are omitted here because they follow the same lines
of Theorems 4.6 and 4.7 respectively in Franceschelli et al.
[2011].

Theorem 3.3. Let K̃(t) be the network state resulting at
time t from the execution of Algorithm 1. If the gossip
communication scheme satisfies the deterministic persis-
tence property then, for every initial tasks assignment,
there exists a network state K̃∗

heur and a finite time T > 0

such that K̃(t) = K̃∗
heur, for all t ≥ T .

Theorem 3.4. Let K̃(t) be the network state resulting at
time t from the execution of Algorithm 1. If the gossip
communication scheme satisfies the stochastic persistence
property, then, for every initial tasks assignment, there
exists a network state K̃∗

heur and almost surely a finite

time T > 0 such that K̃(t) = K̃∗
heuristic for all t ≥ T , i.e.,

the network state converges almost surely in finite time to
K̃∗

heur.

3.2 Computational complexity of the local optimization

In this section we discuss about the advantages of the
proposed heuristic in terms of computational complexity
with respect to the MILP gossip algorithm.

Let us begin with the analysis of computational complexity
of the single task exchange rule described in Algorithm 2.
The following proposition fix the running time of Algo-
rithm 2.

Proposition 3.5. Assume to compute the ATSP using,
at step 2 of Algorithm 2, the Christofides algorithm
described in Christofides [1976]. The worst case running
time of Algorithm 2 is O(k5).

Proof: The maximum number of nodes assigned to
a robot is k, thus at each iteration of the while loop of
Algorithm 2 the running time of the Christofides algorithm
is at maximum O(k4). The while loop can be repeated at
maximum k times, as there may be at maximum k tasks
exchange. Thus the total running time of Algorithm 2 is
k · O(k4) = O(k5). �.

An important property of the proposed heuristic is pre-
sented in the following proposition.

Proposition 3.6. Let Jheur(t) = maxi∈N Ji(t) be the
maximum execution time of robots at time t resulting from
the execution of Algorithm 1. The following holds

∀t ∈ N, Jheur(t+ 1) ≤ Jheur(t).

Proof: The proof directly follows from the update
rules of Algorithm 2. Let Rr and Rq be the couple of



robots selected by Algorithm 1 at time t with execution
time respectively Jr(t) and Jq(t). Let Rmax be the robot
with the maximum execution time at time t ≥ 0, so
it is Jmax(t) = Jheur(t). Now, by Algorithm 2 is holds
max{Jr(t + 1), Jq(t + 1)} ≤ max{Jr(t), Jq(t)}, and only
two cases may occur

• if Rr, Rq 6= Rmax, Jheur(t + 1) = Jheur(t), i.e., the
maximum execution time does not change,;

• if either Rr = Rmax or Rq = Rmax, Jheur(t + 1) ≤
Jheur(t), i.e., the maximum execution time may be
reduced.

�

A similar property was discussed for the MILP gossip al-
gorithm as well: at each iteration of the local optimization
rule the maximum execution time can not increase. Note
that in the MILP gossip algorithm each local optimization
requires to solve a MILP problem, which is an exponential
time algorithm. Proposition 3.5 shows that the proposed
heuristic is based on a local balance with a considerably
smaller computational complexity than the MILP gossip
algorithm.

We conclude this section with some considerations about
the total number of local interactions required to reach a
final tasks assignment. We conjecture that the expected
number of iterations of Algorithm 1 required to converge
are of the same order as the number of iterations required
in the MILP gossip algorithm. Our conjecture is based on
the following observations. The execution of Algorithm 2
leads to a different tasks assignment only if the maximum
execution time among the involved robot can be decreased,
otherwise the tasks assignment does not change. In the
proposed framework if at time t the execution of Algo-
rithm 2 leads to a decrement of the maximum execution
time, the network state K̃(t) changes to a new one K̃(t+1).

It follows from Proposition 3.6 that K̃(t) is no more visited
during the algorithm evolution. This property holds for the
MILP gossip algorithm as well . Starting from an initial
network state K̃(0), in both decentralized solutions all the
possible network states may be visited before to reach the
equilibrium state. For that reason we can reasonably con-
jecture that the MILP gossip algorithm and Algorithm 1
have computational complexity of the same order in terms
of total number of iterations. Our conjecture is supported
also by the results of some simulations which are presented
in Section 4.

3.3 Some characterizations of the heuristic solution

In this section we focus on some properties of J∗
heur , i.e.,

the solution of Algorithm 1 at the equilibrium, when no
better balancing among robots may be obtained. As the
MILP gossip algorithm, Algorithm 1 does not guaran-
tee the convergence to an optimal solution. Firstly we
present a theorem that characterizes the maximum dis-
tance among the execution times of two robots that have
locally balanced their loads. Then we provide an upper
bound on the maximum execution time resulting from the
application of Algorithm 1.

Theorem 3.7. Let J∗
r,heur and J∗

q,heur, respectively, be the
total execution times of two generic robots Rr and Rq

resulting from the application of step 2 of Algorithm 1. It
holds

|J∗
r,heur − J∗

q,heur| ≤ Krq = 2
drqmax

vrqmin

+
crqmax

wrq
min

(7)

where drqmax is the maximum distance among tasks in
Kr and tasks in Kq, vrqmin = min{vr, vq}, and wrq

min =
min{wr, wq}.

Proof: Let Rr and Rq be a couple of robots selected
in Algorithm 1 at time t with execution time respectively
Jr(t) and Jq(t) after t iterations. By step 2 of Algorithm 1
robots Rr and Rq exchange tasks one by one until no more
exchanges are possible. Assume, without lack of generality,
that at time t it holds Jr(t) > Jq(t). Now, let us assume
to exchange one task from Rr to Rq. Surely the execution
time of Rr decreases, thus Jr(t + 1) ≤ Jr(t). On the
contrary, the execution time of robot Rq increases but the
resulting value is such that:

Jq(t+ 1) ≤ Jq(t) +
crqmax

wq

+ 2
drqmax

vq
.

Thus, by exchanging one task a reduction of the maximum
execution time is guaranteed if

Jq(t) +
crqmax

wq

+ 2
drqmax

vq
≤ Jr(t).

In other words, if

Jr(t)− Jq(t) ≥
cmax

wq

+ 2
drqmax

vq

then there exists at east task that can be exchanged such
that

max{Jq(t+ 1), Jr(t+ 1)} < max{Jq(t), Jr(t)}.

Since the number of possible tasks assignments is finite
and at each iteration of Algorithm 2 the local maximum
may be decreased due to a task exchange, some of these
configurations are never visited again. Thus we have that
in finite time

|J∗
r,heur − J∗

q,heur| ≤ Krq = 2
drqmax

vrqmin

+
crqmax

wrq
min

�

By Theorem 3.7 and the fact that each robot interacts with
any other sufficiently often, a significant result follows.

Corollary 3.8. Let J∗
r,heur and J∗

q,heur, respectively, be
the total execution times of two generic robots Rr and Rq

resulting from the application of Algorithm 1. It holds

|J∗
r,heur − J∗

q,heur| ≤ K (8)

where

K = 2
dmax

vmin

+
cmax

wmin

.

�

Finally the following result can be proved using the same
arguments as in the proof of Theorem 4.11 in Franceschelli
et al. [2011].



Theorem 3.9. Let J∗
heur be the value of the objective

function (1) resulting from the execution of Algorithm 1.
It is

J∗
gossip ≤

k

n

2dmax

vmin

+
1

n

∑

i∈K ci

wmin

+K, (9)

where K = 2 dmax

vmin
+ cmax

wmin
. �

4. NUMERICAL SIMULATIONS

In this section we present some numerical results which
show a comparison between the performance of the pro-
posed heuristic and the performance of the MILP gossip
algorithm. We first analyse the value of J∗

heur for different
values of k and n, comparing it with the lower and upper
bounds, given in eq. (2) and eq. (5), of the centralized
optimal solution and with the value of J∗

gossip obtained
with the MILP gossip Algorithm.

Then we compare the convergence time of the two decen-
tralized solutions either in terms of number of iterations
required or in terms of absolute time.

In all the experiments robots and tasks are randomly
scattered in a square whose edge is equal to 5 units.
Costs of tasks are integer values uniformly randomly
generated in the interval [1, 5]. Speeds vi and wi are real
values uniformly randomly generated in [1, 2]. In both
decentralized algorithms the edge selection is performed in
a uniformly random way. The MILP problems are solved
using the well known MATLAB optimization tool glpk,
while the results related with Algorithm 1 are obtained
using a MATLAB tool ad hoc developed to test our
framework. The value of the ATSP is computed using an
approximated algorithm with worst case ratio α = 1.5.

As a first result we propose an example which shows that,
in general, Algorithm 1 leads to a sub-optimal solution of
the HMVRP problem.

Example 4.1. Let us consider a system with n = 2
robots and k = 4 tasks. Robots are initially positioned
at the same depot in the XY plane as summarized in
Table 1. This table also summarizes the position and
costs of tasks and the initial tasks assignment. Moreover,
for each robot Rr it is vr = wr = 1. Table 2 presents
the results of the load balancing carried out using both
the centralized and the heuristic approach. As it can be
seen, the optimal solution J∗ of the centralized approach
presented in Franceschelli et al. [2011] is better than the
one obtained with Algorithm 1. In particular, it is J∗ = 23
and J∗

heur = 24. �

X Y Init. Assig. ci

Robot 1 0 0 - -

Robot 2 0 0 - -

Task 1 1 0 Robot 1 10

Task 2 1 0 Robot 1 10

Task 3 1 0 Robot 2 11

Task 4 1 0 Robot 2 11

Table 1. Example 4.1: initial tasks assignment.

As a second result, in Fig.1 are reported the results of the
comparison between the following values:

• the value of J∗
heur, obtained by the execution of

Algorithm 1;

Centralized Kr J∗

r Heuristic Kr J∗

r,heur

Robot 1 {1, 2, 6} 23 {1, 3, 5, 6} 22

Robot 2 {3, 4} 23 {2, 4} 24

Table 2. Example 4.1: simulation results.
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heur, J

∗
gossip and the upper bound (2) and the

lower bound (5) of the centralized solution.

• the value of J∗
gossip obtained by the execution of the

MILP gossip algorithm;
• the upper and lower bound of the centralized ap-
proach given respectively by (2) and (5).

For each couple (n, k) of n robots and k tasks, J∗
heur,

J∗
gossip and the two bounds are the mean values of 10

experiments. Simulation shows that the maximum ser-
vice time obtained with the two gossip approaches lies
always between the upper and the lower bound of the
centralized approach. Moreover, the performance of the
two approaches are similar.

In Fig. 2, Fig. 3 and Fig. 4 the execution times of
Algorithm 1 are compared with the execution times of
the MILP gossip algorithm. In particular, Fig. 2 and
Fig. 3 show the execution time respectively of the MILP
gossip algorithm and Algorithm 1 in terms of number
of iterations, while in Fig. 4 the comparison is made in
terms of time in seconds spent by MATLAB to execute
the Algorithms. The two figures confirm that the proposed
framework has a computational complexity considerably
lower than the MILP gossip algorithm.

The results in Fig. 2 and Fig. 3 confirm also the conjecture
that we have discussed in the final part of Section 3.2:
the execution time in terms of number of iterations are of
the same order in Algorithm 1 and in the MILP gossip
algorithm.

5. CONCLUSIONS

In this paper we have presented a novel heuristic based on
gossip to solve the HMVR problem. The proposed heuristic
leads to a sub-optimal solution but, differently than the
previously presented solutions, is based on a polynomial
time local interaction rule and is characterized by a fast
execution time. We have compared the proposed heuristic
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Fig. 2. Number of iterations required to reach an equilib-
rium state with MILP gossip algorithm.
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rium state Algorithm 1.
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Fig. 4. Execution time of MILP gossip algorithm and
Algorithm 1.

with the MILP gossip algorithm. The comparison of the
performance of the two strategies has been made through
exhaustive simulations which show similar performance
and confirm that the proposed heuristic has a lower com-
putational complexity than the MILP gossip algorithm.
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