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Abstract. The formation of opinions in a large population is governed by endogenous (interactions with peers)
and exogenous (influence of media) factors. In the analysis of opinion evolution in a large population, decision making
rules are often approximated with non-Bayesian “rule of thumb” methods. Adopting a non-Bayesian averaging
rule, this paper focuses on an Eulerian bounded-confidence model of opinion dynamics and studies the information
assimilation process resulting from exogenous inputs. In this model, a population is distributed over an opinion set
and each individual updates its opinion via (i) opinions of the population inside the individual’s confidence range, and
(ii) the information from an exogenous input in that range. First, we establish various mathematical properties of this
system’s dynamics with time-varying inputs. Second, for the case of no exogenous input, we prove the convergence of
the population’s distribution to a sum of Dirac delta distributions. We further derive a simple sufficient condition for
opinion consensus under the influence of a time-varying input. Third, regarding information assimilation, we define
the attracted population of a constant input. For a weighted Dirac delta input and for uniformly distributed initial
population, we establish an upper bound on the attracted population valid under some technical assumptions. This
upper bound is an increasing function of the population’s confidence bound and a decreasing function of the input’s
measure (i.e., the integral of input’s distribution over the opinion space). Fourth, for a normally distributed input
with truncated support, we conjecture that the attracted population is approximately an increasing affine function
of the population’s confidence bound and of the input’s standard deviation; we illustrate this conjecture numerically.

Key words. opinion dynamics, distributed averaging algorithm, exogenous input, assimilation of information,
mass measures, Eulerian approach

1. Introduction. Opinion dynamics in a society is a complex process, which is led to its final
state by endogenous and exogenous factors. The interaction of people via in-person meetings or
online social networks is an endogenous factor. One of the most influential exogenous factors is the
mainstream media that acts as a real-time input owing to its easy access to the public. Quoting
from [10], “After introduction and expansion of Fox News, between 1996 and 2000, it is estimated
that 3-28 percent of the audiences was persuaded to vote Republican.” Media influences opinions by
employing some well known techniques such as repeated exposure to experts’ messages. The bias
in mainstream media in referencing to the members of the US Congress is quantified and analyzed
in [17].

Developing quantifiable descriptions of societal opinion dynamics has a long history and can
be classified based on a variety of characteristics. The early references [27, 7, 14] propose models
for “continuous opinion dynamics,” where opinions are represented by real numbers. Such a real
number represents the attitude or position of an individual in relation to an issue, for instance,
“political opinions and actions or roles in economic life as a producer or consumer” [28]. Therefore,
the position of an individual can vary smoothly from one extreme of the range of possible choices to
the other. According to [5, 13], models of opinion dynamics can be described by either a Lagrangian
or an Eulerian approach. A Lagrangian description focuses on changes in each individual’s opinion
while an Eulerian description focuses on the changes in population in one opinion interval as time
progresses. A Lagrangian model of opinion dynamics has been defined over a continuous [3] or
discrete state space [12, 3, 24, 20] with infinite or finite number of individuals, respectively. An
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Eulerian model of opinion dynamics has also been defined over a continuous [19, 5, 8, 11] or discrete
state space [2] depending on whether the opinion set is continuous or discretized, respectively.

A popular opinion update rule is the non-Bayesian “rule of thumb” method of averaging neigh-
bors’ opinions. This method provides a good approximation to the behavior of a large population
without relying on detailed social psychological findings, see [1, 6]. In our investigation, the neigh-
boring relationships between individuals are defined based on the concept of bounded confidence [15].
In other words, an individual interacts with only those individuals whose opinions are close enough
to its own. This idea reflects: 1) filter bubbles, a phenomenon in which websites use algorithms
to show users only information that agrees with their past viewpoints [25]; and 2) selective expo-
sure, a psychological concept broadly defined as “behaviors that bring the communication content
within reach of one’s sensory apparatus” [31, 21]. Recently, Hegselmann and Krause formulated a
Lagrangian bounded confidence model (HK model) where individuals synchronously update their
opinions by averaging all opinions in their confidence bound [12, 22]. Accordingly, an Eulerian HK
model has been defined over a continuous state space [18, 5, 23], where a mass distribution over
an opinion set is being updated by a flow map under the influence of an exogenous input. The
convergence of a variation of the Eulerian HK model both in discrete and continuous time has been
established in [5], where the influence weights that any two individuals assign to each other are
equal, and this symmetry preserves the global opinion average during the evolution. In this con-
text, we consider a general Eulerian HK model where the symmetric weight constraint is relaxed.
Specifically, the weight an individual assigns to another is a function of the mass measure (and of
the exogenous input measure) in that individual’s confidence range. Since the measures on different
opinions’ confidence bounds are not necessarily equal, the weights assigned to different opinions are
generally asymmetric, and thus the global average is not preserved. An Eulerian model of opinion
dynamics with a pairwise-sequential updating procedure is studied in [8]. The effect of media on
an Eulerian model of opinion formation with pairwise gossip interactions is numerically analyzed
in [4]. Furthermore, two manipulation strategies that aim to increase the population with positive
vote in finite time are compared in [23].

The contributions of this paper are summarized as follows. 1) We propose a novel model
for exogenous inputs in the Eulerian HK opinion dynamics model. It is well-known that media’s
influence on the public depends on public’s attitude towards it [16]. This concept for a voter
decision-maker who ignores the message from an opposite political predisposition is called “partisan
resistance.” Accordingly, we assume that each individual associated with one opinion receives
exogenous input information only within its opinion confidence range. First, we model the input
as a background weighted Dirac delta distribution centered at the opinion of an expert, where the
integral of this distribution over opinion space depends on factors such as how strongly the message
is being reported. Second, we observe that the increasing popularity of communication technologies
such as blogging and tweeting is leading to the public rebroadcasting of the message with bias.
Accordingly, we model the input as a Gaussian signal whose variance represents how much bias
is inserted in the rebroadcast. 2) We prove some important properties of the Eulerian HK model
with a time-varying input. Under mild technical assumptions (the initial opinion is a finite and
absolutely continuous mass distribution over the opinion set), we show that the opinion update via
an Eulerian flow map has the following properties: i) the mass distribution over the opinion space
remains constant and absolutely continuous; ii) due to the homogeneity of the confidence bounds,
the flow map preserves opinions order; and iii) the flow map is bi-Lipschitz. We further establish
that if the concentration of the population in the confidence range of an individual is higher than
the population concentration just outside of this range, then the density of the population at that
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individual’s opinion increases in one iteration. 3) Based on the above analysis, for the case of no
exogenous input, we prove the convergence of the population’s distribution to a sum of weighted
Dirac delta distributions, whose centers are within a distance greater than population’s confidence
bound apart from one another. This result validates our model by verifying a basic known property
of opinion evolution, that is, the emergence of population clusters. Recent results on opinion
dynamics models establish that people tend to aggregate into groups of equal-minded individuals
[3, 5]. We further derive a simple sufficient condition for opinion consensus under the influence of
time-varying input. 4) In our study of information assimilation, we define the attracted population
of a constant input, which is the portion of population that will be attracted to the input’s center
opinion as time goes to infinity. First, for the case of weighted Dirac delta input centered at the
advertised opinion with a uniformly distributed initial population, we establish that the attracted
population is an increasing function of population’s confidence bound and a decreasing function of
input’s measure (i.e., how strongly the message is being broadcasted by media). Second, for the
case of a truncated normal distribution, our simulations illustrate that the attracted population is
approximately an increasing affine function of the population’s confidence bound and of the input’s
standard deviation. This result suggests that (i) a higher biased rebroadcast of media’s message by
various blogs, and/or (ii) a larger confidence bound result in the attraction of a larger population
to the advertised message.

This paper is organized as follows. Section 2 develops the mathematical model of an Eulerian
HK system with input and introduces some preliminary properties of this system. Section 3 analyzes
fundamental properties of Eulerian HK systems with time-varying inputs and gives a sufficient
condition for consensus. Section 4 establishes the convergence of Eulerian HK systems with no
input. Section 5 presents the result of information assimilation under a single constant input.
Finally, Section 6 contains concluding remarks and potential future directions.

2. Mathematical Model and Preliminary Results. In this section, we mathematically
formulate the process of the opinion evolution in a large population by an HK model. The mass
distribution of the population over the opinion set is represented by Radon measure µt (inner regular
and locally finite) defined on the measure space (R,B(R)) at each discrete time step t, where B(R)
is the Borel σ-algebra. The continuous opinion space is R, and each opinion value is denoted by an
independent variable x. For any dx ∈ B(R), the value µt(dx) represents the infinitesimal population
whose opinion is equal to x at time t. At t+1, this population updates its opinion to a new opinion
γt(x). The map γt : suppµt ⊆ R→ R is called the flow map of the mass distribution, where suppµt
denotes the support of the measure µt, that is, the set of all points x ∈ R for which every open
neighborhood of x has positive measure. This approach establishes an Eulerian model of opinion
dynamics and is inspired by [5]. Here, the flow map is defined in compliance with the Lagrangian
HK rules,

(2.1) γt(x) =

∫
[x−r,x+r] zµt(dz) +

∫
[x−r,x+r] zut(dz)∫

[x−r,x+r] µt(dz) +
∫
[x−r,x+r] ut(dz)

,

where r is the population’s confidence bound and ut is the distribution of exogenous background
input at time t, which is also assumed to be a Radon measure on B(R) for simplicity of analysis.
Now, the mass distribution can be tracked by the recurrence relation µt+1 = γt#µt, where γt#
denotes the push forward of a measure via the flow map γt [5], see Figure 2.1. Moreover, for every
E ∈ B(R),

(2.2) µt+1(E) = µt(γ
−1
t (E)),
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Fig. 2.1. A schematic illustration of push forward of a measure µt via the flow map γt.

where γ−1t (E) is the preimage of the set E under the flow map γt, though γt is not necessarily
invertible. Therefore, µt+1(R) = µt(R), that is, the total mass distribution over the opinion space
is preserved over time. Hence, via normalization, µt can be regarded as a probability measure.

Definition 2.1 (Eulerian HK system with input). We call the dynamical system in which
a mass distribution µt defined over R is being pushed forward by the flow map (2.1) under the
influence of an input ut an Eulerian HK system with input.

In the remainder of this section, we introduce some preliminary properties of an Eulerian HK
system with input. Before proceeding, let us introduce a few notations. We call a single point x ∈ R
an atom with respect to a measure µ if x ∈ suppµ and µ(x) > 0. Moreover, if every µ-measurable
set of positive measure contains an atom, then µ is called purely atomic or atomic in short. We
denote the absolute continuity of any measure µ with respect to Lebesgue measure L1 by µ� L1.
The assumption of absolute continuity of the mass distributions implies that a population with
measure zero is assigned to an opinion interval with zero length. In essence, the dynamics of mass
distributions that only contain Dirac delta distributions can be handled by Lagrangian agent-based
modeling in “microscopic” analysis [9]. Whereas, absolutely continuous measures represent the
average density of a large population over the opinion space and are employed in “macroscopic”
analysis here. From here on, the smallest and largest opinions along suppµt are denoted by xmin(t)
and xmax(t), respectively, and the length of µ’s support is denoted by | suppµ|. The flow map
x 7→ γt(x) is called bi-Lipschitz [29], if for any x, y ∈ suppµt there exists Lt ≥ 1 such that

(2.3) |y − x|/Lt ≤ |γt(y)− γt(x)| ≤ Lt|y − x|.

For any finite mass distribution µt, we define the opinion average over any interval [a, b] ∈ R for
nonzero

∫
[a,b]

µt(dz) by

(2.4) yt([a, b]) =

∫
[a,b]

zµt(dz)∫
[a,b]

µt(dz)
.

Finally, for any µt � L1, there exists a Lebesgue integrable density function ρt such that µt(E) =∫
E
ρt(z)dz for all E ∈ B(R).
Lemma 2.1 (Bounds on opinion average). Consider a finite mass distribution µ � L1 whose

support is a closed bounded interval in R. Assume that its density function ρ(x) satisfies ρ(x) ∈
4



[ρmin, ρmax] for all x ∈ suppµ with 0 < ρmin ≤ ρmax <∞. Then, for all a, b ∈ suppµ, the opinion
average over [a, b], denoted by y([a, b]), is bounded as follows

(2.5) a <
b+ a

√
ρmax/ρmin

1 +
√
ρmax/ρmin

≤ y([a, b]) ≤
a+ b

√
ρmax/ρmin

1 +
√
ρmax/ρmin

< b.

Proof. Here we present the upper bound of y([a, b]), and the similar analysis for the lower
bound is skipped. First, let us introduce a step density function for any variable c ∈ [a, b]:

ρs(x, c) =

{
ρmin, if x ∈ [a, c),

ρmax, if x ∈ [c, b],

The average opinion over [a, b] for the step density function is as follows:

ys([a, b], c) =
(c2 − a2)ρmin/2 + (b2 − c2)ρmax/2

(c− a)ρmin + (b− c)ρmax
=:

f(c)

g(c)
.

According to the first mean value theorem for integrals, one can show that, for any bounded density
function ρ : [a, b]→ [ρmin, ρmax], there exists c ∈ [a, b] such that the averages of ρ and ρs over [a, b]
are equal. Therefore, y([a, b]) is less than or equal to the upper bound of ys([a, b], c) given any
c ∈ [a, b].

Owing to the differentiability of ys([a, b], c) with respect to c, the maximum of ys([a, b], c) over
c can be computed by letting ∂ys([a, b], c)/∂c equal to zero:

∂ys([a, b], c)

∂c
=
c(ρmin − ρmax)g(c)− (ρmin − ρmax)f(c)

g2(c)
= 0.

Hence, the critical point c∗ = f(c∗)/g(c∗) can be computed as follows

2(c∗2−ac∗)ρmin+2(bc∗−c∗2)ρmax = (c∗2−a2)ρmin+(b2−c∗2)ρmax ⇒ c∗ =
a+ b

√
ρmax/ρmin

1 +
√
ρmax/ρmin

,

gives the maximum of ys([a, b], c), which is equal to c∗. Together with a < b, we have

y([a, b]) ≤ max
c∈[a,b]

{ys([a, b], c)} =
a+ b

√
ρmax/ρmin

1 +
√
ρmax/ρmin

< b.

Lemma 2.1 determines upper and lower bounds on µ’s opinion average over an interval, which
are strictly inside the interval. Accordingly, the following lemma demonstrates that if the opinion
average of a time varying mass distribution over an interval converges to the boundary of that inter-
val, then the mass distribution converges to a Dirac delta distribution centered at that boundary.
Before proceeding, consider a, b ∈ R with a < b and x, y ∈ R>0, then it can be verified that

(2.6) max
x∈[x1,x2],y∈[y1,y2]

xa+ yb

x+ y
=
x1a+ y2b

x1 + y2
.

Lemma 2.2 (Opinion average limit). Assume that in an Eulerian HK system with input, the
mass distribution µt � L1 is finite and suppµt is a closed bounded interval and contains [a, b] ∈ R
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for all t ≥ 0. The opinion average over [a, b], denoted by yt([a, b]), satisfies limt→∞ yt([a, b]) = a (or
limt→∞ yt([a, b]) = b ) if and only if the mass distribution over [a, b] weakly converges to a weighted
Dirac delta distribution centered at a (or b, respectively.)

Proof. We prove that limt→∞ yt([a, b]) = a is a sufficient condition for the convergence of
µt([a, b]) to a weighted Dirac delta distribution centered at a, and the obvious proof to its necessity
and the proof to the convergence to the other bound b are omitted. By contradiction, assume that
the mass distribution does not converge to a Dirac delta distribution centered at a, or equivalently,
there exists point c ∈ (a, b) such that µt([c, b]) > m for some m ∈ R>0 and infinite number of time
steps. Therefore, if we denote the density function of µt by ρt, then

yt([a, b]) =

∫
[a,b]

zµt(dz)∫
[a,b]

µt(dz)
=

∫ b
a
zρt(z)dz∫ b
a
ρt(z)dz

=

∫ c
a
zρt(z)dz +

∫ b
c
zρt(z)dz∫ c

a
ρt(z)dz +

∫ b
c
ρt(z)dz

.

Since µt(R) is finite, there exits M ∈ R>0 such that µt([a, c]) ≤ M for all t ≥ 0. According to
equation (2.6) and Lemma 2.1,

yt([a, b]) >
aM + cm

M +m
= a+

(c− a)m

M +m
,

for infinite number of time steps which contradicts the convergence of yt([a, b]) to a.
Here, we introduce two assumptions on the initial states and inputs that are employed in

Sections 3 and 4.
Assumption 2.1. For an Eulerian HK system with input, µ0 � L1 is finite and suppµ0 is a

closed bounded interval, and ut � L1 for all t ≥ 0.
Assumption 2.2. The set supput is contained in the set suppµt for all t ≥ 0.
The interpretation of Assumption 2.2 is that the manipulator can only advertise for opinions

with non-zero population assigned to them. In other words, the manipulator disregards the opinions
that no body believes in.

3. Dynamic Properties of the Model. This section analyzes some fundamental properties
of Eulerian HK systems with time-varying inputs and gives a simple sufficient condition for the
emergence of opinion consensus.

Theorem 3.1 (Properties of an Eulerian HK system with input). If an Eulerian HK system
with input satisfies Assumption 2.1, then for any t ≥ 0 such that | suppµτ | > 2r for all τ ≤ t,

(i) µt � L1 is finite and suppµt is a closed interval;
(ii) for any x, y ∈ suppµt, if x < y, then γt(x) < γt(y); and

(iii) x 7→ γt(x) is bi-Lipschitz.
Proof. Here we first prove that if statement (i) holds at any time t ≥ 0, then statements (ii)

and (iii) also hold at t. Next, if the three statements hold at any t, then statement (i) holds at t+1.
Finally, since µ0 satisfies statement (i), the three statements hold for all t. For brevity, we denote
the sum of the mass and input distributions with νt := µt+ut. Since ut satisfies Assumption 2.1, if
statement (i) holds at any t, then νt � L1 is finite and supp νt is a closed bounded interval. Hence,
νt’s density function %t(x) ≥ 0 exists and satisfies %t(x) ∈ [%min(t), %max(t)] for all x ∈ supp νt with
0 < %min(t) ≤ %max(t) <∞.

Regarding part (ii), for any x, y ∈ suppµt and x < y, since x ± r or y ± r may not belong to
supp νt,

(3.1) γt(x) =

∫ b
a
z%t(z)dz∫ b
a
%t(z)dz

, γt(y) =

∫ q
p
z%t(z)dz∫ q

p
%t(z)dz

,
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where [a, b] = [x− r, x+ r] ∩ supp νt and [p, q] = [y − r, y + r] ∩ supp νt. Equivalently,

γt(x) =

∫ p
a
z%t(z)dz +

∫ b
p
z%t(z)dz∫ p

a
%t(z)dz +

∫ b
p
%t(z)dz

=:
Ŝ1 + Ŝ2

S1 + S2
,(3.2)

γt(y) =

∫ b
p
z%t(z)dz +

∫ q
b
z%t(z)dz∫ b

p
%t(z)dz +

∫ q
b
%t(z)dz

=:
Ŝ2 + Ŝ3

S2 + S3
,(3.3)

where Ŝ1 and S1 denote
∫ p
a
z%t(z)dz and

∫ p
a
%t(z)dz, respectively, and Ŝ2,3 and S2,3 are defined

similarly. It follows from the properties of νt that Lemma 2.1 holds for νt over any closed interval
in R, and considering the integration intervals of Ŝi’s and Si’s, for nonzero Si’s we have

Ŝ1

S1
<
Ŝ2

S2
<
Ŝ3

S3
⇒ Ŝ1S2 < Ŝ2S1, Ŝ2S3 < Ŝ3S2, and Ŝ1S3 < Ŝ3S1.

Notice that based on assumption | suppµt| > 2r, at least one of the S1 or S3 should be nonzero,
moreover, since supp νt is a closed interval, the terms S1+S2 and S1+S3 are nonzero. Consequently,
only one term out of the three terms S1, S2 and S3 can be zero, and the following inequality always
holds:

Ŝ1S2 + Ŝ1S3 + Ŝ2S2 + Ŝ2S3 < Ŝ2S1 + Ŝ2S2 + Ŝ3S1 + Ŝ3S2,

⇒ Ŝ1 + Ŝ2

S1 + S2
<
Ŝ2 + Ŝ3

S2 + S3
⇒ γt(x) < γt(y).

Regarding part (iii), the bi-Lipschitz property of the flow map γt(x) asserts that for any x, y ∈
suppµt equation (2.3) holds for some Lt ≥ 1. Assume that x < y, and according to part (ii),
γt(x) < γt(y). Then, two different cases are possible:

1) y − x ≥ 2r, hence,

γt(y)− γt(x) < y − x+ 2r ≤ 2(y − x),

and it follows from Lemma 2.1 that

γt(y)− γt(x) >
(b− a) + (q − p)

1 +
√
%max(t)/%min(t)

,

where the flow maps are given by equations (3.1). Since y − x ≤ | suppµt|,

(b− a) + (q − p)
1 +

√
%max(t)/%min(t)

=
(b− a+ q − p)(y − x)

(1 +
√
%max(t)/%min(t))(y − x)

≥ (b− a+ q − p)(y − x)

| suppµt|(1 +
√
%max(t)/%min(t))

.

Finally,

Lt = max{2,
| suppµt|(1 +

√
%max(t)/%min(t))

b− a+ q − p
}.
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Since b− a+ q − p ≤ | suppµt|+ 2r, 1 +
√
%max(t)/%min(t) ≥ 2, and | suppµt| > 2r,

| suppµt|(1 +
√
%max(t)/%min(t))

b− a+ q − p
≥ 2| suppµt|
| suppµt|+ 2r

≥ 1,

which confirms that Lt ≥ 1.
2) y − x < 2r, hence following equations (3.2) and (3.3), we have

γt(y)− γt(x) =
Ŝ2 + Ŝ3

S2 + S3
− Ŝ1 + Ŝ2

S1 + S2
=
Ŝ2S1 + Ŝ3S1 + Ŝ3S2 − Ŝ1S2 − Ŝ1S3 − Ŝ2S3

(S1 + S2)(S2 + S3)
.

Based on statement (i), the following inequalities can be derived:

S1 < (p− a)%max(t) ≤ (y − x)%max(t), Ŝ1 < p(p− a)%max(t) ≤ q(y − x)%max(t)

S3 < (q − b)%max(t) ≤ (y − x)%max(t), Ŝ3 < q(q − b)%max(t) ≤ q(y − x)%max(t),

S2 < (b− p)%max(t) ≤ 2r%max(t), Ŝ2 < b(b− p)%max(t) ≤ 2rq%max(t),

(S1 + S2)(S2 + S3) > r2%min(t)2.

Consequently,

γt(y)− γt(x) <
2r|q|%max(t)2(y − x) + |q|%max(t)2(y − x)2 + 2r|q|%max(t)2(y − x)

r2%min(t)2
.

Again since y − x < 2r and |q| ≤ max{|xmax(t)|, |xmin(t)|},

γt(y)− γt(x) <
6rmax{|xmax(t)|, |xmin(t)|}%max(t)2

r2%min(t)2
(y − x) =: L1(y − x).

It follows from | suppµt| > 2r that max{|xmax(t)|, |xmin(t)|} ≥ r, and thus L1 > 1. As stated
above, either S1 or S3 is nonzero. Without loss of generality, assume that S1 is nonzero, and hence
p− a = y − x. It follows from

Ŝ3 + Ŝ2

S3 + S2
≥ Ŝ2

S2

that

(3.4) γt(y)− γt(x) ≥ Ŝ2

S2
− Ŝ1 + Ŝ2

S1 + S2
=: c(x2 − x1),

where

x1 =
Ŝ1

S1
, x2 =

Ŝ2

S2
, and c =

S1

S1 + S2
≥ (p− a)%min(t)

(b− p)%max(t) + (p− a)%max(t)
.

⇒ γt(y)− γt(x) ≥ (p− a)%min(t)

(b− a)%max(t)
(x2 − x1) >

(y − x)%min(t)

2r%max(t)
(x2 − x1).
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By Lemma 2.1,

x2 − x1 >
b− p+ p− a√

%max(t)/%min(t) + 1
≥ r√

%max(t)/%min(t) + 1
.

Therefore,

γt(y)− γt(x) >
%min(t)

2%max(t)(
√
%max(t)/%min(t) + 1)

(y − x) =:
1

L2
(y − x).

Clearly L2 ≥ 1, therefore, Lt = max{L1, L2}.
Regarding part (i), we now prove that if statements (i), (ii), and (iii) hold at time t, then

statement (i) holds at t+ 1. First, we prove that the flow map

γt(x) =

∫ x+r
x−r z%t(z)dz∫ x+r
x−r %t(z)dz

=:
f(x)

g(x)

is continuous. Knowing that if two functions f and g are continuous and g 6= 0, then the quotient
f/g is also continuous, we show the continuity of the function f(x) at all points c ∈ suppµt, and
the proof to the continuity of the denominator is similar. For all x ∈ suppµt, g(x) > 0, and

lim
x→c

f(x) = lim
x→c

∫ x+r

x−r
zd%(z) = lim

ε→0

∫ c+ε+r

c−ε−r
zd%(z)

= lim
ε→0

( ∫ c−r

c−ε−r
zd%(z) +

∫ c+ε+r

c+r

zd%(z)
)

+

∫ c+r

c−r
zd%(z)

= lim
ε→0

(
ε(c− r)%(c− r) + ε(c+ r)%(c+ r)

)
+ f(c).

Due to the finiteness and absolute continuity of νt, f(c) exists for all c ∈ suppµt and the limit
in the right hand side converges to zero, hence, limx→c f(x) = f(c). We have shown that γt(x) is
strictly monotone and continuous with respect to x, therefore, this map is also invertible. Second,
we prove the absolute continuity of µt+1. It is shown that γt has the following properties: 1)
Since any continuous function defined on Borel sets is a Borel measurable function, γ−1t (E) is Borel
measurable for any Borel set E ∈ R. 2) The bi-Lipschitz map γt satisfies

L(γ−1t (E)) ≤ CtL(E)

for some constant Ct ∈ R>0. According to Theorem 2 in [26], if the flow map γt satisfies above
two properties and µt � L1, then µt+1 � L1. Third, a continuous function maps a compact set to
another compact set, hence, γt maps the closed bounded interval suppµt to another closed bounded
interval suppµt+1. Fourth, we establish bounds on µt+1’s density function. For any x, y ∈ suppµt+1

and x < y, equation (2.2) gives ∫ y

x

ρt+1(z)dz =

∫ γ−1
t (y)

γ−1
t (x)

ρt(z)dz.

where ρt(z) is µt’s density function, and in view of condition (i), 0 < ρmin(t) ≤ ρt(z) ≤ ρmax(t) <∞
over suppµt. Therefore,

(γ−1t (y)− γ−1t (x))ρmin(t) ≤
∫ γ−1

t (y)

γ−1
t (x)

ρt(z)dz ≤ (γ−1t (y)− γ−1t (x))ρmax(t).

9



Provided that γt is bi-Lipschitz, for any x, y ∈ suppµt, there exists Lt ≥ 1 such that

1

Lt
(y − x)ρmin(t) ≤

∫ γ−1
t (y)

γ−1
t (x)

ρt(z)dz ≤ Lt(y − x)ρmax(t),

⇒ 1

Lt
(y − x)ρmin(t) ≤

∫ y

x

ρt+1(z)dz ≤ Lt(y − x)ρmax(t).

The limit of above inequality as y converges to x gives

1

Lt
(y − x)ρmin(t) ≤ (y − x)ρt+1(x) ≤ Lt(y − x)ρmax(t)

⇒ 1

Lt
ρmin(t) ≤ ρt+1(x) ≤ Ltρmax(t) ∀x ∈ suppµt+1.

Finally, since suppµt is bounded for all t ≥ 0, we have

µt+1(suppµt+1) = µt(γ
−1
t (suppµt+1)) = µt(suppµt).

Therefore, if µt is finite, then µt+1 is finite.
Lemma 3.2 (Sufficient condition for consensus). Assume that an Eulerian HK system with

input satisfies Assumption 2.2, µ0, u0 � L1 are finite measures and suppµ0 is closed and bounded.
If µ0 and ut, for all t ≥ 0, are distributed symmetrically around the center of suppµ0, and
| suppµ0| ≤ 2r, then the mass distribution reaches an opinion consensus in finite time.

Proof. Let us denote µt+ut by νt. Owing to the absolute continuity of µ0 and u0 and according
to Lemma 2.1, xmin(1) > xmin(0) and xmax(1) < xmax(0). Since ν0 and ut are symmetrically
distributed and the confidence bounds are homogeneous for all opinions, the distribution νt remains
symmetric around the center of supp νt for all t ≥ 0. Hence, the value (xmin(t) + xmax(t))/2 for all
t ≥ 0 is a constant, denoted by xmid. In view of the absolute continuity of ν0, γ0(x) is a continuous
function of x, and thus, for any ζ ∈ R>0, there exists ε ∈ R>0 such that

(3.5) γ0(xmid + ε)− xmid < ζ.

If we let ζ = xmax(0)− xmax(1) = xmin(1)− xmin(0), then equation (3.5) gives µ1([xmid − ζ, xmid +
ζ]) ≥ µ0([xmid − ε, xmid + ε]) > 0. Moreover, at time t = 1, the population over [xmid − ζ, xmid + ζ]
considers the total population’s opinion in its opinion update and thus reaches consensus at xmid

in the next iteration. Consequently, at t = 2, there exists an atom at xmid whose measure is
denoted by νmid. Since γt(xmid) = xmid, the measure of the atom at xmid is greater than or
equal to νmid for all t ≥ 2. Now, for all t ≥ 2, we compute a strictly positive lower bound for
xmin(t+ 1)− xmin(t), which is equal to the lower bound on xmax(t)− xmax(t+ 1), and proves that
| supp νt| is strictly decreasing and converges to zero. Since | supp νt| ≤ | supp ν0| ≤ 2r for all t ≥ 0,
the intervals [xmin(t), xmin(t) + r] and [xmax(t)− r, xmax(t)] contain the central point xmid. For all
x ∈ [xmin(t), xmid),

γt(x) ≥ xmin(t)ν̂t + xmidνmid

ν̂t + νmid
,

where ν̂t :=
∫
[xmin(t),xmin(t)+r]

dνt(x) − νmid, and since νt(R) is finite, we denote ν̂t’s upper bound

for all t ≥ 0 such that xmin(t) < xmid by ν̂max ∈ R>0. Therefore,

xmin(t+ 1) ≥ xmin(t) +
(xmid − xmin(t))νmid

ν̂max + νmid
,
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Fig. 4.1. A schematic illustration of convergence of an Eulerian HK system with no input in the weak-star
topology to an atomic measure, whose atoms are separated by a distance greater than r.

which implies that the lower bound on xmin(t + 1) − xmin(t) is (xmid − xmin(t)) multiplied by a
constant. Consequently, there exists time τ ≥ 0 such that xmid−xmin(τ) < r−(xmax(τ)−xmin(τ))/2,
and thus the mass distribution reaches a consensus at τ + 1.

4. Convergence Behavior. In this section, we first introduce a lemma which guarantees
that the length of mass distribution’s support strictly monotonically decreases as time progresses.
Next, employing this result and the system properties introduced in Section 3, the convergence of
the mass distribution in an Eulerian HK system without input is established.

Lemma 4.1. If an Eulerian HK system with input satisfies Assumptions 2.1 and 2.2, then for
all t ≥ 0 such that | suppµt| > 2r,

(i) suppµt strictly contains suppµt+1, and
(ii) xmin(t+ 1) = γt(xmin(t)) and xmax(t+ 1) = γt(xmax(t)).
Proof. This system satisfies the sufficient conditions of Theorem 3.1, and part (i) of Theorem 3.1

shows that suppµt is equal to the closed bounded interval [xmin(t), xmax(t)] for all t ≥ 0. Hence,
statement (i) can be concluded from

(4.1) xmin(t) < xmin(t+ 1) < xmax(t+ 1) < xmax(t).

Next, we prove the lower bound in inequality (4.1) and the proof to the upper bound is similar. For
all t, based on Assumption 2.2, the support of measure νt = µt+ut is equal to suppµt. Therefore, the
density function of νt is equal to zero below xmin(t) and strictly greater than zero above xmin(t),
and hence, γt(xmin(t)) > xmin(t). According to Theorem 3.1 part (ii), for all y ∈ suppµt and
y > xmin(t), γt(y) > γt(xmin(t)). Therefore, γt(xmin(t)) is the smallest opinion in the set suppµt+1,
i.e., γt(xmin(t)) = xmin(t+ 1), and thus xmin(t+ 1) > xmin(t).

Notice that if supput is not contained in suppµt, then suppµt+1 is not necessarily contained
in suppµt. Lemma 4.1 also holds for an Eulerian HK system without input, that is, ut = 0 for all
t ≥ 0.

Theorem 4.2. Consider an Eulerian HK system with no input, confidence bound r, and initial
condition such that µ0 � L1 is finite and suppµ0 is a closed bounded interval. If | suppµt| > 2r
for all t ≥ 0, then µt converges in the weak-star topology to an atomic measure, whose atoms are
separated by a distance greater than r.

Proof. This system satisfies the conditions of Theorem 3.1 and Lemma 4.1. Therefore, µt � L1,
suppµt is a closed bounded interval, and suppµt ⊂ suppµt−1. Since xmin(t) is a strictly increasing
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function of time and suppµt is a subset of suppµ0, there exists an opinion x1 in the interior of
suppµt such that limt→∞ xmin(t) = x1. Thus, there exists τ such that x1−xmin(t) < r for all t ≥ τ ,
and in the remainder of this proof t is assumed to be larger than τ . First, we prove that the mass
distribution over interval (x1, x1 +r) converges to zero. Let us denote the intervals [xmin(t), x1] and
(x1, xmin(t) + r] by It and Ît, respectively, and the density function of µt by ρt. Then, we define
the following opinion average

yt(Ît) :=

∫ xmin(t)+r

x1
zρt(z)dz∫ xmin(t)+r

x1
ρt(z)dz

.

By Lemma 4.1, xmin(t+ 1) = γt(xmin(t)), hence

lim
t→∞

xmin(t+ 1) = lim
t→∞

∫ x1

xmin(t)
zρt(z)dz + yt(Ît)µt(Ît)∫ x1

xmin(t)
ρt(z)dz + µt(Ît)

.

Moreover, since xmin(t) converges to x1 as time goes to infinity,

lim
t→∞

∫ x1

xmin(t)

zρt(z)dz = x1 lim
t→∞

µt(It).

Hence,

(4.2) lim
t→∞

xmin(t + 1) − x1 = lim
t→∞

x1µt(It) + yt(Ît)µt(Ît)

µt(It) + µt(Ît)
− x1 = lim

t→∞

(yt(Ît)− x1)µt(Ît)

µt(It) + µt(Ît)
.

Therefore, the limit limt→∞ xmin(t+ 1)− x1 = 0 results in

lim
t→∞

yt(Ît)− x1
µt(It)

µt(Ît)
+ 1

= 0.

For the limit above to hold, it is necessary that at least one of the following cases holds true:
1) µt(Ît) converges to zero. Hence, for any ε, δ ∈ R>0, there exists time T ≥ 0 such that for all
t ≥ T , µt((x1, x1 + r − δ]) < ε. Therefore, µt((x1, x1 + r)) converges to zero.
2) yt(Ît) converges to x1. Then, due to the absolute continuity of µt, yt([x1, xmin(t) + r]) converges
to x1. Hence, according to Lemma 2.2, the mass distribution over [x1, xmin(t) + r] converges to a
weighted Dirac delta distribution centered at x1. Therefore, µt((x1, xmin(t) + r]) converges to zero
and, similar to above, we conclude that µt((x1, x1 + r)) converges to zero.

Second, since µt(suppµt) is lower bounded, two cases are possible: i) µt converges to a single
atom at x1, which proves our theorem; and ii) there exists opinion x̂2 ∈ [x1 + r, xmax(t)] such
that ρt(x̂2) > ρmin for some ρmin ∈ R>0 and all t ≥ 0. This is due to the fact that suppµt is a
closed bounded interval and over this interval the density ρt is strictly greater than zero. Since
µt(suppµt) is lower bounded and µt is not converging to a single atom, there exists such opinion
x̂2 whose density does not converge to zero and thus is lower bounded. Denote the infimum of such
x̂2’s by x2. Therefore, for any x ∈ [x1 + r, x2), ρt(x) converges to zero, and thus µt([x1 + r, x2))
converges to zero. According to the first part of this proof, µt((x1, x1 + r)) also converges to zero,
hence owing to x2 ≥ x1 + r, µt([x2− r, x2)) converges to zero as time goes to infinity. Let us denote
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the opinion intervals [x2− r, x2) and [x2, x2 + r] by J1 and J2, and their opinion averages by yt(J1)
and yt(J2), respectively. Then,

γt(x2) =
yt(J1)µt(J1) + yt(J2)µt(J2)

µt(J1) + µt(J2)
.

Next, we prove that either yt(J2) converges to x2 or µt(J2) converges to zero. It is known from
Lemma 4.1 part (i) that yt(J2)−x2 > 0 and since x2 ∈ suppµt, µt(J2) > 0. Therefore, if yt(J2)−x2
and µt(J2) do not converge to zero, they are lower bounded for all times. By contradiction, assume
that there exist κ ∈ R>0 and µmin ∈ R>0 such that yt(J2)−x2 > κ and µt(J2) > µmin for all t ≥ 0.
As stated above, for any ε ∈ R>0, there exists T ≥ 0 such that µt(J1) < ε for all t ≥ T . Knowing
that yt(J1)− x2 > −r, equation (2.6) implies that for all t ≥ T

γt(x2)− x2 =
(yt(J1)− x2)µt(J1) + (yt(J2)− x2)µt(J2)

µt(J1) + µt(J2)
>
−rε+ κµmin

ε+ µmin

Consider ε1, δ1 ∈ R>0 such that ε1 < κµmin/r and

δ1 =
−rε1 + κµmin

ε1 + µmin
.

It follows from ρt(x2) > ρmin for infinite time steps and the absolute continuity of µt that for any
δ ∈ R>0, there exists ε2 ∈ R>0 such that µt(Bδ(x2)) > ε2 for infinite t ≥ 0, where Bδ(x) is an open
ball centered at x with radius δ. Now, let ε = min{ε1, ε2} and δ = δ1, then again by equation (2.6)
for infinite number of time steps t ≥ T ,

δ =
−rε1 + κµmin

ε1 + µmin
≤ −rε+ κµmin

ε+ µmin
< γt(x2)− x2.

Therefore, for any x ∈ Bδ(x2), x < γt(x2), and thus according to Theorem 3.1 part (ii), γ−1t (Bδ(x2)) ∈
J1 for infinite t’s. Based on equation (2.2),

µt+1(Bδ(x2)) = µt(γ
−1
t (Bδ(x2))) < µt(J1) < ε,

which contradicts the assumption that µt(Bδ(x2)) > ε2 ≥ ε for all t ≥ 0. Therefore, it is true that
either yt(J2) converges to x2 or µt(J2) converges to zero. In the former case, Lemma 2.2 shows that
µt([x2, x2 + r]) converges to a weighted Dirac delta distribution centered at x2, and thus it can be
concluded from the both cases that µt((x2, x2 + r]) converges to zero.

Third, we repeat the second part of this proof for the opinion interval [x2 + r, xmax(t)] and so
on.

Finally, for every bounded and continuous test function η

lim
t→∞

∫
R
η(z)µt(dz) = η(x1)m1 + η(x2)m2 + η(x3)m3 + · · · =:

∫
R
η(z)µ∞(dz),

where, the measures µ∞([xmin(∞), x1 + r)), µ∞([x1 + r, x2 + r)), µ∞([x2 + r, x3 + r)), . . . are
denoted by m1, m2, m3, . . . , respectively. Hence, µt converges in the weak-star topology to an
atomic measure µ∞, whose atoms, {mi : i = 1, 2, 3, . . . }, are far apart with at least distance r, see
Figure 4.1.
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Following our theorem on the convergence of the mass distribution to separate atoms, the next
lemma establishes the clustering behavior in one iteration in our Eulerian HK system with input
and the idea of “rich gets richer and poor gets poorer.” Roughly speaking, the lemma states that
for a population distributed over some small opinion interval [a, b], if the density of the population
and the exogenous input over the opinion interval [a − r, b + r] is higher than the density of the
population just outside of this interval, then the population over [a, b] concentrates in one iteration.

In the remainder of this paper, we denote γt(x)− x by ∆t(x) for brevity.
Lemma 4.3. Consider an Eulerian HK system with input that satisfies Assumption 2.1. Denote

the sum of mass distribution and input (µt + ut) by measure νt and the density functions of µt and
νt by ρt : suppµt → R≥0 and %t : supp νt → R≥0, respectively. Then for any x ∈ suppµt such that
ρt(x) > 0 and ρt is continuous at x, the following statements hold:

(i) ρt+1 is continuous at γt(x) and ρt+1

(
γt(x)

)
> 0;

(ii) ∂∆t(x)/∂x = ρt(x)/ρt+1

(
γt(x)

)
− 1; and

(iii) if

max{%t(x+ r), %t(x− r)} <
νt([x− r, x+ r])

2r
or(4.3)

min{%t(x+ r), %t(x− r)} >
νt([x− r, x+ r])

2r
,(4.4)

then ρt+1

(
γt(x)

)
> ρt(x) or ρt+1

(
γt(x)

)
< ρt(x), respectively.

Proof. Notice that the underlying system satisfies the conditions of Theorem 3.1, and hence µt
and νt are absolutely continuous for all t ≥ 0 and suppµt is a closed bounded interval.

Regarding part (i), first denote a ball of infinitesimal radius ε ∈ R>0 centered at any opinion x
by Bε(x), then the absolute continuity of µt and µt+1 together with equation 2.2 result in

ρt+1(γt(x)) = lim
ε→0

µt+1(Bε(γt(x)))

2ε
= lim
ε→0

µt
(
γ−1t (Bε(γt(x)))

)
2ε

= ρt(x) lim
ε→0

γ−1t (γt(x) + ε)− γ−1t (γt(x)− ε)
2ε

,

where the right hand side is a result continuity of γt, γ
−1
t and ρt at x. Furthermore, the bi-Lipschitz

continuity of γt together with the equality above implies that ρt+1 is continuous at γt(x). Hence,
we can write

(4.5) ρt(x) = lim
ε→0

µt(Bε(x))

2ε
= lim
ε→0

µt+1

(
γt(Bε(x))

)
2ε

= ρt+1

(
γt(x)

)
lim
ε→0

γt(x+ ε)− γt(x− ε)
2ε

.

According to Theorem 3.1 parts (ii) and (iii), 2Ltε > γt(x+ ε)− γt(x− ε) > 2ε/Lt for some Lt ≥ 1.
Therefore,

ρt(x)/Lt < ρt+1

(
γt(x)

)
< Ltρt(x),

which proves that ρt+1

(
γt(x)

)
> 0.

Regarding part (ii), we have

∂∆t(x)

∂x
= lim
ε→0

∆t(x+ ε)−∆t(x− ε)
2ε

= lim
ε→0

γt(x+ ε)− γt(x− ε)
2ε

− 1.
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Employing equation 4.5 in the right hand side results in the claimed statement.
Regarding part (iii), we show that if the inequality (4.3) holds true, then ρt+1

(
γt(x)

)
> ρt(x),

and the proof to the second inequality is similar. Consider

lim
ε→0

γt(x+ ε) = lim
ε→0

(x+ r)S1 + ztS2

S1 + S2
,

lim
ε→0

γt(x− ε) = lim
ε→0

(x− r)S3 + ztS2

S3 + S2
,

where S1,2,3 denote νt(Bε(x+r)), νt([x−r+ε, x+r−ε]), and νt(Bε(x−r)), respectively, and zt denotes
the opinion average over the interval [x− r+ ε, x+ r− ε]. Knowing that limε→0 νt(Bε(x+ r))/2ε =
%t(x+ r) and limε→0 νt(Bε(x− r))/2ε = %t(x− r),

lim
ε→0

γt(x+ ε)− γt(x− ε)
2ε

= lim
ε→0

γt(x+ ε)− x− γt(x− ε) + x

2ε

= lim
ε→0

2rS1S3/ε+ %t(x+ r)S2(x− zt + r) + %t(x− r)S2(zt − x+ r)

(S1 + S2)(S3 + S2)
.

Since |zt− x| < r, both x− zt + r and zt− x+ r are positive, and according to the inequality (4.3),
max{%t(x+ r), %t(x− r)} < limε→0 S2/2r. Therefore,

lim
ε→0

γt(x+ ε)− γt(x− ε)
2ε

< lim
ε→0

r%t(x+ r)S3 + r%t(x− r)S1 + 2rmax{%t(x+ r), %t(x− r)}S2

(S1 + S2)(S3 + S2)

< lim
ε→0

S2(S1 + S3) + S2
2

(S1 + S2)(S3 + S2)
< 1.

Consequently, according to the equation (4.5), ρt(x) < ρt+1

(
γt(x)

)
.

Lemma 4.3 is employed in the study of how population clusters are formed and diverge away
from the center of a weighted Dirac delta input, presented in the next section.

5. Exogenous Input. In this section, we study information assimilation under a single con-
stant input centered at the advertised opinion with a uniformly distributed initial population. As
discussed in the Introduction, one of the most influential inputs for the evolution of opinions is
the mainstream media. With the increase in the popularity of new communication technologies
such as blogging and tweeting, the message sent by the media is restated publicly with bias, and
thus the direct influence of media on the public has been replaced by a two-way relationship [30].
Accordingly, an exogenous input in an Eulerian HK system can be modeled as a background nor-
mal distribution centered at the opinion of an expert with the total area under the curve equal to
w ∈ R>0. The variance of this input depends on various factors such as biased repetition of the
message by blogs, and w depends on factors such as how strongly the message is being reported. For
such an input in an Eulerian HK system, we introduce the input’s “attracted population,” which is
the total population that is attracted to the input’s center as time goes to infinity. Here we study
two families of exogenous inputs. First, we assume that there is no bias in the rebroadcast by blogs
and tweets. Hence, the input can be represented by a Dirac delta distribution, and we compute
an upper bound for this input’s attracted population. Second, we consider a normally distributed
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input which only influences a finite range of opinions (i.e., a truncated normal distribution) and
present our conjecture based on simulation results.

Definition 5.1 (Attracted population). Consider an Eulerian HK system with mass distri-
bution µt and a time-invariant weighted Dirac delta input u = wδx̂, for x̂ ∈ suppµt and weight
w ∈ R>0. The input’s attracted population, denoted by A(r, u, µ0) ∈ [0, µt(suppµt)], is defined by

A(r, u, µ0) = lim
ε→0

lim
t→∞

µt
(
(x̂− ε, x̂+ ε)

)
.

Now, we consider the effect of the weighted Dirac delta input wδ0 on an initially uniform
distribution of population over the opinion space R. Note that the influence of a Dirac delta input
on an infinite opinion space is roughly equivalent to its influence on the center of a bounded opinion
interval whose length is sufficiently larger than r such that the impact of opinion space’s boundaries
can be ignored. Furthermore, for a constant ratio ρ0/w, where ρ0 denotes the initial mass density,
one may verify that the evolution of the mass distribution is independent of ρ0. For such an Eulerian
HK system with input, if ∂∆t(x)/∂x exists for all x > r at time t, then we define

ξ(t) = inf{x :
∂∆t(x)

∂x
= 0 and γt(x) > r}.

Moreover, we denote r
r+w by α and the opinions γt ◦ · · · ◦ γ0(r)/r and γt ◦ · · · ◦ γ1(

√
1 + α r) by

c(t) and η(t), respectively. Later we show that c(t)r is the largest opinion of the central population
whose initial opinion belongs to [−r, r] and η(1) is a fixed point of γ1(x). For simplicity of the
analysis, we employ the following technical assumptions (that are supported by numerical results)
in Theorem 5.1.

Assumption 5.1. If ξ(t) is finite, then γt(ξ(t)) ≥ 2r, ∆t(ξ(t)) ≥ 0, and γt(ξ(t)) ≥ ξ(t+ 1).
Assumption 5.2. For t ∈ {0, . . . , 5}, yt((0, 2r)) < r, and for t = 5, γt(r/2) < r/2, η(t) >

γt(ξ(t)), µt((c(t), 2r)) < (
√

1 + α− 1)r, and if α < 0.75, then c(5) < 0.5.
We explain in Remark 1 that Assumption 5.1 is based upon the conjecture that the inter-cluster

distance in Eulerian HK model of opinion dynamics with uniform initial condition is greater than
or equal to 2r, and ξ(t) separates the attracted population from a cluster that is formed above this
population. Assumption 5.2 is based on the behavior of the system in the first five time steps and
is numerically conjectured, see the simulation results for different values of α in Figure 5.

Theorem 5.1 (Upper bound on attracted population). Consider an Eulerian HK system with
uniform initial mass distribution µ0 with ρ0(x) = ρ0 = 1 for any x ∈ R and a time-invariant input
u = wδ0, where w ∈ R>0. If the system satisfies Assumption 5.2, r

r+w < 0.75, and Assumption 5.1
holds for all t ≥ 5, then

(i) µt � L1 for all t ≥ 0, and

(ii) A(r, u, µ0) < 2r
√

1 + r
r+w .

Proof. Due to the symmetry of the population with respect to the origin, throughout this proof,
we focus only on the dynamics of population with positive opinions. Note that the effect of the
input on the mass distribution propagates with rate r. In other words, at any time t, the mass
distribution over opinion interval (tr,∞) remains uniform with density ρ0.

Consider the following statements:
(a) µt � L1,
(b) ρt(x) > 0 and is continuous for all x ∈ (r,∞),
(c) yt((0, 2r)) < r,
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Fig. 5.1. Evolutions of Eulerian HK systems with uniform initial distribution µ0 ∼ U(−L,L) and input
u = wδ0 are illustrated. We consider ρ0 = 1, L ∈ R>0 and sufficiently larger than r = 0.05, and three values of

r
r+w

= 0.7, 0.3, 0.01 (from left to right). To assure lucidity of results, the agent based behavior of descritized Eulerian

HK systems is represented. Simulating this system for various values of r
r+w

, we conjecture that Assumption 5.1

holds for all t ≥ 5 and Assumption 5.2 is always satisfied. Moreover, it can be observed that for a larger w (i.e.,
a more strict report of the message) a smaller population will be attracted to the input’s center and the rest will
cluster away from the input.

(d) γt(r/2) < r/2, and
(e) µt((c(t), 2r)) < (

√
1 + α− 1)r.

We depict the interconnection between the statements above, on which we establish the theorem.
More specifically, statements (a) and (e) construct parts (i) and (ii) of the theorem, respectively.
First, it is easy to see that statements (a) and (b) hold at t = 0. Based on Assumption 5.2,
statement (c) holds for t ∈ {0, . . . , 5}. Here we prove by induction that at any time t ≥ 0, if the
three statements hold true, then statements (a) and (b) hold true at t+ 1. Second, we show that if
all these statements hold at any time t ≥ 5, then statements (c), (d), and (e) will hold true at t+ 1.

Regarding statement (a), denote the mass distribution µt over interval (r, (t + 1)r] at time
t ≥ 0 by µ̂t. Then, the mass distributions over intervals [0, r] and ((t+ 1)r, (t+ 2)r] at time t can
be regarded as inputs for µ̂t which are absolutely continuous. Hence, the system with initial mass
distribution µ̂t with support (r, (t+1)r] satisfies the sufficient conditions of Theorem 3.1. Therefore,
µ̂t+1 with support limε→0[γt(r+ε), (t+1)r] is absolutely continuous, where γt+1((t+1)r) = (t+1)r.
Since statements (b) and (c) hold at time t, limε→0 γt(r + ε) < r, and thus it can be shown that
γt(x) satisfies the strict monotonic behavior stated in Theorem 3.1 part (ii) for all x ∈ R. In view
of the flow map’s strict monotonicity, the mass distribution over opinion interval [γt(−r), γt(r)]
at time t + 1 contains no atom, and thus is absolutely continuous, however, its support does not
necessarily equal to [γt(−r), γt(r)] and may consist of a set of separate intervals.

Regarding statement (b), as shown above, suppµt+1 over interval [r,∞) is a closed interval,
and since limε→0 γt(r + ε) < r for t ≥ 0, this support is equal to [r,∞). Therefore, ρt+1(x) > 0 for
all x ∈ (r,∞), and based on Lemma 4.3 part (i), ρt+1 is continuous for all x ∈ (r,∞).

Regarding statement (c), since statement (e) holds at time t ≥ 5, we have

(5.1) yt+1((0, 2r)) <
c(t)r2 + 2r2(

√
1 + α− 1)

r
√

1 + α
.

Assumption c(5) < 0.5 together with statement (d) at time t results in c(t) < 0.5, therefore
yt+1((0, 2r)) < r.
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Regarding statement (d), similarly, we have

(5.2) γt(r/2) <
(
√

1 + α− 1)r(c(t) + r)

w + 2r + (
√

1 + α− 1)r
.

Since w = r/α− r and c(t) < 0.5, above inequality results in

(5.3) γt(r/2) <
(
√

1 + α− 1)1.5r

1/α+
√

1 + α
< r/2.

Regarding statement (e), first, as shown above, statement (b) holds at times t ≥ 0 and t + 1,
hence Lemma 4.3 part (ii) leads to the existence and continuity of ∂∆t(x)/∂x for all x ∈ (r,∞).
Moreover, according to Theorem 3.1 part (ii), γt(r) < r for t ≥ 5 results in γ−1t (r) > r and
thus ∆t(γ

−1
t (r)) < 0. Since the mass distribution for x > tr is not effected by input at any time t,

∆t(x) = 0 for x ∈ (tr,∞), which shows that ξ(t) is finite. Now, from ∆t(ξ(t)) > 0 and ∆t(γ
−1
t (r)) <

0, since ∂∆t(x)/∂x is continuous over (r,∞) and ξ(t) is defined as the infimum of all x > r such
that ∂∆t(x)/∂x = 0 and γt(x) > r, we have ∂∆t(x)/∂x > 0 for all x ∈ (γ−1t (r), ξ(t)). Therefore,
according to Lemma 4.3 part (ii), ρt+1

(
γt(x)

)
< ρt(x) for all x ∈ (γ−1t (r), ξ(t)). Equivalently,

ρt+1(x) < ρt
(
γ−1t (x)

)
for all x ∈ (r, γt(ξ(t)))). Since according to Assumption 5.1, (r, 2r) ⊆

(r, γt(ξ(t)))), we have µt+1((r, 2r)) < µt((r, 2r)).
Finally, part (i) of the theorem can be concluded from statement (a) which holds for all t ≥ 0.

Regarding part (ii), from Assumption 5.2, statements (d) and (e) hold at t = 5 and, as shown in the
beginning of this proof, statements (a), (b), and (c) hold at t ∈ {1, . . . , 5}. Therefore, by induction,
all statements will hold for all t ≥ 5. Now, since statements (a) and (b) hold true, part (ii) of
Theorem 3.1 together with η(5) > γ5(ξ(5)) implies that η(t) > 2r for all t ≥ 5 which results in

A(r, u, µ0) < µt((−2r, 2r)) < µt
(
(−η(t), η(t))

)
= µ1

(
(−η(1), η(1))

)
= ρ0

(
2r + 2r(

√
1 +

r

r + w
− 1)

)
= 2r

√
1 +

r

r + w
.

Remark 1. Assumption 5.1 stems from the conjecture that in the Eulerian HK system of
Theorem 5.1, a cluster forms above opinion 2r for t ≥ 5. A cluster, roughly speaking, is any
opinion interval (a, b) with a mass density higher than the density over intervals (a − r, a) and
(b, b + r). This property, according to Lemma 4.3 part (iii), leads to an increase in the cluster’s
density in the next iteration. Hence, according to Lemma 4.3 part (ii), ∂∆t(x)/∂x < 0 over the
cluster and ∂∆t(x)/∂x > 0 above and below the cluster, which leads to the existence of opinions
with ∂∆t(x)/∂x = 0 above and below the cluster.

Theorem 5.1 illustrates that a Dirac delta input, which represents a non-biased rebroadcast of
expert’s opinions, can attract a proportion of population whose opinions lie in more than r and
less than 2r distance from the input’s center. Furthermore, the size of attracted population has
an inverse relation with w, which is the total area under the input’s distribution (i.e., the input’s
intensity.) The interpretation of this result is that a strong message can attract smaller population
than a mild message broadcasted by media.

Next, we consider the case of a truncated normal distribution as the input for Eulerian HK
system, which represents a biased repetition of the media’s message by blogs that only influences
a finite range of opinions. Note that a non-truncated normal distribution with a non-zero variance
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Fig. 5.2. In evolutions of Eulerian HK systems with uniform initial distribution µ0 ∼ U(−x0, x0) and input
u ∼ N (0, σ2), the attracted population A(r, u, µ0) is found for different values of the following parameters: σ, x0, and
r. In conclusion, for σ ≤ 0.05| suppµ0| and r ≤ 0.125| suppµ0|, the simulations reveal the following linear relation:
A(r, u, µ0) ' (8σ + 2r)/| suppµ0|. In the top left plot, x0 = 1, r = 0.1, and σ ∈ {0.01, 0.02, . . . , 0.17}; in the bottom
left, x0 = 1, σ = 0.04, and r ∈ {0.03, 0.06, . . . , 0.45}; in the middle, x0 = 1 and (σ, r) ∈ {(0.01, 0.03), . . . , (0.12, 0.3)};
and in the right, x0 = 2 and (σ, r) ∈ {(0.06, 0.1), . . . , (0.22, 0.5)}.

as an input eventually derives the whole population into a consensus. We simulated Eulerian HK
systems with uniform initial distribution µ0 ∼ U(−x0, x0) and input u ∼ N (x̂, σ2) with support
[−3σ, 3σ] for different values of the following parameters: σ, x0, and confidence bound r, see
Figure 5. We observe that the attracted population is larger than for the case of non-biased
advertising. More specifically, for σ ≤ 0.05| suppµ0|, r ≤ 0.125| suppµ0|, and x̂ such that {x̂ −

4σ+r
| suppµ0| , x̂+ 4σ+r

| suppµ0|} ∈ suppµ0 the simulations reveal the following linear relation:

A(r, u, µ0) ' 8σ + 2r

| suppµ0|
.

Therefore, we conjecture that the attracted population is approximately an increasing affine function
of the population’s confidence bound and of the input’s standard deviation, see Figure 5. This
result suggests that (i) a higher biased rebroadcast of media’s message by various blogs, and/or (ii)
a larger confidence bound result in the attraction of a larger population to the advertised message.
Moreover, the blogs bias has a higher effect than the population’s confidence bound in attraction
of the population to the advertised opinion.

6. Conclusion. In this paper, we studied the formation of opinions in a large population that
is governed by endogenous (interactions with peers) and exogenous (influence of media) factors. We
focused on an Eulerian bounded-confidence model of opinion dynamics and proposed a reasonable
model for exogenous inputs. We proved mathematical properties of this system’s dynamics with
time-varying input and derived a simple sufficient condition for opinion consensus. In particular,
for the case of no exogenous input, we showed the convergence of the population’s distribution to a
sum of weighted Dirac delta distributions. To analyze the information assimilation in our system,
we modeled the exogenous inputs as background weighted Dirac delta and (truncated) normal
distributions centered at the opinion of an expert and defined the attracted population of a constant
input. For the case of weighted Dirac delta input, and uniformly distributed initial population,
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under technical assumptions, we established an upper bound on the attracted population. This
upper bound is an increasing function of population’s confidence bound and a decreasing function
of input’s measure. For the case of a normally distributed input with truncated support, we
conjectured that the attracted population is approximately an increasing affine function of the
population’s confidence bound and of the input’s standard deviation.

There are three main future challenges for this work. First, we plan to complete the study
on an Eulerian HK system with Dirac delta input; we aim to fully understand the time-invariant
input’s influence on the overall population and on the eventual emergence of clusters in equilibria.
Second, we intend to focus on the mathematical analysis of the more general case, where a normally
distributed input is considered. Third, we are interested in strategic opinion manipulation and it
is of great importance to study how a time-varying input has a higher efficiency in manipulation of
opinions than a constant input.
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