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Abstract: This work focuses on the problem of designing surveillance trajectories for a network
of autonomous cameras. As performance criterion we consider the worst-case detection time
of static intruders. First, we represent the environment by means of a robotic roadmap. We
show that optimal trajectories can be designed via a continuous graph partitioning problem.
This minimization problem is convex and not differentiable. Second, we derive an auxiliary
convex and differentiable minimization problem whose minimizer provides a solution to the
original problem. Third and finally, we develop three distributed algorithms, for the cameras
to partition the roadmap, and, consequently, synchronize along a trajectory with minimum
worst-case detection time. Different communication protocols are used for the three algorithms.

1. INTRODUCTION

Remote surveillance of human activities for military and
civil applications is receiving considerable attention form
the research community. Public places such as banks, art
galleries, homes, prisons, department stores, and parking
lots, are now equipped with camera networks to detect
important activities. From a scientific perspective, one of
the main challenge consists of developing efficient algo-
rithms for the cameras to autonomously and distributively
complete tracking, surveillance, and recognition tasks.

In this work we focus on the problem of detecting in-
truders by means of a network of autonomous cameras.
In particular, we consider camera networks installed at
important locations in an environment. We assume cam-
eras to be able to move their field of view (f.o.v.) to
sweep the whole environment. We develop algorithms for
the cameras to self-organize in order to detect intruders
in the environment. We consider static intruders, which
appear at arbitrary locations and at arbitrary times. As
performance criteria we consider the worst-case detection
time, that is the longest time needed for the cameras to
detect intruders. Our setup is illustrated in Fig. 1.

Related work. In mobile robotics, the patrolling problem
consists of repeatedly surveying a region with a team
of autonomous agents in order to detect intruders or
important events, e.g., see Alberton et al. [2012], Baseggio
et al. [2010], Pasqualetti et al. [2011]. Although related,
the patrolling problem and the problem considered in
this paper significantly differ. First, cameras are fixed at
predetermined locations, while robots are usually allowed
to travel the whole environment. Second, the cameras f.o.v.
must lie within the cameras visibility constraints, while
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robots do not have visibility contraints, since they can
usually travel anywhere in the environment. Because of
these reasons, algorithms developed for teams of robots
are, in general, not applicable in our setup.

In the context of camera networks, the perimeter pa-
trolling problem has recently been studied in Baseggio
et al. [2010], Carli et al. [2011], Spindler et al. [2012]. In
these works, distributed algorithms are proposed for the
cameras to partition a one-dimensional environment, and
to synchronize along a trajectory with minimum worst-
case detection time of intruders. We improve the results
along this direction by developing cameras trajectories for
general environment topologies.

Paper contributions. The main contributions of this
work are as follows. We consider the problem of detect-
ing (static) intruders by means of a team of autonomous
cameras. We adopt the worst-case detection time as per-
formance function. We model the environment to be moni-
tored as a roadmap, in which vertices represent important
locations in the environment, and edges denote the pos-
sibility for a camera installed at an end-vertex to survey
the physical edge. We show that, for acyclic roadmaps,
cameras trajectories with minimum worst-case detection
time can be designed by solving a continuous roadmap
partitioning problem. We also conjecture that this is the
case for cyclic roadmaps. Second, we show that the above
continuous roadmap partitioning problem is convex but
non-differentiable. Hence, we derive an auxiliary (strictly)
convex and differentiable minimization problem. We show
that for general roadmaps the unique minimizer of the
smooth problem is also a minimizer for the original prob-
lem. Third, we develop three distributed algorithms for
the cameras to partition the roadmap, and hence to self-
organize along optimal trajectories. These three algo-
rithms rely upon different communication assumptions.



Fig. 1. As example environment we choose the Louvre
museum, a map of which is here reported. We se-
lect 38 locations in the map (black circles and blue
squares), and we install cameras at 29 of these loca-
tions (blue squares). The environment is represented
by a roadmap, whose vertices correspond to the 38
locations, and whose edges are reported in the picture
as solid black lines.

In particular: our first algorithm assumes a synchronous
mode of operation of the cameras; our second algorithm as-
sumes an asymmetric broadcast communication model and
extends the class of block-coordinate descent algorithms to
the constrained case; and our third algorithm only requires
gossip communication. We show convergence of all three
algorithms, and we show their convergence properties via
a numerical experiment.

Paper organization. A description of the problem and
some remarks are stated in Section 2. Section 3 deals
with the design of an optimal camera trajectory and an
equivalent minimization problem is presented. In Section 4
three distributed partition algorithms are presented with
convergence results, and numerical results are shown in
Section 5 to validate the effectiveness of the proposed
algorithms. Finally Section 6 contains the conclusions of
this work and some perspectives related to future research.

2. PROBLEM SETUP AND PRELIMINARY
DEFINITIONS

Consider a set of n ∈ N identical cameras {c1, . . . , cn} for
the task of monitoring a two dimensional environment. We
represent the environment with a roadmap G = (V, E) (see
LaValle [2006]), where the vertex set V corresponds to a set
of locations in the environment, and the edge set reflects
the visibility properties of the cameras. In particular, we
assume the cameras to be installed at the vertices Vc ⊆ V,
with |Vc| = n, and we let camera ci be installed at vertex
vi ∈ Vc. Let undirected edge {vi, vj} ∈ E if there exists a
point in the segment [vi, vj ] visible by the camera installed
at vi or vj . Let Ec = (Vc × Vc) ∩ E , and let the distance
between vertices vi and vj be the weight of the edge
{vi, vj}, defined by Lij = dist(vi, vj). Thus the camera
network is the undirected weighted graph Gc = (Vc, Ec,L),
where L is the vector of Lij . If {vi, vj} ∈ Ec, then ci and cj
are neighboring cameras. Let N in

i denote the set of vertices
in Vc adjacent to vi. Finally, let N out

i denote the set of
vertices in V \ Vc adjacent to vi.

Notice that the construction of the roadmap G depends
upon the cameras visibility constraints. We assume that:

(A1) at each point in time, the i-th f.o.v. is a point along
the segment [vi, vj ] for some vj ∈ N in

i , and
(A2) the speed of i-th f.o.v. belongs to the set {0, 1}. 1

Let xi(t) denote the position at time t of the i-th f.o.v..
We assume that each camera has a limited visibility range
along each adjacent edge. In particular, at each time t,

(A3) if xi(t) ∈ [vi vj ], then `ijLij ≤ dist(xi(t), vi) ≤
uijLij , for some constants `ij , uij ∈ [0, 1].

Let ` ∈ [0, 1]Ec and u ∈ [0, 1]Ec be the vectors of `ij and uij ,
respectively. Finally we assume that the whole roadmap G
is jointly visible by the cameras. Our setup is in Fig. 1.

A cameras trajectory is a set of n continuous functions
X = {x1, . . . , xn}, where xi describes the position of the
i-th f.o.v. along the roadmap G. We focus on periodic cam-
eras trajectories, for which there exists T ∈ R>0 such that
X(t+T ) = X(t) for t ∈ R>0. Let Ti ∈ R>0 be the period of
camera ci. Then, T = l.c.m(Ti) is the least common multi-
ple of the periods Ti. Define the image of the i-th camera
as the set of points covered by the i-th f.o.v. in any period
of length Ti, i.e., Im(xi) = ∪t∈[0,Ti]xi(t). Finally, let the
image of the cameras trajectory be Im(X) = ∪ni=1Im(xi),
and the cameras image set be IX = {Im(x1), . . . , Im(xn)}.
We consider the problem of designing cameras trajectories
to detect static intruders along the roadmap. In particular,
we allow an intruder to appear at any time tarr ∈ R>0,
and any point p along the roadmap G. We assume that the
intruder is detected at time tdet if p ∈ X(tdet). We evaluate
a trajectory X according to its worst-case detection time,
that is the longest time for the detection of an intruder.
Specifically, we define the worst-case detection time of a
cameras trajectory as

WDT(X) := max
t0,p0

t∗(t0, p0, X),

where

t∗(t0, p0, X) = min{t− t0 : t ≥ t0, p0 ∈ X(t)}.
In this work we design cameras trajectories with minimum
worst-case detection time for the case of acyclic roadmaps.

3. CAMERAS TRAJECTORIES WITH MINIMUM
WORST-CASE DETECTION TIME

In this section we design a camera trajectory with min-
imum worst-case detection time of static intruders. In
particular, we assume the roadmap G and the cameras
locations Vc to be given, and we design the cameras tra-
jectory X = {x1, . . . , xn} that achieves minimum worst-
case detection time of static intruders. This section is
organized as follows. First, we show that the trajectory
design problem can be cast as a convex, non-differentiable,
minimization problem (Section 3.1). Then we derive an
auxiliary convex and differentiable minimization problem
for computing optimal trajectories (Section 3.2). In Sec-
tion 4 we show that the latter formulation is amenable to
distributed implementation.

1 If ẋi denotes the linear speed of the i-th f.o.v., the related angular
speed θ̇i = ẋi/(ai sec

2(θi)) depends on the distance ai of the camera
from the f.o.v. path, and the Pan-angle θi.



3.1 Trajectory design and graph partitioning

We define a relative order among the cameras as follows.
For the neighboring cameras ci and cj , with i < j, let
the time t be such that the i-th f.o.v. and the j-th f.o.v.
lie on the edge {vi, vj}. Then we say that ci ≤ cj if
dist(xi(t), vi) ≤ dist(xj(t), vi). If xi(t), xj(t) lie on different
edges at time t, our convention is xi(t) ≤ xj(t). A camera
trajectory is order-invariant if the relative order of the
cameras along the edges is preserved over time.

Theorem 3.1. (Order-invariant cameras trajectory)
For any cameras trajectory X along the roadmap G,
there exists an order-invariant cameras trajectory X̄ with
WDT(X) = WDT(X̄).

Proof. For any couple of adjacent cameras {vi, vj} ∈ Ec
if there exists t ≥ 0 such that xi(t) = xj(t) define t0ij =

min{t ≥ 0 : xi(t) = xj(t)} and tnij = min{t > tn−1
ij :

xi(t) = xj(t)}, n ∈ N. An order-invariant trajectory can
be derived from X permuting the cameras labels as follows

x̄i(t) = xj(t), x̄j(t) = xi(t), if t2kij ≤ t ≤ t2k+1
ij

with k = 0, 1, . . . and define x̄i(t) = xi(t), x̄j(t) = xj(t)
otherwise. Each point along the roadmap receives the
same visits at the same time instants, thus WDT(X̄) =
WDT(X). �

Notice that in general the images of neighboring cameras
may overlap. A camera trajectory is called non-overlapping
if for any {vi, vj} ∈ Ec, it holds Int(Im(xi))∩Int(Im(xj)) =
∅, where Int(·) denotes the interior of a set. Let |Im(xi)|
denote the length on G of the image Im(xi).

Theorem 3.2. (Non-overlapping cameras trajectory)
For any cameras trajectory X on an acyclic roadmap,
there exists an order-invariant non-overlapping cameras
trajectory X̄ with WDT(X) ≥WDT(X̄).

Proof. We can assume X to be order invariant, if not
find an equivalent order invariant trajectory as in Theorem
3.1. Define a camera trajectory X̄ = {x̄1, . . . , x̄n} in
such a way that x̄i(t) = xi(t) for any i ∈ Vc with
deg(i) = 1, hence Im(x̄i) = Im(xi). Since the worst-
case detection time for the point vi is t∗(t0, vi, X) = Ti,
then maxp∈Im(xi) t

∗(t0, p,X) = maxp∈Im(x̄i) t
∗(t0, p, X̄) =

Ti. Up to relabeling the nodes, suppose x̄1, . . . , x̄r have
already been assigned, where r denotes the number of
nodes with unitary degree. Define the subsets of the
roadmap Im(x̄i) = cl(Im(xi)\

(
∪i−1
j=1Im(x̄j)

)
), i = r +

1, . . . , n where cl(·) denotes the closure of a set, and we
choose the assignment order in such a way that node i
can be selected if it has at least one assigned neighbor.
Consider p ∈ ∂(Im(x̄i))\

(
∪i−1
j=1Im(x̄j)

)
, i = r + 1, . . . , n

where ∂(·) denotes the boundary points of a set. Referring
to trajectory X, for sufficiently small ε > 0, note that
p+ε along edge {vi, vj} can only be visited by node i. Thus
maxp∈Im(xi) t

∗(t0, p,X) ≥ 2 |Im(x̄i)|−2ε. Moreover in limit
ε → 0, it holds maxp∈Im(xi) t

∗(t0, p,X) ≥ 2 |Im(x̄i)| since
the trajectories are continuous. Given the partition of the
roadmap {Im(x̄i)}ni=1, define the overlapping trajectory X̄
assuming that the cameras sweep periodically at maximum
speed their image. Therefore maxp∈Im(x̄i) t

∗(t0, p, X̄) =

2 |Im(x̄i)|, in other words WDT(X̄) = 2 maxi |Im(x̄i)| ≤
WDT(X). �

Remark 1. (Order invariance and non-overlapping
properties for cyclic graphs) While Theorem 3.1 ap-
plies to general roadmaps, Theorem 3.2 only applies to
acyclic roadmaps. It is our conjecture that analogous re-
sults can be stated for cyclic graphs. We leave this impor-
tant aspect as the subject of future research.

Following Theorem 3.1 and 3.2 we focus on periodic
order-invariant and non-overlapping cameras trajectories.
Consider the set I = {I1, . . . , In}, where Ii ⊆ G is
associated with camera ci. The set I is a continuous
partition of the roadmap G if G = ∪ni=1Ii and Int(Ii) ∩
Int(Ij) = ∅ for all i 6= j. Given a partition I of G, let
the dimension of I equal maxi |Ii|. For each {vi, vj} ∈
Ec, i < j, define the parameters αij ∈ [`ij , uij ], where `ij
and uij are the previously defined cameras contraints. Let
α ∈ [0, 1]Ec be the vector of the αij with the constraint
` ≤ α ≤ u 2 . Notice that the vector α defines a continuous
partition of G, precisely

Ii = I in+
i ∪ I in−

i ∪ Iout
i

where

I in+
i = ∪j∈N in

i
,i<j [vi, vi + αij(vj − vi)],

I in−
i = ∪j∈N in

i
,i>j [vi, vi + (1− αij)(vj − vi)],

Iout
i = ∪j∈N out

i
[vi, vj ].

Remark 2. (Finite worst-case detection time) For
any periodic cameras trajectoryX, it holds WDT(X) <∞
only if the roadmap G is included in the image set IX .

Given a continuous partition Idf, in Algorithm 2 we
design a trajectory Xdf , called DF-Trajectory (Depth
First-Trajectory). In Theorem 3.3 we show that the DF-
Trajectory achieves minimum worst case detection time
among the cameras trajectories with image set Idf (see
Diestel [2000] for the concept of depth-first tour).

Algorithm 1 DF-Trajectory

(Step A) Compute the partition I from α ∈ [0, 1]Ec

(Step B) Design DF-Trajectory

1: for i ∈ Vc do
2: t0 = 0, xi(0) = vi;
3: for j ∈ N in

i do
4: while t0 ≤ t ≤ t0 + 2αij do
5: xi(t) = (t− t0)vj + (αij − (t− t0))vi;
6: t ≤ t0 + αij ;
7: xi(t) = −xi(t− αij), t > t0 + αij ;
8: t0 = t0 + 2αij

9: end while
10: end for
11: end for

From Theorem 3.2, we next show that an optimal worst-
case detection time is given by the optimal partition.

Theorem 3.3. (Worst-case detection and partitions)
Consider an acyclic roadmap G, and let X be a cameras
trajectory with IX a continuous partition of G. Then,

WDT(X) ≥ 2 max
i∈{1,...,n}

|IXi |.

2 a ≤ b, where a, b ∈ Rn means ai ≤ bi for all i = 1, . . . , n.



Additionally, the DF-Trajectory Xdf with images set Idf =
IX in Algorithm 2 satisfies

WDT(Xdf) = 2 max
i∈{1,...,n}

|Iidf|.

Proof. The first statement can be achieved reasoning
along the lines of the proof of Theorem 3.2. Moreover it is
straightforward to show that WDT (Xdf) reaches the lower
bound. �

We conclude this section by noticing that, as a consequence
of Theorem 3.3, a cameras trajectory with minimum
worst-case detection time can be designed by addressing
the problem of finding a continuous partition of G with
smallest dimension.

3.2 Continuous min-max roadmap partitioning

In this section we introduce the graph partitioning prob-
lem we address and the necessary notation. Define the load
of the i-th camera, with i ∈ Vc, by

Wi =
∑

j∈N in
i

,i<j

αijLij +
∑

j∈N in
i

,i>j

(1− αij)Lij +
∑

j∈N out
i

Lij ,

(1)
where the parameters αij are defined as in Section 3.1, and
Lij denotes the length of the edge {vi, vj}. Let W be the
vector of the loads Wi.

For an acyclic roadmap G = (V, E) with corresponding
camera network Gc = (Vc, Ec,L), let A ∈ RVc×Ec be
the weighted incidence matrix of the subgraph of G with
vertices Vc and edges Ec. Specifically,

Ai,e =

{
Lij = −Aj,e if e = {vi, vj} ∈ Ec, i < j,

0, otherwise.
(2)

Define the vector b ∈ RVc as

bi =
∑

j∈N in
i

,i>j

Lij +
∑

j∈N out
i

Lij . (3)

Notice that the loads vector W can be written as

W = Aα+ b.

Recall from Theorem 3.3 that a minimum worst-case
detection time cameras trajectory can be designed from
a continuous partition of G with minimum dimension (see
also Algorithm 2). Thus we address the following convex
minimization problem (continuous min-max partitioning)

min
`≤α≤u

‖Aα+ b‖∞. (4)

Notice that, although the the minimization problem (4)
is not differentiable, it can be solved efficiently by means
of an LP solver (see Boyd and Vandenberghe [2004]). On
the other hand, since the infinity norm in (4) is not differ-
entiable, distributed solvers are difficult to find. We next
derive an equivalent differentiable minimization problem,
which is instead amenable to distributed implementation.

Theorem 3.4. (Auxiliary minimization problem) Con-
sider the minimization problem

min
`≤α≤u

‖Aα+ b‖22, (5)

where A and b are as in equation (2) and (3), respectively,
and `,u denote the cameras constraints. Let α∗ be the
unique solution to the minimization problem (5). Then,

‖Aα∗ + b‖∞ = min
`≤α≤u

‖Aα+ b‖∞.

Proof. In the following we denote αji = 1−αij whenever
{vi, vj} ∈ E , i > j. Firstly we prove that (5) has a unique
minimizer. Consider f : [0, 1]Ec → R≥0, defined by

f(α) =

n∑
j=1

W 2
j =

n∑
j=1

 ∑
i∈N in

j

αijLij

2

.

This function is defined on a convex compact and non-
empty feasibility set and it is strictly convex, therefore
its minimum is unique. Let α∗ denote this minimizer and
W (α∗) = {W ∗1 , . . . ,W ∗n} the corresponding loads set.
Secondly, we characterize the minimizer as follows. Con-
sider any j ∈ Vc such that W ∗j = ‖W ∗‖∞ and parti-

tion the neighbor set as follows N in
j = N 1

j ∪ N 2
j , where

W ∗i < W ∗j , i ∈ N 1
j and W ∗i = W ∗j = ‖W ∗‖∞, i ∈ N 2

j . For

any i ∈ N 1
j we claim that α∗ji = `ji, namely the parameter

is saturated on the lower bound starting from j. By absurd,
if there exists i ∈ N 1

j such that α∗ji > `ji, then consider

the loads set Ŵ defined as W ∗ for all the parameters α
except for α̂ji = 1− α̂ij = α∗ji − ε such that α̂ij < α̂ji, or
equivalently

α∗ij + ε < α∗ji − ε. (6)

Define the constants C1 =
∑

k∈N in
i

,k 6=j α
∗
ikLik and C2 =∑

k∈N in
j

,k 6=i α
∗
jkLik, the following contradiction is achieved

f(W ∗)− f(Ŵ ) =
(
C1 + α∗ijLij

)2 − (C1 + α̂ijLij)
2

+
(
C2 + α∗jiLji

)2 − (C2 + α̂jiLji)
2

= 2εLij(C2 − C1 + Lij(α
∗
ji − α∗ij − ε))

> 2εL2
ij(2(α∗ji − α∗ij)− ε) > 6ε2L2

ij > 0

using Eq. (6) and C2 − C1 > Lij(α
∗
ji − α∗ij), derived from

W ∗i < W ∗j .
Finally, we prove that ‖W ∗‖∞ = minα ‖Aα + b‖∞.

Suppose not, there exists Ŵ 6= W ∗ such that ‖Ŵ‖∞ =
minαAα + b. Then suppose W ∗j = ‖W ∗‖∞ and N 2

j = ∅,
hence for any i ∈ N in

j , αji = `ji. If N 2
j 6= ∅, we can

reason along the same lines, considering the subgraph
G′ given by all the connected nodes j whose component
equals the infinity norm, and for the previous statement
all their adjacent nodes in G\G′ are saturated. Therefore

Ŵj ≤ ‖Ŵ‖∞ < ‖W ∗‖∞ = W ∗j =
∑

i∈N in
j
`ji, but Ŵj ≥∑

i∈N in
j
`ji since l ≤ α ≤ u. This is a contradiction, thus

the thesis holds, i.e., W ∗ achieves the minimum infinity
norm. �

Remark 3. (Unconstrained solution) Notice that the
vector W satisfies ‖W‖1 =

∑
{vi,vj}∈E Lij , for every

parameters vector α. Then it can be verified that

arg min
α
‖Aα+ b‖22 = arg min

α
‖Aα+ b‖∞ =

∑
{vi,vj}∈E Lij

n
1

where 1 denotes the vector of all ones. �

4. DISTRIBUTED TRAJECTORY DESIGN

In this section we design three distributed, and thus scal-
able, algorithms for the continuous min-max partitioning
problem. Once an optimal partition has been computed,



it is immediate to design an optimal trajectory as in
Algorithm 2.

The algorithms we present rely upon different cameras
communication assumptions. We assume each camera to
be equipped with a wireless sensor device. In all our al-
gorithms, cameras perform the following operations: (i)
receive parameters from (some) neighboring cameras, (ii)
update the parameters corresponding to (some) adjacent
edges, and (iii) transmit the new values to (some) neigh-
boring cameras. These operations are detailed in the next
sections. For convenience, let St

i =
{
αij : j ∈ N in

i

}
be the

state of camera ci at iteration t ∈ N.

4.1 Synchronous Gradient Descent Partitioning algorithm

The distributed algorithm presented in this section as-
sumes a synchronous mode of operation of the cameras,
and it is inspired by the classical gradient projection
method (see Bertsekas and Tsitsiklis [1997]). In partic-
ular, every camera performs operations at uniform time
instants. This algorithm is detailed in Algorithm 2.

Algorithm 2 Synchronous Gradient Descent Partitioning

(Camera state) Si =
{
αij : j ∈ N in

i

}
, i ∈ Vc

(Initialize) α0
ij = `ij , for any {vi, vj} ∈ Ec

(Transmit and compute at iteration t ∈ N)

1: for i ∈ Vc do
2: Camera ci receives St

j from every j ∈ N in
i ;

3: Set αt+1
ij ← αt

ij − εLij(W
t
i −W t

j );

4: if αt+1
ij < `ij then αt+1

ij = `ij ;

5: else if αt+1
ij > uij then αt+1

ij = uij ;
6: end if
7: Camera ci transmits St+1

i to j ∈ N in
i ;

8: end for

Theorem 4.1. (Synchronous Partitioning) The Syn-
chronous Partitioning algorithm described in Algorithm
2 asymptotically converges to α∗SGD = limt→∞αt. More-
over,

min
`≤α≤u

‖Aα+ b‖2∞ = ‖AαSGD + b‖2∞.

Proof. Note that the update step can be expressed in
vector form as

αt+1 ← αt − ε(ATAαt +AT b),

and that ATAα + AT b is the gradient of the quadratic
function ‖Aα + b‖2∞/2. Therefore the Synchronous Par-
titioning algorithm coincides with the gradient projection
method (Bertsekas and Tsitsiklis [1997]). To conclude the
proof note that ‖Aα + b‖22/2 has a Lipschitz-continuous
gradient with Lipschitz constant K ∈ R>0, thus for a
sufficiently small step size the convergence of the algorithm
to the optimal solution of Equation (5) is achieved, see e.g.
[Bertsekas and Tsitsiklis, 1997, Proposition 3.4]. Finally
apply Theorem 3.4 to achieve the optimality with respect
to the infinity norm. �
Remark 4. (Stepsize for Algorithm 2) The stepsize ε
in Algorithm 2 needs to satisfy 0 < ε < 2/K, where K
is Lipschitz constant of the function AT (Aα + b). It is
easy to show that K ≤ 2dmaxL

2
max, where dmax denotes

the maximum degree of the nodes in Vc and Lmax the
maximum edge length. Thus it suffices to choose ε <

1
dmaxL2

max
. See Bertsekas and Tsitsiklis [1997] for further

details. �

4.2 Asymmetric Broadcast Partitioning algorithm

The distributed algorithm presented in this section as-
sumes an asymmetric broadcast communication proto-
col. In particular, at any time iteration only one camera
updates its state, using only local information from its
neighboring cameras. We assume that each camera initiate
an update step according to a Poisson process which selects
a camera after an exponentially distributed waiting times.
From the Markovian property of Poisson processes (Ross
[1983]), the sequence of selected cameras is a sequence of
independent indexes uniformly distributed in Vc. In order
to guarantee the convergence of the algorithm, we require
that every camera is selected at least once within a finite
time horizon as described in Theorem 4.2. This algorithm
is detailed in Algorithm 3.

Algorithm 3 Asymmetric Broadcast Partitioning

(Camera state) Si =
{
αij : j ∈ N in

i

}
, i ∈ Vc

(Initialize) α0
ij = `ij , for any {vi, vj} ∈ Ec

(Transmit and computate at iteration t ∈ N)

1: Camera ci is randomly selected;
2: Camera ci receives St

j from every j ∈ N in
i ;

3: for j ∈ N in
i do

4: αt+1
ij ← αt

ij − εLij(W
t
i −W t

j );

5: if αt+1
ij < `ij then αt+1

ij = `ij ;

6: else if αt+1
ij > uij then αt+1

ij = uij ;
7: end if
8: end for
9: Camera ci transmits St+1

i to j ∈ N in
i ;

Theorem 4.2. (Asymmetric Broadcast Partitioning)
Consider the Asynchronous Broadcast Partitioning algo-
rithm detailed in Algorithm 3. Assume the existence of a
finite duration B ∈ R>0 such that, for any t ∈ R≥0, every
camera in Vc is selected at least once in the time interval
[t, t + B] (partial asynchronism assumption). The Asyn-
chronous Broadcast Partitioning algorithm asymptotically
converges to α∗AB = limt→∞αt. Moreover,

min
`≤α≤u

‖Aα+ b‖2∞ = ‖Aα∗AB + b‖2∞.

Proof. Note that the constraints set {α ∈ [0, 1]Ec :
` ≤ α ≤ u} =

∏
e[`e, ue] is a box, the gradient is Lips-

chitz continuous and the partial asynchronism assumption
holds, thus [Bertsekas and Tsitsiklis, 1997, Proposition 5.3]
applies. There exists ε0 ∈ R>0 such that for any ε < ε0,
this partially asynchronous gradient projection algorithm
converges to the optimal α. �
Remark 5. (Stepsize for Algorithm 3) The stepsize
ε in Algorithm 3 needs to satisfy 0 < ε < ε0, with
ε0 = 1

K(1+B+B|Ec|) . The bound ε0 depends on the Lipschitz

constant K defined in Remark 4, the time horizon B and
the number of edges |Ec|. See Bertsekas and Tsitsiklis
[1997] for further details. �



4.3 Symmetric gossip partitioning algorithm

The distributed algorithm presented in this section as-
sumes a symmetric gossip-type communication protocol.
In particular, at each time iteration only one component of
a camera state is updated, and only two adjacent cameras
are involved in the computation. As in the Asymmetric
Broadcast Partitioning algorithm, neighboring cameras
are selected according to a Poisson process. This algorithm
is detailed in Algorithm 4.

Algorithm 4 Symmetric Gossip Partitioning

(Camera state) Si =
{
αij : j ∈ N in

i

}
, i ∈ Vc

(Initialize) α0
ij = `ij , for any {vi, vj} ∈ Ec

(Transmit and compute at iteration t ∈ N)

1: Neighboring cameras ci and cj are randomly selected;
2: Camera ci (resp. cj) receives St

j (resp. St
i );

3: W ∗ = (W t
i +W t

j )/2;

4: αt+1
ij =

(
W ∗ −∑k∈N in

i
,k 6=j α

t
ikLik

)
/Lij ;

5: if αt+1
ij < `ij then αt+1

ij = `ij ;

6: else if αt+1
ij > uij then αt+1

ij = uij ;
7: end if

Theorem 4.3. (Symmetric Gossip Partitioning) Con-
sider the Symmetric Gossip Partitioning algorithm de-
tailed in Algorithm 4. Assume the existence of a finite
duration B ∈ R>0 such that, for any t ∈ R≥0, every cam-
era Vc is selected at least once in any time interval [t, t+B]
(partial asynchronism assumption). The Symmetric Gos-
sip Partitioning algorithm converges to α∗SG = limt→∞αt.
Moreover,

min
`≤α≤u

‖Aα+ b‖2∞ = ‖Aα∗SG + b‖2∞.

Proof. Define the energy function U :
∏

e[`e, ue] → R
U(α) =

∑
{vi,vj}∈E(Wi−Wj)

2 as energy storage function.

The convergence of αt can be retrieved by a reasoning
along the lines of [Alberton et al., 2012, Theorem IV.1],
and by applying Theorem 3.4. �

5. NUMERICAL EXAMPLES

In this section we validate our distributed algorithms
through a numerical study. The roadmap considered for
the simulations is in Fig. 1. Notice that |E| = 38, and n =
|Ec| = 29. The stepsizes for Algorithm 3 and Algorithm
4 are chosen as in Remark 4 and Remark 5, respectively.
The results of our simulation study are in Fig. 2. Notice
that all algorithm converges to the desired value.

6. CONCLUSIONS

In this paper we design trajectories for a network of au-
tonomous cameras to detect static intruders. As perfor-
mance function we adopt the worst-case detection time,
that is the longest time needed for an intruder to be
detected. For acyclic roadmaps, we show that optimal tra-
jectories can be designed by solving a min-max continuous
graph partitioning problem. Then, we show that the min-
max continuous graph partitioning problem is equivalent
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Fig. 2. This figure shows the convergence of the Syn-
chronous Gradient Partitioning (blue solid line), the
Asymmetric Broadcast Partitioning (black dash-dot
line), and the Symmetric Gossip Partitioning algo-
rithms (green dashed line) towards a solution of the
continuous min-max partitioning problem. For the
simulation we use the configuration in Fig. 1, with
` = 0,u = 1 and α0 = 0.

to a convex and differentiable minimization problem. Fi-
nally, we propose three different distributed algorithms for
the min-max continuous graph partitioning problem.

Important aspects requiring further investigation include,
(i) the design of optimal trajectories for cyclic roadmaps,
(ii) more general intruder models, and (iii) the design of
non-deterministic cameras trajectories.
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