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Abstract

We consider the optimal servicing of a queue with sigmoid server performance. There are various systems with sigmoid server per-
formance including systems involving human decision making, visual perception, human-machine communication and advertising
response. The tasks arrive at the server according to some stochastic process. Each task has a deadline that is incorporated as a
latency penalty. We investigate the trade-off between the reward obtained by processing the current task and the penalty incurred
due to the tasks waiting in the queue. We study this optimization problem in a Markov decision process (MDP) framework. We
characterize the properties of the optimal policy for the MDP and show that the optimal policy may drop some tasks, that is, may not
process a task at all. We determine an approximate solution to the MDP using certainty-equivalent receding horizon optimization
framework and determine performance bounds on the proposed receding horizon policy. We also suggest guidelines for the design
of such queues.
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1. Introduction

The recent national robotic initiative [2] motivates research and
applications emphasizing the interaction of human with sym-
biotic co-robot partners. Such co-robots will facilitate better
interaction between the human partner and the automaton. In
complex and information rich environments, one of the key
roles for these co-robots is to help the human partner efficiently
focus their attention. A particular example of such a setting is
the surveillance mission, where the human operator monitors
the evidence collected by the autonomous agents [3, 4]. The
excessive amount of information available in such systems of-
ten results in poor decisions by the human operator [5]. This
emphasizes the need for the development of a support system
that helps the human operator optimally focus their attention.

Recently, there has been a significant interest in understand-
ing the physics of human decision making [6]. Several math-
ematical models for human decision making have been pro-
posed [6, 7, 8]. These models suggest that the correctness of
the decision of a human operator in a binary decision making
scenario evolves as a sigmoid function of the time-duration al-
located for the decision. When a human operator has to serve
a queue of decision making tasks in real time, the tasks (e.g.,
feeds from a camera network) waiting in the queue lose value
continuously. This trade-off between the correctness of the de-
cision and the loss in the value of the pending tasks is of criti-
cal importance for the performance of the human operator. In
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this paper, we address this trade-off, and determine the opti-
mal duration allocation policies for the human operator serving
a decision making queue. The sigmoid function also models
the quality of human-machine communication [8], the human
performance in multiple target search [9], the advertising re-
sponse function [10], and the expected profit in simultaneous
bidding [11]. Therefore, the analysis presented in this paper
can also be used to determine optimal human-machine com-
munication policies, optimal search strategies, the optimal ad-
vertisement duration allocation, and optimal bidding strategies.
In this paper, we generically refer to the server with sigmoid
performance as a human operator and the tasks as the decision
making tasks.

There has been a significant interest in the study of the perfor-
mance of a human operator serving a queue. In an early work,
Schmidt [12] models the human as a server and numerically
studies a queueing model to determine the performance of a
human air traffic controller. Recently, Savla et al [13] study
human supervisory control for unmanned aerial vehicle oper-
ations: they model the system by a simple queuing network
with two components in series, the first of which is a spatial
queue with vehicles as servers and the second is a conventional
queue with human operators as servers. They design joint mo-
tion coordination and operator scheduling policies that mini-
mize the expected time needed to classify a target after its ap-
pearance. The performance of the human operator based on
their utilization history has been incorporated to design maxi-
mally stabilizing task release policies for a human-in-the-loop
queue in [14, 15]. Bertuccelli et al [16] study the human su-
pervisory control as a queue with re-look tasks. They study the
policies in which the operator can put the tasks in an orbiting
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queue for a re-look later. An optimal scheduling problem in the
human supervisory control in studied in [17]. Crandall et al [18]
study optimal scheduling policy for the operator and discuss if
the operator or the automation should be ultimately responsi-
ble for selecting the task. Powel et al [19] model mixed team
of humans and robots as a multi-server queue and incorporate a
human fatigue model to determine the performance of the team.
They present a comparative study of the fixed and the rolling
work-shifts of the operators.

The optimal control of queueing systems [20] is a classical
problem in queueing theory. There has been significant inter-
est in the dynamic control of queues; e.g., see [21] and refer-
ences therein. In particular, Stidham et al [21] study the op-
timal servicing policies for an M/G/1 queue of identical tasks.
They formulate a semi-Markov decision process, and describe
the qualitative features of the solution under certain technical
assumptions. In the context of M/M/1 queues, George et al [22]
and Adusumilli et al [23] relax some of technical assumptions
in [21]. Hernández-Lerma et al [24] determine optimal servic-
ing policies for the identical tasks and some arrival rate. They
adapt the optimal policy as the arrival rate is learned. In another
related work, Zafer et al [25] study static queue with monomial
and exponential utilities. They approximate the problem with a
continuous time MDP. In the case of the dynamic queue, they
propose a heuristic that solves the static problem at each stage.

In this paper, we study the problem of optimal time-duration
allocation in a queue of binary decision making tasks with a
human operator. We refer to such queues as decision mak-
ing queues. In contrast to the aforementioned works in queues
with human operator, we do not assume that the tasks require a
fixed (potentially stochastic) processing time. We consider that
each task may be processed for any amount of time, and the
performance on the task is known as a function of processing
time. Moreover, we assume that tasks come with processing
deadlines and incorporate these deadlines as a soft constraint,
namely, latency penalty (penalty due to delay in processing of a
task). We consider two particular problems. First, we consider a
static queue with latency penalty. Here, the human operator has
to serve a given number of tasks. The operator incurs a penalty
due to the delay in processing of each task. This penalty can be
thought of as the loss in value of the task over time. Second, we
consider a dynamic queue of the decision making tasks. The
tasks arrive according to a stochastic process and the operator
incurs a penalty for the delay in processing each task. In both
the problems, there is a trade-off between the reward obtained
by processing a task and the penalty incurred due to the result-
ing delay in processing other tasks. We address this particular
trade-off. The problem considered in this paper is similar to the
problem considered in [21, 22, 23]. The main differences be-
tween these works and the problem considered in this paper are:
(i) we consider a deterministic service process, and this yields
an optimality equation quite different from the optimality equa-
tion obtained for Markovian service process; (ii) we consider
heterogeneous tasks while the aforementioned works consider
identical tasks. These works either propose approximate so-
lution strategies customized to their setup, or rely on standard

methods, e.g., value iteration in case of finite action space. In
our problem, the heterogeneous nature of tasks significantly in-
creases the dimension of the state space and makes the compu-
tation of optimal policies computationally intractable. We re-
solve this issue by utilizing certainty-equivalent receding hori-
zon framework [26, 27, 28] to approximately compute the so-
lution.

The major contributions of this work are fourfold. First, we
determine the optimal duration allocation policy for the static
decision making queue with latency penalty. We show that the
optimal policy may not process all the tasks in the queue and
may drop a few tasks. Second, we pose a Markov decision
process (MDP) to determine the optimal allocations for the dy-
namic decision making queue. We then establish some proper-
ties of this MDP. In particular, we show an optimal policy exists
and it drops task if queue length is greater than a critical value.
Third, we employ certainty-equivalent receding horizon opti-
mization to approximately solve this MDP. We establish per-
formance bounds on the certainty-equivalent receding horizon
solution. Fourth and finally, we suggest guidelines for the de-
sign of decision making queues. These guidelines suggest the
maximum expected arrival rate at which the operator expects a
new task to arrive soon after optimally processing the current
task.

The remainder of the paper is organized as follows. We present
some preliminaries and the problem setup in Section 2. The
static queue with latency penalty is considered in Section 3.
We pose the optimization problem associated with the dynamic
queue with latency penalty and study its properties in Section 4.
We present and analyze receding horizon algorithm for dy-
namic queue with latency penalty in Section 5. Our conclusions
are presented in Section 6.

2. Preliminaries and Problem setup

We consider the problem of optimal time duration allocation for
a human operator. The decision making tasks arrive at a given
rate and are stacked in a queue. A human operator processes
these tasks on the first-come first-serve basis (see Figure 3.) The
human operator receives a unit reward for the correct decision,
while there is no penalty for a wrong decision. We assume that
the tasks can be parametrized by some variable and the variable
takes value in a finite set D ⊆ R. Let the performance of the
operator on a task with parameter d ∈ D be a function fd :
R≥0 → [0, 1) of the duration operator allocates to the task. A
performance function relevant to the discussion in this paper is
the probability of making the correct decision. The evolution
of the probability of correct decision by a human operator has
been studied in cognitive psychology literature [7, 6]. We now
briefly review some human decision making models:

Pew’s model: For a two alternative forced choice task, the
probability of correct decision D1 given that hypothesis
H1 is true and time t has been spent to make the decision
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is:
P(D1|H1, t) =

p0

1 + e−(at−b) ,

where p0 ∈ [0, 1], a, b ∈ R are some parameters specific
to the human operator [7].

Drift diffusion model: For a two alternative forced choice
task, conditioned on the hypothesis H1, the evolution of
the evidence for decision making is modeled as a drift-
diffusion process [6], that is, for a given drift rate β ∈ R>0,
and a diffusion rate σ ∈ R>0, the evidence Λ at time t is
normally distributed with mean βt and variance σ2t. The
decision is made in favor of H1 if the evidence is greater
than a decision threshold η ∈ R>0. Therefore, the con-
ditional probability of the correct decision D1 given that
hypothesis H1 is true and time t has been spent to make
the decision is:

P(D1|H1, t) =
1

√
2πσ2t

∫ +∞

η

e
−(Λ−βt)2

2σ2 t dΛ.

Log-normal model: The reaction times of a human operator in
several missions have been studied in [29] and are shown
to follow a log-normal distribution. In this context, a rele-
vant performance function is the probability that the opera-
tor reacts within time t. This corresponds to the cumulative
distribution function of the log-normal distribution.
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(b) Drift diffusion model

Figure 1: The evolution of the probability of the correct decision under Pew’s
and drift diffusion model. Both curves look similar and are sigmoid.

All these models suggest that the human performance is well
captured by a sigmoid function. A sigmoid function is a doubly
differentiable function f : R≥0 → R≥0 defined by

f (t) = fcvx(t)I(t < tinf) + fcnv(t)I(t ≥ tinf),

where fcvx and fcnv are monotonically increasing convex and
concave functions, respectively, I(·) is the indicator function
and tinf ∈ R>0 is the inflection point. The derivative of a sig-
moid function is a unimodal function that achieves its maxi-
mum at tinf. Further, f ′(0) ≥ 0 and limt→+∞ f ′(t) = 0. Also,
limt→+∞ f ′′(t) = 0. A typical graph of the first and second
derivative of a sigmoid function is shown in Figure 2.

We consider two particular problems. First, in Section 3, we
consider a static queue with latency penalty, that is, the sce-
nario where the human operator has to perform N ∈ N decision
making tasks, but each task loses value at a constant rate per
unit delay in its processing. Second, in Sections 4 and 5 we
consider a dynamic queue of decision making tasks where each
task loses value at a constant rate per unit delay in its process-
ing. The loss in the value of a task may occur due to the pro-
cessing deadline on the task. In other words, the latency penalty
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Figure 2: (a) First derivative of the sigmoid function and the penalty rate. A
particular value of the derivative may be attained at two different times. The
total benefit, that is, the sigmoid reward minus the latency penalty, decreases
up to tmin, increases from tmin to tmax, and then decreases again. (b) Second
derivative of the sigmoid function. A particular positive value of the second
derivative may be attained at two different times.

is a soft constraint that captures the processing deadline on the
task. For such a decision making queue, we are interested in
the optimal time-duration allocation to each task. Alternatively,
we are interested in the arrival rate that will result in the desired
accuracy for each task. We intend to design a decision support
system that tells the human operator the optimal time-duration
allocation to each task.
Remark 1 (Soft constraints versus hard constraints). The
processing deadlines on the tasks can be incorporated as hard
constraints as well, but the resulting optimization problem is
combinatorially hard. For instance, if the performance of the
human operator is modeled by a step function with the jump at
the inflection point and the deadlines are incorporated as hard
constraints, then the resulting optimization problem is equiv-
alent to the N-dimensional knapsack problem [30]. The N-
dimensional knapsack problem is NP-hard and admits no fully
polynomial time approximation algorithm for N ≥ 2. The stan-
dard [30] approximation algorithm for this problem has factor
of optimality N + 1 and hence, for large N, may yield results
very far from the optimal. The close connections between the
knapsack problems with step functions and sigmoid functions
(see [31]) suggest that efficient approximation algorithms may
not exist for the problem formulation where processing dead-
lines are modeled as hard constraints. �

λ
incoming tasks outgoing tasks

queue length
n

operator
performance

Figure 3: Problem setup. The decision making tasks arrive at a rate λ. These
tasks are served by a human operator with sigmoid performance. Each task
loses value while waiting in the queue.

3. Static queue with latency penalty

3.1. Problem description

Consider that the human operator has to perform N ∈ N deci-
sion making tasks in a prescribed order (task labeled ”1” should
be processed first, etc.) Let the human operator allocate dura-
tion t` to the task ` ∈ {1, . . . ,N}. Let the difficulty of the task `

3



be d` ∈ D. According to the importance of the task, a weight
w` ∈ R≥0 is assigned to the task `. The operator receives a re-
ward w` fd` (t`) for allocating duration t` to the task `, while they
incur a latency penalty c` per unit time for the delay in its pro-
cessing. The objective of the human operator is to maximize
their average benefit and the associated optimization problem
is:

maximize
t∈RN

≥0

1
N

N∑
`=1

(
w` fd` (t`) − (c` + · · · + cN)t`

)
, (1)

where t = {t1, . . . , tN} is the duration allocation vector.

3.2. Optimal solution

We start by establishing some properties of sigmoid functions.
We study the optimization problem involving a sigmoid reward
function and a linear latency penalty. In particular, given a sig-
moid function f and a penalty rate c ∈ R>0, we wish to solve
the following problem:

maximize
t∈R≥0

f (t) − ct. (2)

The derivative of a sigmoid function is not a one-to-one map-
ping and hence, not invertible. We define the pseudo-inverse of
the derivative of a sigmoid function f with inflection point tinf,
f † : R>0 → R≥0 by

f †(y) =

max{t ∈ R≥0 | f ′(t) = y}, if y ∈ (0, f ′(tinf)],
0, otherwise.

(3)

Notice that the definition of the pseudo-inverse is consistent
with Figure 2(a).
Lemma 1 (Sigmoid function and linear penalty). For the op-
timization problem (2), the optimal solution t∗ is

t∗ ∈ argmax{ f (β) − cβ | β ∈ {0, f †(c)}}.

Proof. The global maximum lies at the point where first deriva-
tive is zero or at the boundary of the feasible set. The first
derivative of the objective function is f ′(t) − c. If f ′(tinf) < c,
then the objective function is a decreasing function of time and
the maximum is achieved at t∗ = 0. Otherwise, a critical point
is obtained by setting first derivative to zero. We note that
f ′(t) = c has at most two roots. If there exist two roots, then
the second derivative at the smaller root is positive, while the
second derivative at the larger root is negative. Thus, the larger
root corresponds to local maximum. Similarly, if there exists
only one root, then it corresponds to a local maximum. The
global maximum is determined by comparing the local maxi-
mum with the value of the objective function at the boundary
t = 0. This completes the proof.

Definition 1 (Critical penalty rate). For a given sigmoid func-
tion f and penalty rate c ∈ R>0, let the solution of the prob-
lem (2) be t∗f ,c. The critical penalty rate ς f is defined by

ς f = sup{c ∈ R>0 | t∗f ,c ∈ R>0}. (4)

Note that the critical penalty rate is the slope of the tangent to
the sigmoid function f from the origin. �

The optimal solution to problem (2) for different values of
penalty rate c is shown in Figure 4. One may notice the op-
timal solution jumps down to zero at the critical penalty rate.
This jump in the optimal allocation gives rise to combinatorial
effects in the problems involving multiple sigmoid functions.
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Figure 4: Optimal solution to the problem (2) as a function of linear penalty
rate c. The optimal solution t∗ → +∞ as the penalty rate c→ 0+.

We can now analyze optimization problem (1).
Theorem 2 (Static queue with latency penalty). For the op-
timization problem (1), the optimal allocation to task ` ∈
{1, . . . ,N} is

t∗` ∈ argmax
{
w` fd` (β) − (c` + · · · + cN)β

∣∣∣
β ∈ {0, f †d` ((c` + . . . + cN)/w`)}

}
.

Proof. The proof is similar to the proof of Lemma 1.

Remark 2 (Comparison with a concave utility). The opti-
mal duration allocation for the static queue with latency penalty
decreases to a critical value with increasing penalty rate, then
jumps down to zero. In contrast, if the performance function
is concave instead of sigmoid, then the optimal duration allo-
cation decreases continuously to zero with increasing penalty
rate. �

3.3. Numerical Illustrations

We now present an example to elucidate on the ideas presented
in this section.
Example 1 (Static queue and heterogeneous tasks). The hu-
man operator has to serve N = 10 heterogeneous tasks and re-
ceives an expected reward fd` (t) = 1/(1 + exp(−a`t + b`)) for an
allocation of duration t secs to task `, where d` is characterized
by the pair (a`, b`). The following are the parameters and the
weights associated with each task:

(a1, . . . , aN) = (1, 2, 1, 3, 2, 4, 1, 5, 3, 6),
(b1, . . . , bN) = (5, 10, 3, 9, 8, 16, 6, 30, 6, 12), and

(w1, . . . ,wN) = (2, 5, 7, 4, 9, 3, 5, 10, 13, 6).

Let the vector of penalty rates be

c = (0.09, 0.21, 0.21, 0.06, 0.03, 0.15, 0.3, 0.09, 0.18, 0.06)

per second. The optimal allocations are shown in Figure 3.3.
The importance and difficulty level of a task are encoded in the
associated weight and the inflection point of the associated sig-
moid function, respectively. The optimal allocations depend on
the difficulty level, the penalty rate, and the importance of the
tasks. For instance, task 6 is a relatively simple but less impor-
tant task and is dropped. On the contrary, task 8 is a relatively
difficult but very important task and is processed. �
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Figure 5: Static queue with latency penalty. The optimal allocations depends
of the difficulty level, the penalty rate and the importance of the tasks.

4. Dynamic queue with latency penalty: problem descrip-
tion and properties of optimal solution

In the previous section, we developed policies for static queue
with latency penalty. We now consider dynamic queue with
latency penalty, that is, the scenario where the tasks arrive ac-
cording to a stochastic process and wait in a queue to get pro-
cessed. We assume the tasks lose value while waiting in the
queue. The operator’s objective is to maximize their infinite
horizon reward. In the following we pose the problem as an
MDP and study its properties.

4.1. Problem description

We study the optimal policies for the human operator serving a
queue of decision making tasks. We now define various com-
ponents of the problem:

Description of Tasks: We make following assumptions on the
decision making tasks: (i) tasks arrive according to Poisson pro-
cess with rate λ ∈ R>0; (ii) each task is parameterized by a vari-
able d ∈ D, where D is a finite set of parameters for the task;
(iii) a task with parameter d ∈ D is characterized by a triplet
of operator’s performance function fd, the latency penalty rate
cd, and the weight wd assigned to the task; (iii) the parameter
associated with each task is sampled from a probability distri-
bution function p : D → [0, 1]. Let the realized parameter for
task ` ∈ N be d`. Thus, the operator receives a compensation
wd` fd` (t`) for a duration allocation t` to task `, while they incur
a latency penalty cd` per unit time for the delay in its process-
ing. The objective of the operator is to maximize their infinite
horizon expected reward. To this end, the support system sug-
gests the optimal time duration that the human operator should
allocate to a given task. We assume that such time-duration is
suggested at the start of a stage and is not modified during the
stage. We now formulate this optimization problem as an MDP,
namely, Γ.

Description of MDP Γ: Let the stage ` ∈ N of the MDP Γ

be initiated with the processing of task `. We now define the
elements of the MDP Γ:

(i) Action and State variables: We choose the action variable at
stage ` as the time-duration to be allocated to task `, denoted
by t` ∈ R≥0. We choose the state variable at stage ` as the
vector of parameters d` ∈ Dn` associated with each task in the
queue, where n` ∈ N is the queue length at stage `. Note that
the definition of the stage and the state variable are consistent
under the following assumption:

Assumption 1 (Non-empty queue). Without loss of generality,
we assume that the queue is never empty. If queue is empty at
some stage, then the operator waits for the next task to arrive,
and there is no penalty for such waiting time. �

(ii) Reward Structure: We define the reward r : Dn` ×R≥0 → R
obtained by allocating duration t to the task ` by

r(d`, t) = wd` fd` (t) −
1
2

( `+n`−1∑
i=`

cdi +

`+n′`−1∑
j=`

cd j

)
t,

where d` ∈ Dn′` is the vector of penalty rates for the tasks in the
queue and n′` is the queue length just before the end of stage `.

Note that the queue length while a task is processed may not
be constant, therefore, the latency penalty is computed as the
average of the latency penalty for the tasks present at the start of
processing the task and the latency penalty for the tasks present
at the end of processing the task. Such averaging is consistent
with the expected number of arrivals being a linear function of
time for Poisson process.

(iii) Value function:

The MDP with finite horizon length N ∈ N maximizes the value
function VN : Dn1 × B({1, . . . ,N} × D∞,R≥0)→ R defined by

VN(d1, tfinite) =

N∑
`=1

E[r(d`, tfinite(`, d`))],

where n1 ∈ N is the initial queue length,D∞ = ∪i∈ND
i, tfinite is

a finite horizon duration-allocation policy, and B({1, . . . ,N} ×
D∞,R≥0) is the space of bounded below functions defined from
{1, . . . ,N}×D∞ to R≥0. B({1, . . . ,N}×D∞,R≥0) represents the
space of policies, that is, the duration allocation as a function of
stage and state. We will focus on stationary policies, i.e., poli-
cies that are independent of stage, and for stationary policies,
the policy space reduces to B(D∞,R≥0)

Under a stationary policy tstat, the infinite horizon average value
function of the MDP Vavg : Dn1 × B(D∞,R≥0) → R is defined
by

Vavg(d1, tstat) = lim
N→+∞

1
N

VN(d1, tstat).

We also define the infinite horizon discounted value function
Vα : Dn1 × B(D∞,R≥0)→ R by

Vα(d1, tstat) =

+∞∑
`=1

α`−1E[r(d`, tstat(d`))],

where α ∈ (0, 1) is the discount factor.

4.2. Properties of optimal solution

We now study some properties of the MDP Γ and its solu-
tion. Let V∗α : Dn1 → R≥0 denote the optimal infinite hori-
zon α-discounted value function. We also define Nmax =

bmax{wdς fd/cd | d ∈ D}c.
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Lemma 3 (Properties of MDP Γ). The following statements
hold for the MDP Γ and its infinite horizon average value func-
tion:

(i). there exists a solution to the MDP Γ;
(ii). an optimal stationary policy allocates zero duration to the

task ` if n` > Nmax;

Proof. It can be verified that the conditions of Theorem 2.1
in [32] hold for MDP Γ and the optimal discounted value func-
tion exists. To prove the existence of a solution to the the aver-
age value formulation of the MDP Γ, we note that

Vα(d1, t) =

+∞∑
`=1

α`−1E[r(d`, t`)] ≤
wmax − cmin

(1 − α)
,

for each d1 ∈ D
n1 , where n1 is initial queue length, wmax =

max{wd | d ∈ D} and cmin = min{cd | d ∈ D}. Therefore,
V∗α(d1) ≤ (wmax−cmin)/(1−α). Moreover, V∗α(d1) ≥ Vα(d1, 0) =

0. Hence, |V∗α(d1) − V∗α(d0)| ≤ 2|wmax − cmin|/(1 − α), for any
d0 ∈ D

n0 , n0 ∈ N. Thus, the conditions of Theorem 5.2 in [32]
hold and this establishes the first statement.

We now establish the second statement. We note that for a
state associated with queue length n > Nmax, the reward is
non-positive and is zero only if the allocation at that stage is
zero. Moreover, for a Poisson arrival process, the probability
that the queue length is non-decreasing increases with the allo-
cation at current stage. Thus a positive allocation increases the
probability of non-positive reward at future stages. Therefore, a
zero duration allocation for n > Nmax maximizes the reward at
current stage and maximizes the probability of getting positive
rewards at future stages. Consequently, the optimal stationary
policy allocates zero duration for a queue length greater than
Nmax.

5. Dynamic queue with latency penalty: receding horizon
algorithm

We rely on the certainty-equivalent receding horizon frame-
work [26, 27, 28] to approximately solve the MDP Γ. In the
certainty-equivalent approximation, the future uncertainties are
replaced with their expected values [26]. For an allocation of
duration t` at stage `, the expected number of arrivals for a Pois-
son process with rate λ is λt`. Accordingly, the evolution of the
queue length under certainty-equivalent approximation is

n̄`+1 = max{1, n̄` − 1 + λt`},

where n̄` represents predicted queue length at stage ` under
certainty-equivalent approximation, and n̄1 = n1. The certainty-
equivalent approximation also replaces the parameters of tasks
that have not yet arrived by their expected values, and ac-
cordingly, assigns them the expected performance function f̄ :
R≥0 → [0, 1), the expected importance w̄, and the expected la-
tency penalty c̄ defined by

f̄ (t) =
1
w̄
Ep[wd fd(t)],

w̄ = Ep[wd], and c̄ = Ep[cd], respectively, where Ep[·] repre-
sents the expected value with respect to the measure p.

The receding horizon framework solves a finite horizon op-
timization problem at each iteration. We denote the reced-
ing horizon policy that solves a N-horizon certainty-equivalent
problem at each stage by N-RH policy. We now study such
certainty-equivalent finite horizon optimization problem.

5.1. Certainty-equivalent finite horizon optimization

We now study the finite horizon optimization problem with
horizon length N that the certainty-equivalent receding horizon
policy solves at each iteration. Given horizon length N, cur-
rent queue length n`, the realization of the sigmoid functions
f1, . . . , fn` , the associated latency penalties c1, . . . , cn` and the
importance levels w1, . . . ,wn` . In certainty-equivalent problem,
the true parameters of the tasks are used for the tasks that have
already arrived, while the expected values of the parameters are
used for the tasks that have not yet arrived. In particular, if cur-
rent queue length is less than the horizon length, i.e., n` < N,
then we define the reward associated with task j ∈ {1, . . . ,N}
by

r j =

rrlzd
j , if 1 ≤ j ≤ n`,

rexp
j , if n` + 1 ≤ j ≤ N,

(5)

where rrlzd
j = w j f j(t j)− (

∑n`
i= j ci + (n̄ j −n` − j + 1)c̄)t j − c̄λt2

j/2 is
the reward computed using the realized parameters, and rexp

j =

w̄ f̄ (t j)− c̄(n̄`− j+1)t j− c̄λt2
j/2 is the reward computed using the

expected values of the parameters. If the current queue length
is greater than the horizon length, i.e., n` ≥ N, then we define
all the reward using realized parameters, i.e., r j = rrlzd

j , for each
j ∈ {1, . . . ,N}.

maximize
t�0

1
N

N∑
j=1

r j

subject to n̄ j+1 = max{1, n̄ j − 1 + λt j}, n̄1 = n`,

(6)

where t = {t1, . . . , tN} is the duration allocation vector.

The optimization problem (6) is difficult to handle analytically.
For the special case in which tasks are identical, we provide
a procedure to determine the exact solution to problem (6) in
the Appendix of this paper. This procedure also provides in-
sights into the implication of sigmoid performance function on
the optimal policy. For the general case, we resort to the dis-
cretization of the action and the state space and utilize the back-
ward induction algorithm to approximately solve the dynamic
program (6). Let us define maximum allocation to any task
τmax = max{ f †d (cd/wd) | d ∈ D}. We now state the following
results on the efficiency of discretization:
Lemma 4 (Discretization of state and action space). For the
optimization problem (6) and the discretization of the action
and the state space with a uniform grid of width ε > 0, the
following statements hold:

(i). the state space and the action space can be restricted to
compact spaces [1,Nmax + 1], and [0, τmax], respectively;
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(ii). the policy obtained through the discretized state and ac-
tion space is within O(ε) of optimal;

(iii). the computational complexity of the solution is O(N/ε2).

Proof. It follows from Lemma 1 that for n̄ j >
max{wdς fd/cmin | d ∈ D}, r j + c̄λt2

j/2 achieves its global
maximum at t j = 0. Hence, for n̄ j > max{wdς fd/cmin | d ∈ D},
r j achieves its global maximum at t j = 0. Moreover, the
certainty-equivalent queue length at a stage k > j is a non-
decreasing function of of the allocation at stage j. Thus, the
reward at stage k > j decreases with allocation t j. Therefore,
the optimal policy for the optimization problem (6) allocates
zero duration at stage j if n̄ j > max{wdς fd/cmin | d ∈ D},
and subsequently, the queue length decreases by unity at next
stage. Thus, any certainty-equivalent queue length greater than
max{wdς fd/cmin | d ∈ D} can be mapped to Nmax + frac,
where frac is the fractional part of the certainty-equivalent
queue length. Consequently, the state space can be restricted
to the compact set [1,Nmax + 1]. Similarly, for t j > τmax, the
reward at stage j in optimization problem (6) is a decreasing
function of the allocation t j, and the rewards at stages k > j are
decreasing function of allocation t j. Therefore, the allocation
to each task is less than τmax. This completes the proof of the
first statement.

Since the action variable and the state variable in problem (6)
belong to compact sets and the reward function and the state
evolution function is Lipschitz, it follows from Proposition 2
in [33] that the value function obtained using the discretized
action and state space is within O(ε) of the optimal value func-
tion. This establishes the second statement.

The third statement is an immediate consequence of the fact that
computational complexity of a finite horizon dynamic program
is the sum over stages of the product of cardinalities of the state
space and the action space in each stage.

5.2. Performance of receding horizon algorithm

We now derive performance bounds on the receding horizon
procedure. First, we determine a global upper bound on the
performance of any policy for the MDP Γ. Then, we develop
a lower bound on the performance of 1-RH policy. Without
loss of generality, we assume that the initial queue length is
unity. If the initial queue length is non-unity, then we drop
tasks till queue length is unity. Note that this does not affect the
infinite horizon average value function. We also assume that
the latency penalty is small enough to ensure an optimal non-
zero duration allocation if only one task is present in the queue,
that is, cd ≤ wdς fd , for each d ∈ D. We now introduce some
notation. For a given λ and d ∈ D, define

ccrit
d = min

{
c ∈ R>0 | argmax{t ∈ R≥0 | wd fd(t)−ct−c̄λt2/2} = 0

}
.

For a given task d ∈ D, ccrit
d is the minimum penalty rate at

which the maximum reward associated with the task is zero. Let

cmax
d be the optimal value of the following optimization prob-

lem:

maximize
xid∈{0,1}

Nmax−1∑
i=1

∑
d∈D

cd xid

subject to
Nmax−1∑

i=1

∑
d∈D

cd xid < ccrit
d − cd∑

d∈D

xid ≤ 1, for each i ∈ {1, . . . ,Nmax − 1}.

For a given current task d ∈ D, cmax
d is the maximum penalty

rate due to all other tasks in the queue at which the 1-RH policy
allocates a non-zero duration to current task. Let the associated
non-zero allocation be tcrit

d defined by tcrit
d = argmax{wd fd(t) −

(cd + cmax
d )t − c̄λt2/2 | t ∈ R≥0}. Let τmax

d = f †d (cd/wd), for
each d ∈ D. We will show that τmax

d is the maximum duration
an optimal policy may allocate to task d. Let tunit be the 1-RH
policy.
Theorem 5 (Bounds on performance). For the MDP Γ and
1-RH policy the following statements hold:

(i). the average value function satisfy the following upper
bound

Vavg(d1, t) ≤ max
d∈D

{
wd fd(τmax

d ) − cdτ
max
d

}
,

for each n1 ∈ N and any policy t;
(ii). the average value function satisfy the following lower

bound for 1-RH policy:

Vavg(d1, tunit) ≥ min
d∈D

wd fd(tcrit
d ) − (cd + cmax

d )tcrit
d − c̄λtcrit

d
2
/2

λτmax + e−λτmax
,

for each n1 ∈ N.

Proof. We start by establishing the first statement. We note
that the reward at stage ` is r(d`, t`) ≤ wd` fd` (t`) − cd` t`. It
follows from Lemma 1 that the maximum value wd` fd` (t`)−cd` t`
is achieved at t` = τmax

d`
. Therefore, the reward at each stage is

upper bounded by max{wd fd(τmax
d ) − cdτ

max
d | d ∈ D} and the

first statement follows.

To establish the second statement, we note that if some new
tasks arrive at a stage, then the optimal policy processes at least
one of these tasks or processes at least one task already in the
queue. Therefore, the optimal policy processes at least one task
for each set of tasks arrived. The minimum reward obtained af-
ter processing task d is wd fd(tcrit

d ) − (cd + cmax
d )tcrit

d − c̄λtcrit
d

2
/2.

If narr is the number of arrived tasks, the fraction of tasks
processed is 1/narr. Under Assumption 1, the expected num-
ber of arrivals at stage ` for a Poisson process is E[narr] =

λt` + e−λt`P(n` = 1), where the second term corresponds to the
situation when the queue becomes empty after processing task
` and the operator waits for new task. Since 1/narr is a con-
vex function and E[narr] ≤ λτmax + e−λτmax , it follows from the
Jensen’s inequality that the expected fraction of tasks processed
is greater than 1/(λτmax + e−λτmax ). This completes the proof of
the last statement.
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Similar bounds can be derived for the N-RH policy. Since
the future queue length increases with increasing t1, the to-
tal penalty increases in problem (6) with increasing t1. Thus,
with increasing N, the receding horizon policy drops tasks at a
smaller critical penalty ccrit

d . Consequently, the total penalty on
each task decreases and the performance improves.

5.3. Numerical Illustrations

We now elucidate on the concepts discussed in this section with
an example.
Example 2 (RH policy). Suppose that the human operator has
to serve a queue of tasks with Poisson arrival at the rate λ per
sec. The set of the tasks is the same as in Example 1 and each
task is sampled uniformly from this set. 1-RH and 10-RH poli-
cies for a sample evolution of the queue at an arrival rate λ = 0.5
per second are shown in Figure 6 and 7, respectively. The se-
quence of tasks arriving is the same for both the policies. The
RH policy tends to drop the tasks that are difficult and unimpor-
tant. The difficulty of the tasks is characterized by the inflection
point of the associated sigmoid functions. The queue length un-
der the 1-RH policy is higher than the 10-RH policy. A com-
parison of the RH policies is shown in Figure 8. We obtained
these performance curves through Monte-Carlo simulations. �
Remark 3 (Comparison with a concave utility). With the in-
creasing penalty rate as well as the increasing arrival rate, the
time duration allocation decreases to a critical value and then
jumps down to zero for the dynamic queue with latency penalty.
In contrast, if the performance function is concave instead of
sigmoid, then the duration allocation decreases continuously to
zero with increasing penalty rate as well as increasing arrival
rate. �
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Figure 6: 10-RH policy for a sample evolution of the dynamic queue with la-
tency penalty.
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Figure 7: 1-RH policy for a sample evolution of the dynamic queue with latency
penalty.

Discussion 6 (Design of queue). The performance of the RH
policy as a function of the arrival rate is shown in Figure 8.
It can be seen that the expected benefit per unit task, that is,
the value of the average value function under the RH policy,
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Figure 8: Empirical expected benefit per unit task and per unit time. The
dashed-dotted black curve represents the 10-RH policy and the solid red curve
represents the 1-RH policy, respectively.

decreases slowly till a critical arrival rate and then starts de-
creasing quickly. This critical arrival rate corresponds to the
situation where a new task is expected to arrive as soon as the
operator finishes processing the current task. The objective of
the designer is to achieve a good performance on each task and
therefore, the arrival rate should be picked close to this criti-
cal arrival rate. If each task is identical and is characterized
by d ∈ D, then it can be verified that the critical arrival rate
is λcrit

d = 1/τcrit
d , where τcrit

d = f †d (2cd/wd). In the context of
heterogeneous tasks, if each task is sampled from p, then the
critical arrival rate is

∑
d∈D p(d)λcrit

d . In general, designer may
have other performance goals for the operator, and accordingly,
may choose higher task arrival rate. �

6. Conclusions

We presented optimal servicing policies for the queues where
the performance function of the server is a sigmoid function.
First, we considered a queue with no arrival and a latency
penalty. It was observed that the optimal policy may drop some
tasks. Second, a dynamic queue with latency penalty was con-
sidered. We posed the problem in an MDP framework and
proposed an approximate solution in the certainty-equivalent
receding horizon optimization framework. We derived perfor-
mance bounds for the proposed solution and suggested guide-
lines for choosing the expected arrival rate for the queue.

The decision support system designed in this paper assumes
that the arrival rate of the tasks as well as the parameters in the
performance function are known. An interesting open problem
is to come up with policies which perform an online estimation
of the arrival rate and the parameters of the performance func-
tion and simultaneously determine the optimal allocation pol-
icy. Another interesting problem is to incorporate more human
factors into the optimal policy, for example, situational aware-
ness, fatigue, etc. The policies designed in this paper rely on
first-come first-serve discipline to process tasks. It would be of
interest to study problems with other processing disciples, for
example, preemptive queues. We focused on open loop opti-
mization of human performance interacting with automata. A
significant future direction is to incorporate human feedback
and study closed loop policies that are jointly optimal for the
human operator as well as the automaton. Some preliminary
results in this direction as presented in [34].
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7. Appendix: Finite horizon optimization for identical
tasks

In this section, we consider the special case of the finite horizon
optimization problem (6) in which tasks are identical and pro-
pose a procedure to obtain the exact solution. We remark that
even if the tasks are heterogeneous, many a times extensive ex-
periments can not be done to determine operator’s performance
on each task. Under such circumstances, each task is treated
as identical and a performance function associated with aver-
age data is used for each task. We also note that the optimal
human attention allocation policy is needed to counter the in-
formation overload situations. The information overload situa-
tions correspond to the heavy traffic regime of the queue and we
focus on this particular regime. In the following, we denote the
sigmoid function and the latency penalty associated with each
task by f and c, respectively. Let the inflection point associated
with f be tinf. We assume that the weight associated with each
task is unity. We note that under the heavy-traffic regime the
certainty-equivalent queue length is n̄` = n1 − ` + 1 + λ

∑`−1
j=1 t j.

Substituting the certainty-equivalent queue length into the ob-
jective function of the optimization problem (6), we obtain the
function J : RN

≥0 → R defined by

J(t) :=
1
N

N∑
`=1

(
f (t`) − c(n1 − ` + 1)t` − cλt`

N∑
j=1, j,`

t j −
cλt2

`

2

)
,

where c is the penalty rate, λ is the arrival rate, and n1 is the ini-
tial queue length. Thus, the optimization problem (6) is equiv-
alent to

maximize
t�0

J(t). (7)

Assume that the solution to the optimization problem (6) al-
locates a strictly positive time only to the tasks in the set
Tproc ⊆ {1, . . . ,N}, which we call the set of processed tasks.
(Accordingly, the policy allocates zero time to the tasks in
{1, . . . ,N} \ Tproc). Without loss of generality, assume

Tproc := {η1, . . . , ηm},

where η1 < · · · < ηm and m ≤ N. A duration allocation vector
t is said to be consistent with Tproc if only the tasks in Tproc are
allocated non-zero duration.
Lemma 7 (Properties of maximum points). For the optimiza-
tion problem (7), and a set of processed tasks Tproc, the follow-
ing statements hold:

(i). a global maximum point t∗ satisfy t∗η1
≥ t∗η2

≥ . . . ≥ t∗ηm
;

(ii). a local maximum point t† consistent with Tproc satisfies

f ′(t†ηk
) = c(n1 − ηk + 1) + cλ

m∑
i=1

t†ηi
, for all k ∈ {1, . . . ,m};

(8)
(iii). the system of equations (8) can be reduced to

f ′(t†η1
) = P(t†η1

), and t†ηk
= f †( f ′(t†η1

) − c(ηk − η1)),

for each k ∈ {2, . . . ,m}, where P : R>0 → R∪{+∞} is
defined by

P(t) =

p(t), if f ′(t) ≥ c(ηm − η1),
+∞, otherwise,

where p(t) = c(n1−η1+1+λt+λ
∑m

k=2 f †( f ′(t)−c(ηk−η1)));
(iv). a local maximum point t† consistent with Tproc satisfies

f ′′(tηk ) ≤ cλ, for all k ∈ {1, . . . ,m}.

Proof. We start by proving the first statement. Assume t∗η j
< t∗ηk

and define the allocation vector t̄ consistent with Tproc by

t̄ηi =


t∗ηi
, if i ∈ {1, . . . ,m} \ { j, k},

t∗η j
, if i = k,

t∗ηk
, if i = j.

It is easy to see that

J(t∗) − J( t̄) = (η j − ηk)(t∗η j
− t∗ηk

) < 0.

This inequality contradicts the assumption that t∗ is a global
maximum of J.

To prove the second statement, note that a local maximum is
achieved at the boundary of the feasible region or at the set
where the Jacobian of J is zero. At the boundary of the feasible
region RN

≥0, some of the allocations are zero. Given the m non-
zero allocations, the Jacobian of the function J projected on the
space spanned by the non-zero allocations must be zero. The
expressions in the theorem are obtained by setting the Jacobian
to zero.

To prove the third statement, we subtract the expression in equa-
tion (8) for k = j from the expression for k = 1 to get

f ′(tη j ) = f ′(tη1 ) − c(η j − η1). (9)

There exists a solution of equation (9) if and only if f ′(tη1 ) ≥
c(η j − η1). If f ′(tη1 ) < c(η j − η1) + f ′(0), then there exists
only one solution. Otherwise, there exist two solutions. It can
be seen that if there exist two solutions t±j , with t−j < t+j , then
t−j < tη1 < t+j . From the first statement, it follows that only
possible allocation is t+j . Notice that t+j = f †( f ′(tη1 ) − c(η j −

η1)). This choice yields feasible time allocation to each task
η j, j ∈ {2, . . . ,m} parametrized by the time allocation to the
task η1. A typical allocation is shown in Figure 9(a). We further
note that the effective penalty rate for the task η1 is c(n1 − η1 +

1) + cλ
∑m

j=1 tη j . Using the expression of tη j , j ∈ {2, . . . ,m},
parametrized by tη1 , we obtain the expression for P.

To prove the last statement, we observe that the Hessian of the
function J is

∂2J
∂t2 = diag( f ′′(tη1 ), . . . , f ′′(tηm )) − cλ1m1T

m,

where diag(·) represents a diagonal matrix with the argument
as diagonal entries. For a local maximum to exist at non-zero
duration allocations {tη1 , . . . , tηm }, the Hessian must be negative
semidefinite. A necessary condition for Hessian to be negative
semidefinite is that diagonal entries are non-positive.

9



We refer to the function P as the effective penalty rate for the
first processed task. A typical graph of P is shown in Fig-
ure 9(b). Given Tproc, a feasible allocation to the task η1 is
such that f ′(tη1 ) − c(η j − η1) > 0, for each j ∈ {2, . . . ,m}. For a
given Tproc, we define the minimum feasible duration allocated
to task η1 (see Figure 9(a)) by

τ1 :=

min{t ∈ R≥0 | f ′(t) = c(ηm − η1)}, if f ′(tinf) ≥ c(ηm − η1),
0, otherwise.

Let f ′′max be the maximum value of f ′′. We now define the points
at which the function f ′′−cλ changes its sign (see Figure 2(b)):

δ1 :=

min{t ∈ R≥0 | f ′′(t) = cλ}, if cλ ∈ [ f ′′(0), f ′′max],
0, otherwise,

δ2 :=

max{t ∈ R≥0 | f ′′(t) = cλ}, if cλ ≤ f ′′max,

0, otherwise.
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Figure 9: (a) Feasible allocations to the second processed task parametrized by
the allocation to the first processed task. (b) The penalty rate and the sigmoid
derivative as a function of the allocation to the first task.

Theorem 8 (Finite horizon optimization). Given the optimiza-
tion problem (7), and a set of processed tasks Tproc. The follow-
ing statements are equivalent:

(i). there exists a local maximum point consistent with Tproc;
(ii). one of the following conditions hold

f ′(δ2) ≥ P(δ2), or (10)
f ′(τ1) ≤ P(τ1), f ′(δ1) ≥ P(δ1), and δ1 ≥ τ1. (11)

Proof. A critical allocation to task η1 is located at the inter-
section of the graph of the reward rate f ′(tη1 ) and the effec-
tive penalty rate P(tη1 ). From Lemma 7, a necessary condi-
tion for the existence of a local maximum at a critical point is
f ′′(tη1 ) ≤ cλ, which holds for tη1 ∈ (0, δ1]∪ [δ2,∞). It can
be seen that if condition (10) holds, then the function f ′(tη1 )
and the effective penalty function P(tη1 ) intersect in the region
[δ2,∞[. Similarly, condition (11) ensures the intersection of the
graph of the reward function f ′(tη1 ) with the effective penalty
function P(tη1 ) in the region (0, δ1].

For a given horizon length N, the potential sets of processed
tasks are the elements of the set {0,+}N . The feasibility of
a given set of processed tasks can be determined using The-
orem 8. For each feasible set of processed tasks, the opti-
mal allocations can be determined using the third statement in
Lemma 7, and the value for each potential set of processed task
can be compared to determine the optimal solution of optimiza-
tion problem (6) with identical tasks.
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