
A Gossip Algorithm for Heterogeneous
Multi-Vehicle Routing Problems

Mauro Franceschelli ∗ Daniele Rosa ∗ Carla Seatzu ∗
Francesco Bullo ∗∗

∗Dep. of Electrical and Electronic Engineering, Univ. of Cagliari, Italy
(e-mail: {mauro.franceschelli, daniele.rosa,seatzu@diee.unica.it})

∗∗Dep. of Mechanical Engineering, Univ. of Santa Barbara,
California, USA (e-mail: bullo@engineering.ucsb.edu)

Abstract: In this paper we address the heterogeneous multi-vehicle routing problem by
proposing a distributed algorithm based on gossip. We consider the case where a set of tasks
arbitrarily distributed in a plane, each with a service cost, have to be served by a set of mobile
robots, each with a given movement speed and task execution speed. Our goal is to minimize
the maximum execution time of robots.

1. INTRODUCTION

The traveling salesman problem (TSP) is a well known
topic of research. Interesting surveys can be found in
Lawler et al. [1985], Gutin and Punnen [2002], Laporte
[1992a]. This problem has received great attention for both
its theoretical implications and its several practical appli-
cations such as vehicle routing. Interesting examples can
be found in Toth and Vigo [2002], Laporte [1992b]. Several
extensions to this problem have been proposed by consid-
ering at first more than one salesman as in Carlsson et al.
[2009], then introducing several additional constraints and
objectives to better suit practical applications such as the
multi-vehicle routing problem (MVRP) with a variable
number of vehicles, finite load capacity, service time win-
dows and several more as in Bektas [2006], Pisinger and
Ropke [2007]. Finally, several extensions explore a dynamic
setting in which multiple vehicles serve a dynamic number
of tasks as discussed in Bullo et al. [2011b].

In this paper we are interested in an instance of the MVRP
that we call heterogeneous MVRP (HMVRP) where: the
number n of vehicles is given a priori, a set K is given
containing k tasks arbitrarily distributed in a plane, to
each task is assigned a servicing cost, each vehicle is
characterized by a movement speed and a task execution
speed.

It has been shown in Carlsson et al. [2009] that when
comparing the length of the optimal tour of one vehicle
that visits all tasks locations with the multiple vehicle
case, the maximum length of the tours for the multiple
vehicle case is proportional to the tour length of the single
vehicle case and proportionally inverse to the number of
vehicles. Both upper and lower bounds with such scaling
were given.

In this paper we extend the result in Carlsson et al. [2009]
by considering execution times instead of tour lengths to
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account for vehicles of different speeds, tasks with arbi-
trary execution cost and vehicles with different task exe-
cution speeds. We provide upper and lower bounds to the
optimal solution as function of the single vehicle optimal
tour length to put in evidence how the performance is
affected by the number of vehicles.

Our objective is to propose a distributed and asynchronous
algorithm for the HMVRP based on the iterative optimiza-
tion of the local task assignment between pairs of vehicles
and provide deterministic bounds to its performance.

The proposed approach to the HMVRP not only addresses
the issue in a distributed fashion easy to implement in
a networked system, but allows to scale the size and
exponential complexity of this problem with respect to
the ratio k/n between the number of tasks and vehicles
instead of k as in the centralized approach.

Summarizing, three are the main contributions of this
paper.

• We formalize the centralized problem in terms of a
mixed integer linear programming (MILP) problem
and extend the bounds in Carlsson et al. [2009] for
the multi TSP to the HMVRP.

• We propose a distributed algorithm based on gossip
to solve the HMVRP and characterize some of its
properties.

• We provide simulations that show that the proposed
algorithm attains a constant factor approximation of
the optimal solution with respect to the number of
vehicles.

2. PROBLEM STATEMENT

Consider a set N of n mobile robots scattered in a
connected region R. Let K be a set of k tasks scattered in
the same region R, that should be assigned to robots to
be executed.

Robots move at different speeds and have different ex-
ecution speeds of tasks. Tasks have different costs. In
particular, the following notation is used:



• vr is the speed of robot Rr,
• wr is the task execution speed of robot Rr,
• vmin (vmax) is the minimum (maximum) speed of

robots,
• wmin (wmax) is the minimum (maximum) task exe-

cution speed of robots,
• ci is the cost of the i-th task,
• cmin (cmax) is the minimum (maximum) cost of tasks.

Moreover, dmax is the maximum length of the shortest
path between any two points in the region R.

Robots are supposed to first coordinate themselves to im-
prove their task assignment. Once no further improvement
can be made they stop the coordination phase and start
to serve the tasks autonomously.

To use a notation that is standard in the literature, we
assume that robots are initially positioned in depots and
should go back to them after the execution of tasks. The
set of depots is called D and the generic r-th depot is Dr.

Now, if Kr denotes the set of tasks assigned to robot
Rr, our goal is that of minimizing the following objective
function:

J = max
r∈N

Jr =
(

TSP (Kr ∪ {Dr})
vr

+

∑
i∈Kr

ci

wr

)
(1)

where TSP (Kr ∪ {Dr}) is the minimum TSP tour length
of robot Rr that, initially positioned in Dr, visits all tasks
in Kr and go back to Dr.

In simple words we want to minimize the maximum
execution time of the n robots that have to visit and
execute all tasks assigned to them, guaranteeing that each
task is executed by exactly one robot.

The above problem can be seen as a generalization of
the classical multi-TSP problem. First, because we are
also assuming that tasks should not only be visited by
the robots, but should be processed by them. Secondly,
because the optimization is carried out over an heteroge-
neous network due to the heterogeneity of the agents and
the tasks. Similar problems have been recently addressed
in the literature, see e.g. Carlsson et al. [2009], but to
the best of our knowledge, never under the assumption of
heterogeneous agents and tasks.

Let us conclude this section with the introduction of some
notation that will be used in the remaining of the paper.
Let Kr be the set of tasks assigned to robot Rr. We denote
as K̃r the ordered set with the same elements of Kr, but
whose ordering specifies the order in which tasks in Kr are
visited by robot Rr.

Finally, let K̃ = {K̃1, . . . , K̃n} be an ordered set of n
ordered sets, that summarizes the generic solution of the
considered tasks allocation problem. The set K̃ is called
network state.

3. OPTIMAL CENTRALIZED SOLUTION

In this section we first discuss a centralized strategy that
leads to an optimal solution of the above task assignment
problem. Such an approach is based on mixed linear inte-
ger programming (MILP). Then we provide a characteri-
zation of the optimal solution in terms of an upper and a

lower bound on the optimal value of the objective function.
This will be useful when evaluating the effectiveness of the
decentralized approach proposed in the next section.

To represent all possible directed tours of n robots, let us
define a complete directed graph G = {V, E} where:

• V = N ∪K is the set of n + k nodes;
• E = (N ∪ K) × (N ∪ K) is the set of (n + k)2 edges

representing directed paths from the depots in which
robots are initially placed to tasks, and viz, and from
tasks to tasks 1 .

Moreover, we define the following binary variables that
completely identify a task allocation and the order in
which tasks are executed by robots. In simple words they
completely identify a network state K̃. Note that, since
we want to minimize the total execution times of robots,
we always assume that distances among tasks, and among
tasks and depots, are covered through straight lines.

• We assign n binary variables xir to each node i ∈ V;
here r ∈ N : if i ∈ N , xir = 1 means that robot Rr

starts its tour from node i, while if i ∈ K, xir = 1
means that task i is executed by robot Rr.

• We assign n binary variables yijr to each edge (i, j) ∈
E ; here r ∈ N : yijr = 1 means that robot Rr goes
directly from node i to node j in its path.

Moreover, we introduce the following cost coefficients.

• We assign n costs cir = ci/wr to each node i ∈ K;
here r ∈ N : cir represents the execution time of task
i by robot Rr with an execution speed of wr.

• We assign n costs dijr = lij/vr to each edge (i, j) ∈ E ;
here r ∈ N : dijr represents the spent by robot Rr to
pass the length lij of edge (i, j) with speed vr.

Proposition 3.1. Let us consider the allocation problem
formalized in Section 2. An optimal solution can be com-
puted solving the following MILP problem:



J = min λ
s.t.∑

i∈K
xircir +

∑

(i,j)∈E
dijryijr < λ, ∀r ∈ N (a)

xrr = 1, ∀r ∈ N (b)∑

r∈N
xir = 1, ∀i ∈ K (c)

∑

j∈V
yjir =

∑

j∈V
yijr = xir, ∀i ∈ V, ∀r ∈ N (d)

∑

i/∈S

∑

j∈S
yijr ≥ xqr ∀S ⊆ K,

∀q ∈ S, ∀r ∈ N (e)
λ ∈ R (f)
xir ∈ {0, 1} ∀i ∈ V, ∀r ∈ N (g)
yijr ∈ {0, 1} ∀(i, j) ∈ E , ∀r ∈ N . (h)

Proof: The proof is carried out via a detailed expla-
nation of all the constraints and the objective function.

— Constraints (a) and objective function: The left hand
side term of (a) is equal to the total execution time of robot
Rr. Thus, given the objective function, constraints (a) aim
to minimize the maximum execution time of robots.
1 In the ets V and E the generic r-th depot is identified via the r-th
element in N . This has been done for clearity of presentation as it
will appear in the following.



— Constraints (b): These constraints force each robot to
move from its initial position (depot).

— Constraints (c): Each task i must be executed by
exactly one robot.

— Constraints (d): If robot Rr executes task i, it must
arrive at node i in some way and at the end of the
execution has to leave it. The same holds if node i models
a depot, i.e., i ∈ N .

— Constraints (e): Each robot Rr has to make a single
connected tour visiting all its tasks, so we have to exclude
all the disjoint paths. In words constraint (e) relative to
robot Rr, imposes that if robot Rr executes a task i ∈ S ⊆
K, there must be an edge passed by Rr to enter in S. These
constraints are named Subtour Elimination Constraints
(SEC) and are typical of vehicle routing problems and TSP
models Bektas [2006]. ¤

The number of unknowns in the MILP (3.1) is equal to

N = n(n + k)2 + n(n + k) + 1 = O(n3 + nk2 + n2k).

The total number of constraints is O(n2k + nk2k). Indeed
we have n constraints of type (a), n constraints of type
(b), k constraints of type (c), (n + k)n constraints of type

(d), and n
∑k

i=1 i
k!

(k − i)!i!
≤ nk2k constraints of type (e).

The following two theorems provide a characterization of
the optimal value of the performance index J∗.
Theorem 3.2. The optimal solution J∗ of the objective
function (1) is upper bounded by

J∗ ≤ Cup + Dup (2)
where

Cup =
1
n

(
TSP (K)

vmin
+

∑
i∈K ci

wmin

)
, (3)

Dup = 2
dmax

vmin
+

cmax

wmin
. (4)

Proof: The proof is based on an heuristics that can be
summarized in the following main steps.

• Generate an optimal tour that visits all tasks. Ob-
viously, if an agent with speed vmin and execution
speed wmin follows the tour and executes all tasks,
its service time is equal to

Ĵ =
(

TSP (K)
vmin

+
∑

i∈K ci

wmin

)
.

• Divide the tour in n consecutive sub-tours using the
following rule. Take a robot (e.g. R1) at random and
make it follow the route of the optimal single vehicle
tour at the previous item, starting from the position
of an arbitrary task. Stop it as soon as its service
time Ĵ1 satisfies the condition Ĵ1 ≥ Ĵ/n. Now, since
the largest cost of tasks is equal to cmax, the smallest
execution speed of robots is wmin, and the time taken
to travel between tasks is continuous, it is

Ĵ1 ≤ Ĵ

n
+

cmax

wmin
.

Select at random a new robot (e.g. R2) and put
it at the end of the route of R1 and repeat the same
strategy, until all robots are considered. If there aren’t

enough tasks for the robots, simply consider null the
service time for the remaining robots.

• Now, if dmax is the maximum length of the shortest
path between any two points in the region R, the
execution time Jr of each robot Rr is such that
Jr ≤ Ĵr + 2dmax/vmin. Indeed the total service time
of each robot corresponds to the time it takes to
complete its sub-tour along the route of the optimal
single vehicle TSP, plus the time to go from its depot
to its first task and go back to the depot. Therefore,
it is

Jr ≤ Ĵ

n
+

cmax

wmin
+ 2

dmax

vmin
, ∀r ∈ N .

Since the optimal solution J∗ of the objective function (1)
can only be smaller or equal than the solution resulting
from the above heuristics, for sure it is

J∗ ≤ max
r∈N

Jr ≤ Ĵ

n
+

cmax

wmin
+ 2

dmax

vmin
= Cup + Dup

thus proving the correctness of the upper bound. ¤
Theorem 3.3. The optimal solution J∗ of the objective
function (1) is lower bounded by

J∗ ≥ Clo −Dlo (5)
where

Clo =
1
n

(
TSP (K)

vmax
+

∑
i∈K ci

wmax

)
, (6)

Dlo =
dmax

vmin
. (7)

Proof: Let Sopt =
∑

r∈N J∗r be the sum of all the ser-
vice times corresponding to an optimal tasks assignment.
Since, by definition J∗ = maxr∈N J∗r , obviously it is

J∗ ≥ Sopt

n
. (8)

Now, let Sp
opt be the sum of the contributions to J∗r , with

r ∈ N , relative to the only time spent moving from one
task to another one, or from/toward the depots, without
including the time spent to execute tasks.

Obviously, it is

Sopt ≥ Sp
opt +

∑
i∈K ci

wmax
. (9)

Moreover, trivially generalizing the result in Carlsson et al.
[2009] to the case of heterogeneous robots, we have that

Sp
opt +

TSP (D)
vmin

≥ TSP (D ∪K)
vmax

≥ TSP (K)
vmax

(10)

or equivalently

Sp
opt ≥

TSP (K)
vmax

− TSP (D)
vmin

. (11)

By equations (9) and (11) it follows that

Sopt ≥ TSP (K)
vmax

− TSP (D)
vmin

+
∑

i∈K ci

wmax

≥ TSP (K)
vmax

− n
dmax

vmin
+

∑
i∈K ci

wmax
.

(12)

Finally, by equations (8) and (12), it is

J∗ ≥ Sopt

n
=

1
n

(
TSP (K)

vmax
+

∑
i∈K ci

wmax

)
− dmax

vmin

= Clo −Dlo

(13)



thus proving the statement. ¤

4. DECENTRALIZED SOLUTION

In this section we first propose a decentralized approach to
solve the task allocation problem in Section 2 that is based
on gossip. Then, a comparison among the computational
complexity of the proposed algorithm and the centralized
algorithm is provided. Convergence properties of the gossip
algorithm are discussed. Finally, some characterizations of
the solution obtained via the decentralized approach are
proposed.

4.1 MILP Gossip algorithm

The idea of the proposed decentralized algorithm is that
robots locally balance their loads according to a gossip
interaction rule under the following main assumption:

(A) All robots may interact with all the other robots.

Starting from an initial task assignment, e.g., assuming
that robots have the same number of tasks, a couple of
robots is selected at random. Selected robots optimally
balance their load; a new couple of robots is selected
and so on, until no better balancing among robots can
be obtained. This can be summarized in the following
algorithm where Tmax denotes a maximum number of
steps to be executed that is assumed to be large enough
that no further improvement of the objective function can
be obtained.
Algorithm 1. (MILP Gossip algorithm).

(1) Tasks are initially assigned to robots so that each
robot has either k/n or k/n + 1 tasks.

(2) Let t = 0.
(3) While t ≤ Tmax

(a) Choose at random two robots r and q. Let them
solve the MILP (3.1) where N = {r, q} and
K = Kr ∪ Kq.

(b) If the new tasks assignment leads to a smaller to-
tal execution time, then update the assignments
of robots r and q accordingly,

else leave them unchanged.
(c) Let t = t + 1 and go back to Step 3.

(4) All robots process their own set of tasks following the
order specified by the optimal local solution. ¥

Note that at Step 3 no specific stopping criterion has been
given. Obviously, different solutions can be adopted. One
is that of using a central coordinator that keeps track of
the fact that no better load balancing can be obtained
among robots. Decentralized criteria can also be given that
are not formalized in this preliminary paper on this topic.
In particular, as future work we plan to exploit the ideas
in Franceschelli et al. [2011] based on the fact that by
assuming a ring communication topology, it is possible to
ensure convergence to an invariant condition in finite time.

4.2 Computational complexity of the local optimization

Let us now discuss the advantages in terms of computa-
tional complexity coming from local optimizations using
Algorithm 1 with respect to central optimization.

To this aim, let us first present some preliminary results.
In particular, the following proposition ensures that when
the number of iterations of Algorithm 1 increases, the
optimal value of the objective function can never increase.
Obviously this does not imply that an optimal solution is
obtained, as shown in the following Example 5.1.
Proposition 4.1. Let Jgossip(t) be the maximum execu-
tion time of robots computed after t iterations of Algo-
rithm 1. For any t ≥ 0, it is Jgossip(t + 1) ≤ Jgossip(t).

Proof: Let Rr and Rq be the two robots selected at
time t + 1. By Algorithm 1 this means that only the tasks
allocation of such robots may change, while the load of all
the other robots keeps unaltered. Now, since at Step 3.a
of Algorithm 1 tasks are assigned to robots Rr and Rq so
as to minimize the maximum execution time among them,
this implies that the maximum execution time among Rr

and Rq either decreases or it keeps unaltered at time t+1.
Moreover, the maximum execution time among all robots
may decrease at time t+1 if and only if either Rr or Rq, or
both, are the robots to which it corresponds the maximum
execution time among all robots at time t. Indeed with no
loss of generality, we may assume that Rr is the “critical”
robot at time t, i.e., the robot to which it corresponds
the maximum execution time among all robots at time t.
Three different cases may occur at time t + 1, after the
new tasks allocation. First, Rr may still be the robot with
the maximum execution time, but in such a case for sure,
its execution time cannot be larger than that at time t.
Secondly, robot Rq may be at time t+1 the robot with the
maximum execution time but for sure its execution time
cannot be larger than that of robot Rr at time t. Finally,
at time t + 1, neither to Rr nor to Rq it corresponds the
maximum execution time among robots. This implies that
a third robot, e.g., Rp, has become the critical one at time
t+1. In any case for sure its execution time is smaller than
that of robot Rr at time t, since by assumption robot Rr

was the critical robot at time t. ¤

Let us now provide an upper bound on the value of
the maximum execution time of robots resulting from
Algorithm 1 at a generic iteration t. To this aim, we first
recall some deterministic upper bounds to the maximum
length of the shortest path (SP) between a set K of k
locations in a unit square area, that are due to Few [1955]
and Karloff [1989], respectively:

SP (K) ≤
√

2
√

k + 7/4, (14)

and

SP (K) ≤ 0.984
√

2
√

k + 11. (15)

To the best of our knowledge the above two upper bounds
are the best actually proposed in the literature. Moreover,
we cannot a priori say which of the above bounds is the
most strict one. Indeed the bound in Karloff [1989] has a
smaller multiplicative factor with respect to Few [1955],
but has a larger additive constant. In the following, we
focus on upper bound (14), but obviously similar results
can be repeated considering (15).
Proposition 4.2. Let Jgossip(t) be the maximum execu-
tion time of robots computed after t iterations of Algo-
rithm 1, then ∀ t ≥ 0 it is



Jgossip(t) ≤(√
2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin
+

(
k

n
+ 1

)
cmax

wmin
.

Proof: By Algorithm 1 at time t = 0 the maximum
number of tasks that can be assigned to a robot is equal to
k/n+1. Moreover, since each robot starts its path from its
depot and has to come back to it, then by equation (14),
for any r ∈ N it is

TSP (Kr(0) ∪ {Dr}) ≤
(√

2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax.

(16)

Note that the additional term
√

2 between parenthesis
comes from the fact that to form a Euclidean TSP tour
from a path in a unit square it is sufficient to connect the
start and end point to form a cycle, thus increasing the size
of the path of at most

√
2 in the unit square. Moreover,

dmax comes from the fact that in our problem statement
depots and robots are not distributed in a square of unitary
edge, but in a region R that is contained in a square of
edge dmax being by definition dmax the maximum length
of the shortest path between any two points in R.

Finally, since by assumption
∑

i∈Kr(0)

ci ≤
(

k

n
+ 1

)
cmax, it

follows that
Jgossip(0) ≤(√

2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin
+

(
k

n
+ 1

)
cmax

wmin

that proves the statement being by Proposition 4.1
Jgossip(t) ≤ Jgossip(0) for all t ≥ 0. ¤

Let us now provide a proposition that characterizes the
maximum number of tasks that are assigned to robots at
a generic iteration t of Algorithm 1.
Proposition 4.3. Let Kmax(t) = maxr∈N |Kr(t)| be the
maximum number of tasks that are assigned to robots at
a generic iteration t of Algorithm 1. For any t ≥ 0 it is:

Kmax(t) ≤ wmax

cmin

[(√
2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin

+
(

k

n
+ 1

)
cmax

wmin

]
.

(17)

Proof: By Proposition 4.2, for all t ≥ 0, it holds
Jgossip(t) ≤(√

2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin
+

(
k

n
+ 1

)
cmax

wmin
.

(18)

Now, it is

Jgossip(t) ≥ Kmax(t)cmin

wmax
(19)

since the execution time of Kmax(t) tasks is greater or
equal than that we have if such tasks are at a null distance
from the robot that has to process them, all tasks have a
cost equal to cmin and the robot who process them has
an execution speed equal to wmax. By equations (18) and
(19) the statement of the proposition follows. ¤

An important remark needs to be done. The above propo-
sition provides an upper bound on the maximum number
of tasks that can be assigned to a robot at any iteration.
For particular values of the parameters it may happen
that the upper bound given by Proposition 4.3 is not
significant being it larger than k. However, this only occurs
for very particular cases, while for most of the significant
and general situations where the number of tasks is suffi-
ciently large, robots and tasks are sufficiently distributed
in R and their costs and speeds are in reasonable ratio,
Proposition 4.3 enables us to conclude that

Kmax(t) = O(k/n).
Now, since local optimization considers two robots at a
time, the number of tasks that are involved in a local op-
timization is surely smaller or equal than 2Kmax(t). This
means that the number of unknowns of the MILP that
should be solved at the generic iteration t of Algorithm 1
is

Ngossip = O(k2/n2)
rather than N = O(n3 + nk2 + n2k) as in the centralized
case. Moreover, the number of constraints is O(k2k/n/n)
rather than O(n2k + nk2k) as in the centralized case.

4.3 Finite time and almost sure convergence

We now introduce two definitions to formalize two impor-
tant properties of gossip communication schemes, namely
deterministic persistence and stochastic persistence. Simi-
lar definitions have been recently proposed in Bullo et al.
[2011a] even if in a different context.

As usual in this framework, we assume that the possible
interactions among agents are modeled by an undirected
graph G = {V,E} where agents correspond to vertices,
and an edge exists if and only if the interaction among the
agents corresponding to the incidence nodes is possible.
Obviously, assumption (A) implies that in our case it is
E = V × V . At each iteration t of the gossip algorithm a
different edge is selected. In the following we denote as e(t)
the edge selected at time t, while the set of edges selected
in the time interval [t1, t2] is denoted as ē(t1, t2), i.e., it is

ē(t1, t2) =
t2⋃

t=t1

e(t).

Definition 4.4. (Deterministic persistence). A gossip com-
munication scheme is said to be deterministically persis-
tent if ∀t ≥ 0 there exists a finite T > 0 such that

∀e′ ∈ E, Pr(e′ ∈ ē(t, t + T )) = 1
or equivalently, ē(t, t + T ) = E. ¥

Deterministic persistence implies that, if we consider a
finite but sufficiently large time interval, then for sure all
arcs are selected at least once during such an interval.
Definition 4.5. (Stochastic persistence). A gossip com-
munication scheme is said to be stochastically persistent
if ∀t ≥ 0 there exists a finite T > 0 and a probability
p ∈ (0, 1) such that

∀e′ ∈ E, Pr(e′ ∈ ē(t, t + T )) ≥ p

where Pr(·) denotes a probability. ¥

In simple words, stochastic persistence implies that, if we
consider a finite but sufficiently large time interval, then



each edge has a probability greater or equal than a finite
value p of being selected during such an interval.
Theorem 4.6. Let K̃(t) be the network state resulting at
time t from the execution of Algorithm 1. If the gossip
communication scheme satisfies the deterministic persis-
tence property then, for every initial task assignment,
there exists a network state K̃∗gossip and a finite time T > 0
such that K̃(t) = K̃∗gossip, for all t ≥ T .

Proof: Let us present some preliminary comments.

— First, K̃∗gossip is an invariant network state for the state
evolution following Algorithm 1. This follows from Step 3.b
of Algorithm 1.

— Secondly, if at a given time the network state is updated
then the previous network state is no more visited during
the algorithm evolution. This also follows from Step 3.b of
Algorithm 1 and the monotonicity property expressed by
Proposition 4.1.

— Thirdly, the number Nn,k of admissible network states
is finite since both the number of robots and the number
of tasks are finite.

Now, with no loss of generality we assume that at the ini-
tial time t = 0 it is K̃r 6= K̃∗gossip,r for all r = 1, . . . , n, i.e.,
no robot is in its final assignment. If the communication
scheme among agents is deterministically persistent, since
the graph modeling the possible interactions among robots
is fully connected and the number Nn,k of admissible
network states is finite, then for sure after some finite
time T0 the robot with the maximum cost in the final
assignment reaches its final assignment. Let Rr be such
a robot. By Step 3.b of Algorithm 1 this implies that the
assignment of Rr is no more changed during the algorithm
evolution, i.e., K̃r(t) = K̃∗gossip,r for all t ≥ T0.

Analogously, after some further finite time T1 the final
assignment is reached by the robot with the second largest
cost, and so, until all robots have reached their final
assignment. Since all Ti’s are finite, this proves that the
final network state K̃∗gossip is reached in a finite time
T =

∑n
i=1 Ti. ¤

Theorem 4.7. Let K̃(t) be the network state resulting at
time t from the execution of Algorithm 1. If the gossip
communication scheme satisfies the stochastic persistence
property, then, for every initial task assignment, there
exists a network state K̃∗gossip and almost surely a finite
time T > 0 such that K̃(t) = K̃∗gossip for all t ≥ T , i.e.,
the network state converges almost surely in finite time to
K̃∗gossip.

Proof: We prove this theorem following the same
arguments an in Carli et al. [2008]. The proof is based
on verifying the following three facts:

(i) K̃∗gossip is an invariant network state for the state
evolution following Algorithm 1;

(ii) K̃(t) is a Markov process on a finite number of states;
(iii) starting from any initial network state K̃(0), there is

a positive probability for the network state to reach
K̃∗gossip in a finite number of steps.

Let us now check the above three properties in order.

— (i) As already discussed in Theorem 4.6, this follows
from Step 3.b of Algorithm 1.

— (ii) As already discussed in the proof of Theorem 4.6,
the number of admissible network states Nn,k is finite,
being finite both the number of robots and the number of
tasks. Markovianity immediately follows from the fact that
subsequent random selection of edges are independent.

— (iii) This issue can be proved using similar arguments
as in Theorem 4.6 with the only difference that now the
communication scheme is stochastically persistent, rather
than deterministically persistent. This implies that for any
initial network state K̃(0) there is a finite probability that
after some finite time T0 the robot with the maximum cost
in the final assignment reaches its final assignment, that is
no more changed during the algorithm evolution. The same
holds for the robot with the second largest execution cost
in the final assignment, and so, until the invariant network
state K̃∗gossip is reached. Since the number of possible states
is finite, item (iii) holds. ¤

4.4 Some characterization of the gossip solution

Unfortunately, Algorithm 1 does not guarantee the conver-
gence to an optimal solution. However, some results can be
given to characterize its solution at the equilibrium, i.e.,
after a number of iterations that is sufficiently large so
that no better balancing among robots may be obtained.
In particular, the following theorem provides a character-
ization of the maximum distance among the processing
times of robots that have locally balanced their loads.
Theorem 4.8. Let J∗gossip,r and J∗gossip,q, respectively, be
the total execution times of two generic robots Rr and Rq

resulting from the application of Algorithm 1. It holds

|J∗gossip,r − J∗gossip,q| ≤ Krq = 2
drq

max

vrq
min

+
crq
max

wrq
min

(20)

where drq
max is the maximum distance among tasks in

Kr and tasks in Kq, vrq
min = min{vr, vq}, and wrq

min =
min{wr, wq}.

Proof: We prove the statement by contradiction, i.e.,
we assume that |J∗gossip,r − J∗gossip,q| > Krq. With no loss
of generality, we assume that it is J∗gossip,r > J∗gossip,q.
Now, let z be the task in Kr whose distance with respect
to tasks in Kq is minimum. Remove z from Kr and put it
in Kq. Let J̃r and J̃q be the resulting execution times of
robots r and q, respectively. Obviously, it is

J̃q ≤ J∗gossip,q +
cz

wq
+ 2

drq
max

vq
= J∗gossip,q + Krq (21)

where the inequality follows from the fact that the optimal
TSP of robot q is surely smaller than the path obtained
by simply adding twice the path from the closest task in
Kq to z. Now, by the contradictory assumption, it is

J∗gossip,r > J∗gossip,q + Krq (22)
thus (21) can be rewritten as

J̃q < J∗gossip,r. (23)
As a consequence

max{J̃q, J̃r} < max{J∗gossip,q, J
∗
gossip,r}. (24)

However, this contradicts the assumption that J∗gossip,r
and J∗gossip,q are the time executions corresponding to an
optimal tasks assignment, thus proving the statement. ¤



Corollary 4.9. Let J∗gossip,r and J∗gossip,q, respectively, be
the total execution times of two generic robots Rr and Rq

resulting from the application of Algorithm 1. It holds
|J∗gossip,r − J∗gossip,q| ≤ Dup (25)

where Dup is defined as in equation (4).

Let us now provide two theorems that give an upper
bound on the maximum execution time resulting from the
application of Algorithm 1.
Theorem 4.10. Let J∗gossip be the maximum execution
time resulting from the application of Algorithm 1. It is

J∗gossip ≤(√
2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin
+

1
n

∑
i∈K ci

wmin
+ Dup.

(26)

Proof: Let Sgossip(t) be the sum of all Ji’s at iteration
t of Algorithm 1. By Proposition 4.2 it is
Sgossip(t) ≤ nJgossip(t)

≤ n

(√
2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin
+

∑
i∈K ci

wmin
.

(27)

Let J∗gossip,min be the smallest execution time between
the vehicles after the execution of Algorithm 1. By Corol-
lary 4.9 it is J∗gossip,min ≥ J∗gossip−Dup. Moreover, ∀t ≥ 0
it obviously is

Jgossip,min(t) ≤ 1
n

Sgossip(t) (28)

thus

J∗gossip ≤ J∗gossip,min + Dup ≤ 1
n

Sgossip(t) + Dup

≤
(√

2

√
k

n
+ 2 +

7
4

+
√

2

)
dmax

vmin
+

1
n

∑
i∈K ci

wmin
+ Dup.

(29)
proving the statement. ¤

A different upper bound on the value of the objective
function computed using Algorithm 1 is given by the
following theorem.
Theorem 4.11. Let J∗gossip be the value of the objective
function (1) resulting from Algorithm 1. It is

J∗gossip ≤
k

n

2dmax

vmin
+

1
n

∑
i∈K ci

wmin
+ Dup (30)

where Dup is defined as in equation (4).

Proof: Let Sgossip be the sum of all Ji’s after the
execution of Algorithm 1. For sure it is

Sgossip ≤ k
2dmax

vmin
+

∑
i∈K ci

wmin
. (31)

In fact, no task assignment may lead to a maximum
execution time that is larger than that obtained assuming
that each robot has a speed equal to vmin, an execution
speed equal to wmin, all tasks are at distance dmax from
depots, and any robot moves from its depot to a task and
come back to the depot, and again to a new task, and so
on, until all tasks are visited by exactly one robot.

Now, let J∗gossip,min be the smallest execution time of
robots after executing Algorithm 1. By equation (25) it
follows that:

J∗gossip ≤ J∗gossip,min + 2
dmax

vmin
+

cmax

wmin
. (32)

Moreover, it obviously is

J∗gossip,min ≤
1
n

Sgossip (33)

thus
J∗gossip ≤

1
n

Sgossip + 2
dmax

vmin
+

cmax

wmin
. (34)

The statement is proved by simply substituting equa-
tion (31) in (34). ¤

Both Theorems 4.10 and 4.11 provide upper bounds on
the maximum execution times of robots after the execu-
tion of Algorithm 1. Both bounds depend on the ratio
k/n: for small values of such ratio, the bound given by
equation (30) is smaller, while for large values of k/n the
most significant bound is given by equation (26).

5. NUMERICAL SIMULATIONS

In this section we present two series of experimental
results. First, we compare the solution computed using
Algorithm 1 with the optimal solution computed using the
centralized approach (3.1). Secondly, we analyze the value
of J∗gossip for different values of k and n, comparing it
with the lower and upper bounds given for the centralized
optimal solution.

In all the experiments robots and tasks are randomly
scattered in a square whose edge is equal to 10 units. Costs
of tasks are integer values uniformly randomly generated
in the interval [1, 5]. Speeds vi and wi are real values
uniformly randomly generated in [1, 2]. Finally, in the
MILP gossip algorithm the edge selection is performed in
a uniformly random way.

The comparison between centralized and decentralized
solution has shown that in most of the cases it is J∗ =
J∗gossip. In particular, in a set of 1000 experiments, in 859
cases J∗ = J∗gossip (85.9%). In the remaining 141, we have
computed the relative error ei for each experiment i as
ei = (J∗gossip,i − J∗i )/J∗i The mean value ē of the relative
error in our simulations is ē = 0.0216, while the maximum
error relative is emax = 0.196 (19.6 %). The following
example represent a case in which J∗ 6= J∗gossip.
Example 5.1. Let us consider a system with n = 3
robots and k = 7 tasks. Robots are initially positioned
in the XY plane as summarized in Table 5.1. This table
also summarizes the position and costs of tasks and the
initial task assignment. Moreover, for each robot Rr it is
vr = wr = 1. Table 5.1 presents the results of the load
balancing carried out using both the centralized and the
decentralized approach. As it can be seen, the optimal
solution of the centralized approach is better than that
obtained via gossip. In particular, it is J∗ = 100.5 and
J∗gossip = 101. ¥

Let us now compare the optimal value of the performance
index obtained via the gossip algorithm with the upper
and lower bound of the centralized approach given by



X Y Init. Assig. ci

Robot 1 0 0 - -

Robot 2 30 0 - -

Robot 3 -20 0 - -

Task 1 20 0 Robot 1 20

Task 2 20 0 Robot 2 3

Task 3 20 0 Robot 1 1.5

Task 4 20 0 Robot 2 78

Task 5 -10 0 Robot 1 1

Task 6 -10 0 Robot 1 17.5

Task 7 -10 0 Robot 3 79.5

Table 1. Example 5.1: initial task assignment.

Centralized Kr J∗r Gossip Kr J∗r,gossip

Robot 1 {1, 2, 6} 100.5 {1, 3, 5, 6} 100

Robot 2 {3, 4} 99.5 {2, 4} 101

Robot 3 {5, 7} 100.5 {7} 99.5

Table 2. Example 5.1: simulation results.
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Fig. 1. J∗gossip and the upper and lower bound of the
centralized solution given by Theorems 3.2 and 3.3.

Theorems 3.2 and 3.3. The results of such a comparison
are reported in Fig. 1 where for each couple (n, k) of n
robots and k tasks, J∗gossip and the two bounds are the
mean values of 10 experiments. Simulation shows that the
maximum service time obtained with the gossip approach
remains always between the upper and the lower bound of
the centralized approach.

6. CONCLUSIONS AND FUTURE WORK

In this paper we proposed upper and lower bounds for
the cost of the optimal solution to the HMVRP which
considers vehicles with different movement and task ex-
ecution speed, and tasks with different servicing costs,
extending the bounds for the multi-vehicle routing prob-
lem in Carlsson et al. [2009]. Furthermore, we proposed
an algorithm based on gossip to solve the HMVRP in a
distributed fashion exploiting only pairwise task exchanges
between vehicles, thus greatly reducing the computational
complexity required to compute a solution. The proposed
method scales with exponential complexity with respect to
the ratio between the number of tasks and vehicles instead
of scaling with respect to the number of tasks. Some
characterizations of the gossip solution are also given.

Our conjecture is that the gossip solution always lie within
the bounds that characterize the optimal solution. Up to
now this conjecture has only been validated via numerical
simulation, while a formal proof is missing and constitutes
one of our future lines of research in this topic. Such a
result, if it holds, is very important because it implies
that the MILP gossip algorithm provides a constant factor
approximation to the optimal solution. Our future direc-
tions of research also involve the investigation of other
distributed strategies, not based on MILP, to provide a
constant factor approximation of the optimal solution of
the HMVRP. Finally, we are investigating the definition of
a stopping criterion that is completely distributed.
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