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Stochastic Surveillance Strategies
for Spatial Quickest Detection

Vaibhav Srivastava Fabio Pasqualetti Francesco Bullo

Abstract—We design persistent surveillance strategies for the
quickest detection of anomalies taking place in an environment
of interest. From a set of predefined regions in the environment,
a team of autonomous vehicles collects noisy observations, which
a control center processes. The overall objective is to minimize
detection delay while maintaining the false alarm rate below
a desired threshold. We present joint (i) anomaly detection
algorithms for the control center and (ii) vehicle routing policies.
For the control center, we propose parallel cumulative sum
(CUSUM) algorithms (one for each region) to detect anomalies
from noisy observations. For the vehicles, we propose a stochastic
routing policy, in which the regions to be visited are chosen
according to a probability vector. We study stationary routing
policy (the probability vector is constant) as well as adaptive
routing policies (the probability vector varies in time as a
function of the likelihood of regional anomalies). In the context
of stationary policies, we design a performance metric and
minimize it to design an efficient stationary routing policy. Our
adaptive policy improves upon the stationary counterpart by
adaptively increasing the selection probability of regions with
high likelihood of anomaly. Finally, we show the effectiveness of
the proposed algorithms through numerical simulations and a
persistent surveillance experiment.

Index Terms—vehicle routing, statistical decision making,
quickest detection, persistent surveillance, patrolling, security,
motion planning.

I. INTRODUCTION

Recent years have witnessed a surge in the application of
autonomous agents in various activities such as surveillance
and information collection. In view of the recent Icelandic ash
problem, the oil spill in the gulf of Mexico, and recurring wild
fires, surveillance strategies resulting in the quickest detection
of anomalies are of considerable importance. Due to extreme
sensor and modeling uncertainties in these situations, robust
anomaly detection methods need to be employed. Generally,
a limited number of vehicles are deployed to survey a large
number of regions, and it is fundamental that the vehicles
collect the information that is most pertinent to anomaly
detection. In this paper we characterize this pertinence, and
design surveillance strategies accordingly.

A preliminary version of this work [1] was presented at IEEE Conference
on Decision and Control and European Control Conference, 2011. In addition
to the ideas in [1], this paper contains a rigorous analysis of the single
vehicle surveillance, the multiple vehicle surveillance, extensive numerical
illustrations, and a persistent surveillance experiment.
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A reliable detection of anomalies can be achieved by col-
lecting observations sequentially until the evidence suggesting
an anomaly reaches a substantial level. Various sequential
algorithms for the detection of anomalies have been pro-
posed [2]. The CUSUM algorithm is one of the celebrated
test in this category: it minimizes the expected delay in
detecting an anomaly for a given bound on the false alarm
rate. Furthermore, it is known that a human being typically
performs well in detecting and identifying anomalies from
observations. Recent advances in cognitive psychology [3], [4]
show that human performance in decision making tasks is well
modeled by sequential statistical procedures like the CUSUM
algorithm. The optimality property of the CUSUM algorithm
and its connection with human decision making inspire us to
adopt the CUSUM algorithm as anomaly detection algorithm.
Our setup and approach. We consider an environment
partitioned into regions of interest, and we employ a team of
autonomous vehicles for the persistent surveillance of these
regions. In particular, the vehicles visit the regions, collect
information, and send it to a control center. We study a spatial
quickest detection problem with multiple vehicles, that is,
the simultaneous quickest detection of anomalies at spatially
distributed regions when the observations for anomaly detec-
tion are collected by autonomous vehicles. For this problem,
we let the control center run parallel CUSUM algorithms
(one for each region) with the collected information. The
control center then decides on the presence of anomalies in the
regions. Finally, we design vehicle routing policies to collect
observations at different regions. Our vehicle routing policies
aim at minimizing the anomaly detection time at the control
center.
Related work. Vehicle routing policies have witnessed a lot
of attention in the robotics and controls literature. A survey
on dynamic vehicle routing policies for servicing tasks is
presented in [5]. Recently, the routing for information aggre-
gation has been of particular interest. Klein et al [6] present a
vehicle routing policy for optimal localization of an acoustic
source. They consider a set of spatially distributed sensors
and optimize the trade-off between the travel time required to
collect a sensor observation and the information contained in
the observation. They characterize the information in an obser-
vation by the volume of the Cramer-Rao ellipsoid associated
with an optimal estimator. Hollinger et al [7] study routing for
an AUV to collect data from an underwater sensor network.
They developed approximation algorithms for variants of the
traveling salesperson problem to determine efficient policies
that maximize the information collected while minimizing
the travel time. Gupta et al [8] study the estimation in a
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linear dynamical system with the observations collected by
a set of mobile sensors. They determine stochastic trajectories
for mobile sensors that minimize the error covariance of the
Kalman filter estimate. Zhang et al [9] study the estimation of
environmental plumes with mobile sensors. They minimize the
uncertainty of the estimate of the ensemble Kalman filter to
determine optimal trajectories for a swarm of mobile sensors.

There has been some interest in decision theoretic informa-
tion aggregation and vehicle routing as well. Castañón [10]
poses the search problem as a dynamic hypothesis test, and
determines the optimal routing policy that maximizes the
probability of detection of a target. Chung et al [11] study
the probabilistic search problem in a decision theoretic frame-
work. They minimize the search decision time in a Bayesian
setting. Certain optimal information aggregation strategies for
sequential hypothesis testing have been developed in [12],
[13]. Hollinger et al [14] study an active classification problem
in which an autonomous vehicle classifies an object based
on multiple views. They formulate the problem as an active
Bayesian learning and apply it to underwater detection.

The problem of surveillance has received considerable at-
tention recently. Preliminary results on this topic have been
presented in [15], [16], [17]. Pasqualetti et al [18] study the
problem of optimal cooperative surveillance with multiple
agents. They optimize the time gap between any two visits to
the same region, and the time necessary to inform every agent
about an event occurred in the environment. Smith et al [19]
consider the surveillance of multiple regions with changing
features and determine policies that minimize the maximum
change in features between the observations. A persistent
monitoring task where vehicles move on a given closed path
has been considered in [20], [21], and a speed controller has
been designed to minimize the time lag between visits of
regions.

Stochastic surveillance and pursuit-evasion problems have
also fetched significant attention. In an earlier work, Hes-
panha et at [22] studied multi-agent probabilistic pursuit
evasion game with the policy that, at each instant, directs
pursuers to a location that maximizes the probability of finding
an evader at that instant. Grace et al [23] formulate the surveil-
lance problem as a random walk on a hypergraph and paramet-
rically vary the local transition probabilities over time in order
to achieve an accelerated convergence to a desired steady state
distribution. Sak et al [24] present partitioning and routing
strategies for surveillance of regions for different intruder
models. Srivastava et al [25] present a stochastic surveillance
problem in centralized and decentralized frameworks. They
use Markov chain Monte Carlo method and message passing
based auction to achieve the desired surveillance criterion.
They also show that the deterministic strategies fail to satisfy
the surveillance criterion under general conditions.
Paper contributions. The main contributions of this work
are fivefold. First, we formulate the stochastic surveillance
problem for spatial quickest detection of anomalies. We pro-
pose the ensemble CUSUM algorithm for a control center to
detect concurrent anomalies at different regions from collected
observations. For the ensemble CUSUM algorithm we char-
acterize lower bounds for the expected detection delay and

for the average (expected) detection delay at each region. Our
bounds take into account the processing times for collecting
observations, the prior probability of anomalies at each region,
and the anomaly detection difficulty at each region.

Second, for the case of stationary routing policies, we pro-
vide bounds on the expected delay in detection of anomalies at
each region. In particular, we take into account both the pro-
cessing times for collecting observations and the travel times
between regions. For the single vehicle case, we explicitly
characterize the expected number of observation necessary
to detect an anomaly at a region, and the corresponding
expected detection delay. For the multiple vehicles case, we
characterize lower bounds for the expected detection delay and
the average detection delay at the regions. As a complementary
result, we show that the expected detection delay for a single
vehicle is, in general, a non-convex function. However, we
provide probabilistic guarantees that it admits a unique global
minimum.

Third, we propose stationary vehicle routing policies to
collect observations from different regions. For the single
vehicle case, we design an efficient stationary policy by
minimizing an upper bound for the average detection delay at
the regions. For the multiple vehicles case, we first partition
the regions among the vehicles, and then we let each vehicle
survey the assigned regions by using the routing policy as
in the single vehicle case. In both cases we characterize the
performance of our policies in terms of expected detection
delay and average (expected) detection delay.

Fourth, we describe our adaptive ensemble CUSUM algo-
rithm, in which the routing policy is adapted according to the
learned likelihood of anomalies in the regions. We derive an
analytic bound for the performance of our adaptive policy.
Finally, our numerical results show that our adaptive policy
outperforms the stationary counterpart.

Fifth and finally, we report the results of extensive numerical
simulations and a persistent surveillance experiment. Besides
confirming our theoretical findings, these practical results
show that our algorithm are robust against realistic noise
models, and sensors and motion uncertainties.
Paper organization. In Section II we present our problem
setup and some preliminary definitions. In Section III we
present our ensemble CUSUM algorithm to detect concurrent
anomalies in different regions. In Section IV we present our
stationary vehicle routing policy for the single and the multiple
vehicles cases. Section V contains our adaptive routing policy.
Sections VI and VII contain our numerical studies and our
experiment, respectively. Section VIII concludes the paper.

II. PROBLEM SETUP

We consider the persistent surveillance of a set of n disjoint
regions with a team of m < n identical autonomous vehicles
capable of sensing, communicating, and moving from one
region to another. In persistent surveillance, the vehicles visit
the regions according to some routing policy, collect evidence
(sensor observation), and send it to a control center. The
control center runs an anomaly detection algorithm with the
evidence collected by the vehicles to determine the likelihood
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Fig. 1. Persistent Surveillance Setup. A set of n regions is surveyed by
m < n vehicles. Each vehicle visits the regions according to some policy
and collects evidence from the visited region. The collected evidence is sent to
an anomaly detection algorithm. The anomaly detection algorithm processes
the collected evidence and decides on the presence of an anomaly. It also
provides the likelihood of an anomaly being present, which in turn is used by
the vehicle routing algorithm. The anomaly detection algorithm and vehicle
routing algorithm constitute the control center, which can be implemented
on-board of a vehicle.

of an anomaly being present at some region. The control center
declares an anomaly if substantial evidence is present. Finally,
the control center utilizes the likelihood of an anomaly at each
region to determine a vehicle routing policy. The objective of
the control center is to detect an anomaly at any region in
minimum time subject to a desired bound on the expected time
between any two subsequent false alarms. The time required to
detect an anomaly depends on the anomaly detection algorithm
and the time vehicles take to travel the regions. Thus, the
control center needs to minimize the time needed to detect an
anomaly jointly over anomaly detection policies and vehicle
routing policies. Our problem setup is shown in Fig. 1.

We adopt the standard motion planning notation in [26]. We
denote the k-th region by Rk, k ∈ {1, . . . , n}, and r-th vehicle
by Ur, r ∈ {1, . . . ,m}. Let the likelihood of an anomaly at
region Rk be πk ∈ ]0, 1[. We study the persistent surveillance
problem under following assumptions.

Regarding the vehicles, we do not assume any specific
dynamics and we assume that:

(i) each vehicle take time dij to travel from region Ri to
region Rj , i, j ∈ {1, . . . , n};

(ii) the sensors on each vehicle take a random time Tk to
collect an informative observation1 from region Rk, k ∈
{1, . . . , n}.

Regarding the observations, we assume that:
(i) the observation collected by a vehicle from region Rk

is sampled from probability density functions f0
k : R→

R≥0 and f1
k : R → R≥0, respectively, in the presence

and in the absence of anomalies;
(ii) for each k ∈ {1, . . . , n}, probability density func-

tions f1
k and f0

k are non-identical with some non-zero
probability, and there exists no sample that absolutely
demarcates one distribution from other;

(iii) conditioned on the presence or absence of anomalies, the
observations in each region are mutually independent,

1An informative observation may require the acquisition of several obser-
vations from different locations at the same region. In this case the processing
time equals the total time required to collect all these observations.

and
(iv) observations in different regions are also mutually inde-

pendent.
Regarding the anomaly detection algorithm at the control

center, we employ the cumulative sum (CUSUM) algorithm,
which we describe later, for anomaly detection at each region.
In particular, we run n parallel CUSUM algorithms (one for
each region) and declare an anomaly being present at a region
as soon as substantial evidence is present. We refer to such
parallel CUSUM algorithms by ensemble CUSUM algorithm.

Regarding the vehicle routing policy, we propose the ran-
domized routing policy, and the adaptive routing policy. In
the randomized routing policy, each vehicle (i) selects a
region from a stationary distribution, (ii) visits that region,
(iii) collects an evidence, and (iv) transmits this evidence
to the control center and iterates this process endlessly. In
the randomized routing policy, the evidence collected by the
vehicles is not utilized to modify their routing policy. In other
words, there is no feedback from the anomaly detection algo-
rithm to the vehicle routing algorithm. In the adaptive routing
policy, instead, the evidence collected by the vehicles is used
to modify the routing policy, and thus, the loop between the
vehicle routing algorithm and the anomaly detection algorithm
is closed. The adaptive routing policy follows the same steps
as in the randomized routing policy, with the exception that
the distribution in step (i) is no more stationary and is adapted
based on the collected evidence.

For brevity of notation, we will refer to the joint anomaly
detection and vehicle routing policy comprising of the en-
semble CUSUM algorithm and the randomized routing policy
by randomized ensemble CUSUM algorithm. We will show
that the randomized ensemble CUSUM algorithm provides a
solution that is within a constant factor of an optimal solution.
Similarly, we refer to the joint anomaly detection and vehicle
routing policy comprising of the ensemble CUSUM algorithm
and adaptive routing policy by adaptive ensemble CUSUM
algorithm. We will show that adaptive ensemble CUSUM
algorithm makes the vehicles visit anomalous regions with
high probability and thus, improves upon the performance of
the randomized ensemble CUSUM algorithm. The following
standard definition [27] will be used in the remaining sections.

Definition 1 (Kullback-Leibler divergence): Given two
probability mass functions f1 : S → R≥0 and f2 : S → R≥0,
where S is some countable set, the Kullback-Leibler
divergence D : L1 × L1 → R∪{+∞} is defined by

D(f1, f2) = Ef1
[
log

f1(X)

f2(X)

]
=

∑
x∈supp(f1)

f1(x) log
f1(x)

f2(x)
,

where L1 is the set of integrable functions, Ef1 [·] represents
expected value with respect to f1, X is a random variable
sampled from f1, and supp(f1) is the support of f1. �
It is known that 0 ≤ D(f1, f2) ≤ +∞, that the lower bound
is achieved if and only if f1 = f2 almost everywhere, and that
the upper bound is achieved if and only if the support of f2 is
a strict subset of the support of f1. Observe that assumption
(ii) on the observations is equivalent to D(f1

k , f
0
k ) ∈ R>0 for

each k ∈ {1, . . . , n}.
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We conclude this section with some notations that will be
used throughout the paper. We denote the probability simplex
in Rn by ∆n−1, and the space of vehicle routing policies
by Ω. For the processing time Tk, we let T̄k denote its
expected value. Consider m realizations of the processing
time Tk, we denote the expected value of the minimum of
these m realized values by T̄m-smlst

k . Note that T̄ 1-smlst
k = T̄k.

We also define T̄max = max{T̄k | k ∈ {1, . . . , n}} and
T̄min = min{T̄k | k ∈ {1, . . . , n}}. We denote the Kullback-
Leibler divergence between the probability density functions
f1
k and f0

k by Dk. Finally, Dmax = max{Dk | k ∈ {1, . . . , n}}
and Dmin = min{Dk | k ∈ {1, . . . , n}}.

Remark 1 (Randomized routing policy): The randomized
routing policy samples region to visit from a stationary dis-
tribution; this assumes that each region can be visited from
another region in a single hop. While this is the case for
aerial vehicles, it may not be true for ground vehicles. In
the latter case, the motion from one region to another can be
modeled as a Markov chain. The transition probabilities of this
Markov chain can be designed to achieve a desired stationary
distribution. This can optimally be done, for instance, by
picking the fastest mixing Markov chain [28] or heuristically
by using the standard Metropolis-Hastings algorithm [29].
Related examples are in Section VI and VII. �

Remark 2 (Knowledge of distributions): For simplicity of
presentation, we assume that the probability density func-
tions in presence and absence of an anomaly are known. In
general, only the probability density function in absence of
any anomaly may be known, or both the probability density
functions may be unknown. In the first case, the CUSUM
algorithm can be replaced by the weighted CUSUM algorithm
or the generalized likelihood ratio (GLR) algorithm [2], while
in the second case, it can be replaced with the robust minimax
quickest change detection algorithm [30]. The ideas presented
in this paper extend straightforwardly to these cases. A related
example is presented in Section VI. �

Remark 3 (Independence of observations): We assumed
that the observations collected from each region are
independent conditioned on the presence and absence of
anomalies. In general, the observations may be dependent
and the dependence can be captured through an appropriate
hidden Markov model. If the observations can be modeled
as a hidden Markov model, then the CUSUM like algorithm
in [31] can be used instead of the standard CUSUM algorithm.
The analysis presented here holds in this case as well.

We also assumed that the observations collected from dif-
ferent regions are mutually independent. Although the ideas in
this paper also work when the observations at different regions
are dependent, the performance can improved with a slight
modification in the procedure presented here (see Remark 4).
In this case the algorithm performance improves because each
observation is now informative about more than one region.�

III. SPATIAL QUICKEST DETECTION

In this section, we propose the ensemble CUSUM algorithm
for the simultaneous quickest detection of anomalies in spa-
tially distributed regions. We start by recalling the standard

quickest change detection problem. Then we describe and
characterize the ensemble CUSUM algorithm.

A. Quickest change detection

Consider a set of observations {y1, y2, . . .}, where, for some
ν, the observations {y1, . . . , yν−1} are i.i.d. with probability
density function f0, and {yν , yν+1, . . .} are i.i.d. with proba-
bility density function f1. The objective of the quickest change
detection is to detect the change in the underlying distribution
in minimum number of observations subject to a desired lower
bound on the number of samples between two false alarms. Let
N ≥ ν be the observation at which the change is detected. The
non-Bayesian quickest detection problem [32], [33] is posed
as

minimize sup
ν≥1

Eν [N − ν + 1|N ≥ ν]

subject to Ef0 [N ] ≥ 1/γ,
(1)

where Eν [·] represents expected value with respect to the
observations distribution at iteration ν, and γ ∈ R>0 is a small
constant called false alarm rate.

An algorithmic solution to the minimization problem (1) is
the cumulative sum (CUSUM) algorithm [32], where, at each
iteration τ ∈ N, (i) observation yτ is collected, (ii) the statistic
Λτ =

(
Λτ−1+log

f1
k(yτ )

f0
k(yτ )

)+
with Λ0 = 0 is computed, and (iii)

a change is declared if Λτ > η. For a given threshold η, the
false alarm rate and the worst expected number of observations
for CUSUM algorithm are

Ef0(N) ≈ eη − η − 1

D(f0, f1)
and Ef1(N) ≈ e−η + η − 1

D(f1, f0)
. (2)

The approximations in equation (2) are referred to as the
Wald’s approximations [33], and are known to be accurate
for large values of the threshold η. In the following, we
assume that the chosen threshold is large enough and the
expressions in equation (2) are exact. Let u ∈ R>0 be the
uniform time duration between two iterations of the CUSUM
algorithm. The expected detection delay δ, i.e., the expected
time required to detect an anomaly after its appearance,
satisfies Ef1 [δ] = uEf1(N).

B. Ensemble CUSUM algorithm

We run n parallel CUSUM algorithms (one for each region),
and update the CUSUM statistic for region Rk only if an
observation is received from region Rk. We refer to such
parallel CUSUM algorithms by ensemble CUSUM algorithm
(Algorithm 1). Notice that an iteration of this algorithm is
initiated by the collection of an observation.

We are particularly interested in the performance of the
ensemble CUSUM algorithm when the observations are col-
lected by autonomous vehicles. In this case, the performance
of the ensemble CUSUM algorithm is a function of the vehicle
routing policy. For the ensemble CUSUM algorithm with
autonomous vehicles collecting observation, let the number
of iterations (collection of observations) required to detect
an anomaly at region Rk be Nk : Ω → N∪{+∞}, and
let the detection delay, i.e., the time required to detect an
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Algorithm 1: Ensemble CUSUM Algorithm
Input : threshold η, pdfs f0

k , f
1
k , k ∈ {1, . . . , n} ;

Output : decision on presence of an anomaly ;

1 at time τ receive observation yτ for region Rk;
2 update the CUSUM statistic at each region:

Λjτ =


(

Λkτ−1 + log
f1k(yτ )

f0
k

(yτ )

)+
, if j = k;

Λjτ−1, if j ∈ {1, . . . , n} \ {k};

3 if Λkτ > η then change detected at region Rk ;
4 else wait for next observations and iterate.

anomaly, at region Rk be δk : Ω → R>0 ∪{+∞}, for each
k ∈ {1, . . . , n}, where Ω is the space of vehicle routing
policies. We also define average detection delay as follows:

Definition 2 (Average detection delay): For any vector of
weights (w1, . . . , wn) ∈ ∆n−1, define the average detection
delay δavg : Ω → R>0 ∪{+∞} for the ensemble CUSUM
algorithm with autonomous vehicles collecting observations
by

δavg(ω) =

n∑
k=1

wkE[δk(ω)]. (3)

For the ensemble CUSUM algorithm with m vehicles
collecting observation, define δm-min

k and δm-min
avg by

δm-min
k = inf{E[δk(ω)] | ω ∈ Ω}, and

δm-min
avg = inf{δavg(ω) | ω ∈ Ω},

respectively. Note that δm-min
k and δm-min

avg are lower bounds for
the expected detection delay and average detection delay at
region Rk, respectively, independently of the routing policy.
Let η̄ = e−η + η − 1. We now state lower bounds on
the performance of the ensemble CUSUM algorithm with
autonomous vehicles collecting observations.

Lemma 3 (Global lower bound): The following statements
hold for the ensemble CUSUM algorithm with m vehicles
collecting information:

(i) the lower bound δm-min
k for the expected detection delay

at region Rk satisfies

δm-min
k ≥ η̄ T̄m-smlst

k

mDk
;

(ii) the lower bound δm-min
avg for the average detection delay

satisfies

δm-min
avg ≥ η̄ T̄m-smlst

min

mDmax
,

where T̄m-smlst
min = min{T̄m-smlst

k | k ∈ {1, . . . , n}}.
Proof: We start by establishing the first statement. We

note that a lower bound on the expected detection delay
at region Rk is obtained if all the vehicles always stay at
region Rk. Since, each observation is collected from region
Rk, the number of iterations of the ensemble CUSUM al-
gorithm required to detect an anomaly at region Rk satisfies
E[Nk] = η̄/Dk. Let T rk (b) be realized value of the processing
time of vehicle Ur at its b-th observation. It follows that

Tm-smlst
k (b) = min{T rk (b) | r ∈ {1, . . . ,m}} is a lower

bound on the processing time of each vehicle for its b-th
observation. Further, Tm-smlst

k (b) is identically distributed for
each b and E[Tm-smlst

k (b)] = T̄m-smlst
k . Consider a modified

stochastic process where the realized processing time of each
vehicle for its bth observation in Tm-smlst

k (b). Indeed, such a
stochastic process underestimates the time required to collect
each observation and, hence, provides a lower bound to
the expected detection delay. Therefore, the detection delay
satisfies the following bound

δk(ω) ≥
dNk/me∑
b=1

Tm-smlst
k (b), for each ω ∈ Ω.

It follows from Wald’s identity [34] that

E[δk(ω)] ≥ T̄m-smlst
k E[dNk/me] ≥ T̄m-smlst

k E[Nk]/m.

This proves the first statement.
The second statement follows from Definition 2 and the first

statement.
Remark 4 (Dependence across regions): We assumed that

the observations collected from different regions are mutually
independent. If the observations from different regions are
dependent, then, at each iteration, instead of updating only one
CUSUM statistic, the CUSUM statistic at each region should
be updated with an appropriate marginal distribution. �

IV. RANDOMIZED ENSEMBLE CUSUM ALGORITHM

We now study the persistent surveillance problem under
randomized ensemble CUSUM algorithm. First, we derive
an exact expression for the expected detection delay for
the randomized ensemble CUSUM algorithm with a single
vehicle, and use the derived expressions to develop an ef-
ficient stationary policy for a single vehicle. Second, we
develop a lower bound on the expected detection delay for
the randomized ensemble CUSUM algorithm with multiple
vehicles, and develop a generic partitioning policy that (i)
constructs a complete and disjoint m-partition of the regions,
(ii) allocates one partition each to a vehicle, and (iii) lets each
vehicle survey its assigned region with some single vehicle
policy. Finally, we show that the partitioning policy where
each vehicle implements the efficient stationary policy in its
regions is within a constant factor of an optimal policy.

A. Analysis for single vehicle

Consider the randomized ensemble CUSUM algorithm with
a single vehicle. Let qk ∈ [0, 1] denote the probability to select
regionRk, and let q = (q1, . . . , qn) ∈ ∆n−1. Let the threshold
for the CUSUM algorithm at each region be uniform and
equal to η ∈ R>0. We note that for the randomized ensemble
CUSUM algorithm with a single vehicle the space of vehicle
routing policies is Ω = ∆n−1.

Theorem 4 (Single vehicle randomized ensemble CUSUM):
For the randomized ensemble CUSUM algorithm with a
single vehicle and stationary routing policy q ∈ ∆n−1, the
following statements hold:
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(i) the number of observations Nk(q) required to detect a
change at region Rk satisfies

Ef1
k
[Nk(q)] =

η̄

qkDk
;

(ii) the detection delay δk(q) at region Rk satisfies

Ef1
k
[δk(q)] =

( n∑
i=1

qiT̄i +

n∑
i=1

n∑
j=1

qiqjdij

)
Ef1

k
[Nk(q)].

Proof: Let τ ∈ {1, . . . , Nk} be the iterations at which
the vehicle collects and sends information about the regions,
where Nk denotes the iteration at which an anomaly is
detected at region Rk. Let the log likelihood ratio at region
Rk at iteration τ be λkτ . We have

λkτ =

{
log

f1
k(yτ )

f0
k(yτ )

, with probability qk,

0, with probability 1− qk.
Therefore, conditioned on the presence of an anomaly,
{λkτ}τ∈N are i.i.d., and

Ef1
k
[λkτ ] = qkDk.

The remaining proof of the first statement follows similar to
the proof for CUSUM in [33].

To prove the second statement, note that the information
aggregation time T agr comprises of the processing time and
the travel time. At an iteration the vehicle is at region Ri
with probability qi and picks region Rj with probability qj .
Additionally, the vehicle travels between the two regions in dij
units of time. Thus, the average travel time at each iteration
is

E[Ttravel] =

n∑
i=1

n∑
j=1

qiqjdij .

Hence, the expected information aggregation time at each
iteration is

E[T agr] = E[Ttravel + Tprocess] =

n∑
i=1

n∑
j=1

qiqjdij +

n∑
i=1

qiT̄i.

Let {T agr
τ }τ∈{1,...,Nk}, be the information aggregation times at

each iteration. We have that δk =
∑Nk
τ=1 T

agr
τ , and it follows

from Wald’s identity [34] that

E[δk] = E[T agr]E[Nk].

This completes the proof of the statement.

B. Design for single vehicle
Our objective is to design a stationary policy that si-

multaneously minimizes the detection delay at each region,
that is, to design a stationary policy that minimizes each
term in (δ1(q), . . . , δn(q)) simultaneously. For this multiple-
objective optimization problem, we construct a single aggre-
gate objective function as the average detection delay. After
incorporating the expressions for the expected detection delays
derived in Theorem 4, the average detection delay becomes

δavg(q) =
( n∑
k=1

wkη̄

qkDk

)( n∑
i=1

qiTi +

n∑
i=1

n∑
j=1

qiqjdij

)
, (4)

q1

q 2
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0.9

1
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q2

Fig. 2. Level-sets of the objective function in problem (5). It can be seen
that the level sets are not convex.

where wk = πk/(
∑n
i=1 πi) is the weight on the expected

detection delay at region Rk and πk is the prior probability
of an anomaly being present at region Rk. Our objective is to
solve the average detection delay minimization problem:

minimize
q∈∆n−1

δavg(q). (5)

In general, the objective function δavg is non-convex. For
instance, let n = 3, and consider the level sets of δavg on the
two dimensional probability simplex (Fig. 2). It can be seen
that the level sets are non-convex, yet there exists a unique
critical point and it corresponds to a minimum. We now state
the following conjecture about the average detection delay:

Conjecture 5 (Single vehicle optimal stationary policy):
For the randomized ensemble CUSUM algorithm with a
single vehicle, the average detection delay function δavg has
a unique critical point at which the minimum of δavg is
achieved. �.

In the Appendix we provide probabilistic guarantees that,
for a particular stochastic model of the parameters in δavg,
with at least confidence level 99.99% and probability at least
99%, the optimization problem (5) has a unique critical point
at which the minimum is achieved. Such a minimum can be
computed via standard gradient-descent methods [35].

We now construct an upper bound for the expected detection
delay. We will show that minimization of this upper bound
yields a policy that is within a constant factor of an optimal
policy. From equation (4), we define the upper bound δupper :
∆n−1 → R>0 ∪{+∞} as

δavg(q) ≤ δupper(q) =
( n∑
k=1

wkη̄

qkDk

)
(T̄max + dmax),

where dmax = max{dij | i, j ∈ {1, . . . , n}}.
Theorem 6 (Single vehicle efficient stationary policy):

The following statements hold for the randomized ensemble
CUSUM algorithm with single vehicle:

(i) the upper bound on the expected detection delay satisfies

min
q∈∆n−1

δupper(q) =
( n∑
k=1

√
wk
Dk

)2

η̄(T̄max + dmax),

and the minimum is achieved at q† defined by

q†k =

√
wk/Dk∑n

j=1

√
wj/Dj

, k ∈ {1, . . . , n};
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(ii) the average detection delay satisfies the following lower
bound

δavg(q) ≥
( n∑
k=1

√
wk
Dk

)2

η̄ T̄min,

for all q ∈ ∆n−1;
(iii) the stationary policy q† is within constant factor of

optimal, that is

δavg(q†)

δavg(q∗)
≤ T̄max + dmax

T̄min
, and

δavg(q†)

δ1-min
avg

≤ nT̄max + dmax

T̄min

Dmax

Dmin
,

where q∗ is an optimal stationary policy;
(iv) the expected detection delay at region Rk under policy

q† satisfy

E[δk(q†)]

δ1-min
k

≤ (T̄max + dmax)

T̄k

√
nDk

wkDmin
.

Proof: We start by establishing the first statement. It
follows from the stationarity conditions on the Lagrangian that
the minimizer q† of gupper satisfy q†k ∝

√
wkη̄/Dk, for each

k ∈ {1, . . . , n}. Incorporating this fact into
∑n
k=1 q

†
k = 1

yields the expression for q†k. The expression for gupper(q
†) can

be verified by substituting the expression for q† into gupper.
To prove the second statement, we construct a lower bound

glower : ∆n−1 → R>0 ∪{+∞} to the average detection delay
δavg defined by glower(q) =

∑n
k=1 wkη̄Tmin/Dkqk. It can be

verified that glower also achieves its minimum at q†, and

δlower(q
†) =

( n∑
k=1

√
wk
Dk

)2

η̄ T̄min.

We note that

δlower(q
†) ≤ δlower(q

∗) ≤ δavg(q∗) ≤ δavg(q),∀q ∈ ∆n−1.

Thus, the second statement follows.
To prove the first part of the third statement, we note that

δlower(q
†) ≤ δavg(q∗) ≤ δavg(q†) ≤ δupper(q

†).

Therefore, the policy q† is within gupper(q
†)/glower(q

†) =
(Tmax + dmax)/Tmin factor of optimal stationary policy.

To prove the second part of the third statement, we note

δavg(q†)

δ1-min
avg

≤ Dmax(T̄max + dmax)

DminT̄min
(
√
w1 + . . .+

√
wn)2

≤ nT̄max + dmax

T̄min

Dmax

Dmin
,

where the last inequality follows from the fact: max{√w1 +
. . .+

√
wn | w1 + . . .+ wn = 1} =

√
n.

To establish the last statement, we note that

E[δk(q†)]

δ1-min
k

≤ (T̄max + dmax)

q†kT̄k

≤ (T̄max + dmax)

T̄k

√
Dk

wkDmin
(
√
w1 + . . .+

√
wn)

≤ (T̄max + dmax)

T̄k

√
nDk

wkDmin
.

This concludes the proof of the theorem.
In the following, we would refer to q† as the single vehicle

efficient stationary policy.
Remark 5 (Efficient stationary policy): As opposed to the

average detection delay δavg, the upper bound δupper does not
depend upon any travel time information. Our efficient policy
does not take this information into account. Instead, an optimal
policy allocates higher visiting probabilities to regions that are
located more centrally in the environment. �

C. Analysis for multiple vehicles

We now consider the randomized ensemble CUSUM with
m > 1 vehicles. In this setting the vehicles operate in
an asynchronous fashion. This asynchronicity, which did not
occur in the single vehicle case, is due to (i) different travel
times between two different pair of regions, and (ii) different
realized value of processing time at each iteration. Such an
asynchronous operation makes the time durations between two
subsequent iterations non-identically distributed and makes it
difficult to obtain closed form expressions for the expected
detection delay at each region.

Motivated by the above discussion, we determine a lower
bound on the expected detection delay for the randomized
ensemble CUSUM algorithm with multiple vehicles. Let qr =
(qr1, . . . , q

r
n) ∈ ∆n−1 denote the stationary policy for vehicle

Ur, i.e., the vector of probabilities of selecting different regions
for vehicle Ur, and let ~qm = (q1, . . . , qm) ∈ ∆m

n−1. We note
that for the randomized ensemble CUSUM algorithm with m
vehicles the space of vehicle routing policies is Ω = ∆m

n−1. We
construct a lower bound on the processing times at different
regions for different vehicles in the following way. Let Ξ be the
set of all the sets with cardinality m in which each entry is an
arbitrarily chosen region; equivalently, Ξ = {R1, . . . ,Rn}m.
Let a realization of the processing times at the regions in a set
ξ ∈ Ξ be tξ1, . . . , t

ξ
m. We now define a lower bound T̄one to the

expected value of the minimum of the processing times at m
arbitrary regions as T̄one = min{E[min{tξ1, . . . , tξm}] | ξ ∈ Ξ}.

Theorem 7 (Multi-vehicle randomized ensemble CUSUM):
For the randomized ensemble CUSUM algorithm with
m vehicles and stationary region selection policies qr,
r ∈ {1, . . . ,m}, the detection delay δk at region Rk satisfies:

Ef1
k
[δk(~qm)] ≥ η̄ T̄one∑m

r=1 q
r
kDk

.

Proof: We construct a modified stochastic process to
determine a lower bound on the expected detection delay. For
the randomized ensemble CUSUM algorithm with multiple
vehicles, let tbr be the the processing time for the vehicle
Ur during its b-th visit to any region. We assume that the
sampling time for each vehicle at its b-th visit in the modified
process is min{tb1, . . . , tbm}. Therefore, the sampling time for
the modified process is the same at each region. Further,
it is identically distributed for each visit and has expected
value greater than or equal to T̄one. We further assume that
the distances between the regions are zero. Such a process
underestimates the processing and travel time required to
collect each observation in the randomized ensemble CUSUM
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Algorithm 2: Partitioning Algorithm
Input : vehicles {U1, . . . ,Um}, regions R = {R1, . . . ,Rn},

a single vehicle routing policy;
Require : n > m ;
Output : a m-partition of the regions ;

1 partition R into m arbitrary subsets {Sr}r∈{1,...,m}
with cardinalities nr ≤ dn/me, r ∈ {1, . . . ,m} ;

2 allocate vehicle Ur to subset Sr , for each r ∈ {1, . . . ,m};
3 implement the single vehicle efficient stationary policy in each subset.

algorithm. Hence, the expected detection delay for this process
provides a lower bound to the expected detection delay for
randomized ensemble CUSUM algorithm. Further, for this
process the vehicles operate synchronously and the expected
value of the likelihood ratio at region k at each iteration is∑m
r=1 q

r
kD(f1

k , f
0
k ). The remainder of the proof follows similar

to the proof for single vehicle case in Theorem 4.

D. Design for multiple vehicles
We now design an efficient stationary policy for random-

ized ensemble CUSUM algorithm with multiple vehicles. We
propose an algorithm that partitions the set of regions into m
subsets, allocates one vehicle to each subset, and implements
our single vehicle efficient stationary policy in each subset.
This procedure is formally defined in Algorithm 2.

Let the subset of regions allocated to vehicle Ur be Sr, r ∈
{1, . . . ,m}. We will denote the elements of subset Sr by
Sri , i ∈ {1, . . . , nr}. Let ~q†part ∈ ∆m

n−1 be a stationary routing
policy under the partitioning algorithm that implements single
vehicle efficient stationary policy in each partition. We define
the weights in equation (3) by wk = π1

k/
∑n
j=1 π

1
j , where

π1
k is the prior probability of anomaly at region Rk. Let
wmin = min{w1, . . . , wn} and wmax = max{w1, . . . , wn}.
We now analyze the performance of the partitioning algorithm
and show that it is within a constant factor of optimal.

Theorem 8 (Performance of the partitioning policy): For
the partitioning algorithm with m vehicles and n regions that
implements the single vehicle efficient stationary policy in
each partition, the following statements hold:

(i) the average detection delay under partitioning policy
satisfies the following upper bound

δavg(~q†part) ≤ m
⌈ n
m

⌉2 wmaxη̄(T̄max + dmax)

Dmin
;

(ii) the average detection delay satisfies the following lower
bound

δavg(~qm) ≥
( n∑
k=1

√
wk
Dk

)2 η̄T̄one

m
,

for any ~qm ∈ ∆m
n−1;

(iii) the stationary policy ~q†part is within constant factor of
optimal, and

δavg(~q†part)

δavg(~q∗m)
≤ 4wmax

wmin

(T̄max + dmax)

T̄one

Dmax

Dmin
, and

δavg(~q†part)

δm-min
avg

≤ m2
⌈ n
m

⌉ (T̄max + dmax)

T̄m-smlst
min

Dmax

Dmin
,

where ~q∗m is optimal stationary policy;
(iv) the expected detection delay at region Rk under the

stationary policy ~q†part satisfies

E[δk(~q†part)]

δm-min
k

≤ m(T̄max + dmax)

T̄m-smlst
k

√⌈ n
m

⌉ Dk
wkDmin

.

Proof: We start by establishing the first statement. We
note that under the partitioning policy, the maximum number
of regions a vehicle serves is dn/me. It follows from Theo-
rem 6 that for vehicle Ur and the associated partition Sr, the
average detection delay is upper bounded by

δavg(qrpart) ≤
( nr∑
i=1

√
wi
Di

)2

η̄(T̄max + dmax)

≤
⌈ n
m

⌉2 η̄wmax(T̄max + dmax)

Dmin
.

Therefore, the overall average detection delay satisfies
δavg(~q†part) ≤ mδavg(qrpart). This establishes the first statement.

To prove the second statement, we utilize the lower bounds
obtained in Theorem 7 and construct a lower bound to the
average detection delay δmlower : ∆m

n−1 → R>0 ∪{+∞} defined
by δmlower(~qm) =

∑n
k=1(vkT̄one/

∑m
r=1 q

r
k). It can be verified

that

min
~qm∈∆m

n−1

δmlower(~qm) =
( n∑
k=1

√
wk
Dk

)2 η̄T̄one

m
.

We now establish the first part of the third statement. Note
that

δavg(~q†part)

δavg(~q∗m)
≤ dn/me

2

(n/m)2

wmax

wmin

(T̄max + dmax)

T̄one

Dmax

Dmin

≤ 4wmax

wmin

(T̄max + dmax)

T̄one

Dmax

Dmin
,

where the last inequality follows from the fact that
(dn/me)/(n/m) ≤ 2.

The remainder of the proof follows similar to the proof of
Theorem 6.

V. ADAPTIVE ENSEMBLE CUSUM ALGORITHM

The stationary vehicle routing policy does not utilize the
real-time information regarding the likelihood of anomalies
at the regions. We now develop an adaptive policy that
incorporates the anomaly likelihood information provided by
the anomaly detection algorithm. We consider the CUSUM
statistic at a region as a measure of the likelihood of an
anomaly at that region, and utilize it at each iteration to
design new prior probability of an anomaly for each region. At
each iteration, we adapt the efficient stationary policy using
this new prior probability. This procedure results in higher
probability of visiting an anomalous region and, consequently,
it improves the performance of our efficient stationary policy.
In Section VI we provide numerical evidence showing that
the adaptive ensemble CUSUM algorithm improves the per-
formance of randomized ensemble CUSUM algorithm.

Our adaptive ensemble CUSUM algorithm is formally pre-
sented in Algorithm 3 for the single vehicle case. For the case
of multiple vehicles we resort to the partitioning Algorithm 2
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Algorithm 3: Single Vehicle Adaptive Ensemble CUSUM
Input : parameters η, Dk , pdfs f0

k , f
1
k , for each k ∈ {1, . . . , n} ;

Output : decision on anomaly at each region ;

1 set Λj0 = 0, for all j ∈ {1, . . . , n}, and τ = 1;
while true do

2 set new prior π1
k = eΛ

k
τ /(1 + eΛ

k
τ ), for each k ∈ {1, . . . , n}

3 set qk =

√
π1
k
/Dk∑n

j=1

√
π1
j /Dj

, for each k ∈ {1, . . . , n};

4 sample a region from probability distribution (q1, . . . , qn);
5 collect sample yτ from region k;
6 update the CUSUM statistic at each region

Λjτ =


(

Λkτ−1 + log
f1k(yτ )

f0
k

(yτ )

)+
, if j = k;

Λjτ−1, if j ∈ {1, . . . , n} \ {k};

if Λkτ > η then
7 anomaly detected at region Rk;

8 set Λkτ = 0;

9 set τ = τ + 1 ;

that implements the single vehicle adaptive ensemble CUSUM
Algorithm 3 in each partition. Let us denote the adaptive
routing policy for a single vehicle by a and the policy obtained
from the partitioning algorithm that implements single vehicle
adaptive routing policy in each partition by apart. We now
analyze the performance of the adaptive ensemble CUSUM
algorithm. Since, the probability to visit any region varies with
time in the adaptive ensemble CUSUM algorithm, we need to
determine the number of iterations between two consecutive
visit to a region, i.e., the number of iterations for the recurrence
of the region. We first derive a bound on the expected number
of samples to be drawn from a time-varying probability vector
for the recurrence of a particular state.

Lemma 9 (Mean observations for region recurrence):
Consider a sequence {xτ}τ∈N, where xτ is sampled from a
probability vector pτ ∈ ∆n−1. If the kth entry of pτ satisfy
pτk ∈ ]αk, βk[, for each τ ∈ N and some αk, βk ∈ ]0, 1[,
then the number of iterations Ik for the recurrence of state k
satisfy E[Ik] ≤ βk/α2

k.
Proof: The terms of the sequence {xτ}τ∈N are statisti-

cally independent. Further, the probability mass function pτ is
arbitrary. Therefore, the bound on the expected iterations for
the first occurrence of state k is also a bound on the subsequent
recurrence of state k. The expected number of iterations for
first occurrence of region k are

E[Ik] =
∑
i∈N

ipik

i−1∏
j=1

(1− pjk) ≤ βk
∑
i∈N

i(1− αk)i−1 = βk/α
2
k.

This establishes the statement.
We utilize this upper bound on the expected number of

iterations for recurrence of a region to derive performance
metrics for the adaptive ensemble CUSUM algorithm. We
now derive an upper bound on the expected detection delay
at each region for adaptive ensemble CUSUM algorithm. We

derive these bounds for the expected evolution of the CUSUM
statistic at each region.

Theorem 10 (Adaptive ensemble CUSUM algorithm):
Consider the expected evolution of the CUSUM statistic at
each region. For the partitioning algorithm that implements
single vehicle adaptive ensemble CUSUM algorithm
(Algorithm 3) in each subset of the partition, the following
statement holds:

E[δk(apart)] ≤
( η̄

Dk
+

2(dn/me − 1)eη/2
√
Dk(1− e−η̄/2)√

Dmin(1− e−Dk/2)

+
(dn/me − 1)2eηDk(1− e−η̄)

Dmin(1− e−Dk)

)
(T̄max + dmax).

Proof: We start by deriving expression for a single
vehicle. Let the number of iterations between the (j−1)th
and jth visit to region Rk be Ikj .

Let the observation during the jth visit to region Rk be
yj and the CUSUM statistic at region Rk after the visit be
Ckj . It follows that the probability to visit region Rk between
(j−1)th and jth visit is greater than

pj−1
k =

eC
k
j−1/2/

√
Dk

eC
k
j−1/2/

√
Dk + (n− 1)eη/2/

√
Dmin

.

Therefore, it follows from Lemma 9 that

E[Ikj ] ≤ (1 + (n− 1)e(η−Ckj−1)/2
√
Dk/Dmin)2.

Note that Ckj = max{0, Ckj−1 + log(f1
k (yj)/f

0
k (yj))}. Since,

maximum of two convex function is a convex function, it
follows from Jensen inequality [34] that

E[Ckj ] ≥ max{0,E[Ckj−1] +Dk} ≥ E[Ckj−1] +Dk.

Therefore, E[Ckj ] ≥ jDk and for expected evolution of the
CUSUM statistics

E[Ikj ] ≤ (1 + (n− 1)e(η−(j−1)Dk)/2
√
Dk/Dmin)2.

Therefore, the total number of iterations Nk required to
collect N obs

k observations at region Rk satisfy

E[Nk(a)|N obs
k ] =

N obs
k∑

j=1

(1 + (n− 1)e(η−(j−1)Dk)/2
√
Dk/Dmin)2

= N obs
k +

2(n− 1)eη/2
√
Dk(1− e−DkN obs

k /2)√
Dmin(1− e−Dk/2)

+
(n− 1)2eηDk(1− e−DkN obs

k )

Dmin(1− e−Dk)
.

Note that the number of observations N obs
k required at region

Rk satisfy E[N obs
k ] = η̄/Dk. It follows from Jensen’s inequal-

ity that

E[Nk(a)] ≤ η̄

Dk
+

2(n− 1)eη/2
√
Dk(1− e−η̄/2)√

Dmin(1− e−Dk/2)

+
(n− 1)2eηDk(1− e−η̄)

Dmin(1− e−Dk)
.

Since the expected time required to collect each evidence is
smaller T̄max + dmax, it follows that

E[δk(a)] ≤ (T̄max + dmax)E[Nk(a)].
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The expression for the partitioning policy that implement sin-
gle vehicle adaptive routing policy in each partition follow by
substituting dn/me in the above expressions. This completes
the proof of the theorem.

Remark 6 (Performance bound): The bound derived in
Theorem 10 is very conservative. Indeed, it assumes the
CUSUM statistic at each region to be fixed at its maximum
value η, except for the region in consideration. This is practi-
cally never the case. In fact, if at some iteration the CUSUM
statistic is close to η, then it is highly likely that the vehicle
visits that region at the next iteration, so that the updated
statistic crosses the threshold η and resets to zero. �

VI. NUMERICAL RESULTS

We now elucidate on the concepts developed in this paper
through some numerical examples. We first validate the ex-
pressions for expected detection delay obtained in Section IV.

Example 1 (Expected detection delay): Consider a set of
4 regions surveyed by a single vehicle. Let the loca-
tion of the regions be (10, 0), (5, 0), (0, 5), and (0, 10), re-
spectively. The vector of processing times at each region
is (1, 2, 3, 4). Under the nominal conditions, the observa-
tions at each region are sampled from normal distribu-
tions N (0, 1),N (0, 1.33),N (0, 1.67) and N (0, 2), respec-
tively, while under anomalous conditions, the observations
are sampled from normal distributions with unit mean and
same variance as in nominal case. Let the prior probability of
anomaly at each region be 0.5. An anomaly appears at each
region at time 50, 200, 350, and 500, respectively. Assuming
that the vehicle is holonomic and moves at unit speed, the
expected detection delay at region R1 and the average de-
tection delay are shown in Fig. 3. It can be seen that the
theoretical expressions provide a lower bound to the expected
detection delay obtained through Monte-Carlo simulations.
This phenomenon is attributed to the Wald’s approximation.�

We remarked in Section II that if each region cannot be
reached from another region in a single hop, then a fastest
mixing Markov chain (FMMC) with the desired stationary
distribution can be constructed. Consider a set of regions
modeled by the graph G = (V, E), where V is the set of
nodes (each node corresponds to a region) and E is the set
of edges representing the connectivity of the regions. The
transition matrix of the FMMC P ∈ Rn×n with a desired
stationary distribution q ∈ ∆n−1 can be determined by solving
the following convex minimization problem [28]:

minimize ‖Q1/2PQ1/2 − qrootq
T
root‖2

subject to P1 = 1

QP = PTQ

Pij ≥ 0, for each (i, j) ∈ E
Pij = 0, for each (i, j) /∈ E ,

where Q is a diagonal matrix with diagonal q, qroot =
(
√
q1, . . . ,

√
qn), and 1 is the vector of all ones. We now

demonstrate the effectiveness of FMMC in our setup.
Example 2 (Effectiveness of FMMC): Consider the same

set of data as in Example 1. We study the expected and
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(a) Expected detection delay at region R1
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(b) Average detection delay

Fig. 3. Expected and average detection delay. Solid black line with
dots and black ×, respectively, represent the theoretical expression and the
value obtained by Monte-Carlo simulations under stationary policy q =
[ 0.2 0.25 0.25 0.3 ]. Dashed green line and green triangles, respectively,
represent the theoretical expression and the value obtained by Monte-Carlo
simulations under stationary policy q = [ 0.5 0.2 0.2 0.1 ]. Solid
red line and red diamonds, respectively, represent the theoretical expression
and the value obtained by Monte-Carlo simulations under stationary policy
q = [ 0.85 0.05 0.05 0.05 ].
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(a) Expected detection delay at region R1
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(b) Average detection delay

Fig. 4. Expected and average detection delay for uniform stationary policy.
The solid black line represents the theoretical expression. The black ×, red
diamonds, and green triangles, respectively, represent the values obtained by
Monte-Carlo simulations for all-to-all, line, and ring connection topology. For
the line and ring topologies, the region to visit at each iteration is sampled
from the fastest mixing Markov chain with the desired stationary distribution.

average detection delay for randomized ensemble CUSUM
algorithm when the regions to visit are sampled from the
FMMC. The expected and average detection delay for all-
to-all connection topology, line connection topology and ring
connection topology are shown in Fig. 4. It can be seen that
the performance under all three topologies is remarkably close
to each other. �

We now study the performance of the (numerically com-
puted) optimal and our efficient stationary policies for the
single vehicle randomized ensemble CUSUM algorithm.

Example 3 (Single vehicle optimal stationary policy):
For the same set of data as in Example 1, we now study
the performance of the uniform, the (numerically computed)
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Fig. 5. Average detection delay for a single vehicle. The solid red line,
the dashed green line, and the solid black line with dots represent efficient,
uniform, and optimal stationary policies, respectively.
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Fig. 6. Average detection delay for 3 vehicles surveying 6 regions. The
green triangles represent the policy in which each vehicle surveys each region
uniformly. The red diamonds and black × represent the partitioning policy in
which each vehicle implements the single vehicle efficient stationary policy
and the single vehicle optimal stationary policy, respectively.

optimal and our efficient stationary routing policies. A
comparison is shown in Fig. 5. Notice that the performance
of the optimal and efficient stationary policy is extremely
close to each other. �

We now study the performance of the optimal, partitioning
and uniform stationary policies for randomized ensemble
CUSUM algorithm with multiple vehicles.

Example 4 (Multiple-vehicle optimal stationary policy):
Consider a set of 6 regions surveyed by 3 vehicles. Let the
regions be located at (10, 0), (5, 0), (0, 5), (0, 10), (0, 0) and
(5, 5). Let the processing time at each region be unitary.
Under nominal conditions, the observations at each region
are sampled from normal distributions N (0, 1), N (0, 1.4),
N (0, 1.8), N (0, 2.2), N (0, 2.6) and N (0, 3), respectively.
Under anomalous conditions, the observations are sampled
from normal distributions with unit mean and same variance
as in the nominal case. Let the prior probability of anomaly
at each region be 0.5. An anomaly appears at each region
at time 25, 35, 45, 55, 65 and 75, respectively. Assuming that
the vehicles are holonomic and moves at unitary speed, the
average detection delay for the uniform stationary policy for
each vehicle, the partitioning policy in which each vehicle
implements single vehicle efficient stationary policy in each
subset of the partition, and the partitioning policy in which
each vehicle implements single vehicle optimal stationary
policy in each subset of the partition is shown in Fig. 6. �

We now study the performance of the adaptive ensemble
CUSUM algorithm, and we numerically show that it improves
the performance of our stationary policy.

Example 5 (Adaptive ensemble CUSUM algorithm):
Consider the same set of regions as in Example 1. Let the
processing time at each region be unitary. The observations at
each region are sampled from normal distributions N (0, σ2)
and N (1, σ2), in nominal and anomalous conditions,

respectively. Under the nominal conditions at each region
and σ2 = 1, a sample evolution of the adaptive ensemble
CUSUM algorithm is shown in Fig. 7(a). The anomaly
appears at regions R2, R3, and R4 at time 100, 300,
and 500, respectively. Under these anomalous conditions
and σ2 = 1, a sample evolution of the adaptive ensemble
CUSUM algorithm is shown in Fig. 7(b). It can be seen that
the adaptive ensemble algorithm samples a region with high
likelihood of anomaly with high probability, and, hence, it
improves upon the performance of the stationary policy.

We now study the expected detection delay under adaptive
ensemble CUSUM algorithm and compare it with the efficient
stationary policy. The anomaly at each region appears at time
50, 200, 350 and 500, respectively. The expected detection
delay obtained by Monte-Carlo simulations for σ2 = 1 and
different thresholds is shown in Fig. 8(a). It can be seen that
the adaptive policy improves the detection delay significantly
over the efficient stationary policy for large thresholds. It
should be noted that the detection delay minimization is most
needed at large thresholds because the detection delay is
already low at small thresholds. Furthermore, frequent false
alarms are encountered at low thresholds and, hence, low
thresholds are not typically chosen. The expected detection
delay obtained by Monte-Carlo simulations for different value
of σ2 and threshold η = 5 is shown in Fig. 8(b). Note that for
a given value of σ2, the Kullback-Leibler divergence between
N (1, σ2) and N (0, σ2) is 1/2σ2. It can be seen that the
adaptive policy improves the performance of the stationary
policy for each value of noise. �

We now apply the adaptive ensemble CUSUM algorithm
to a more general scenario where the anomalous distribution
is not completely known. As remarked in Section II, in this
case, the CUSUM algorithm should be replaced with the GLR
algorithm. Given the nominal probability density function
f0
k and the anomalous probability density function f1

k (·|θ)
parameterized by θ ∈ Θ ⊆ R`, for some ` ∈ N, the GLR
algorithm [2] works identically to the CUSUM algorithm,
except that the CUSUM statistic is replaced by the statistic

Λkτ = max
t∈{1,...,τ}

sup
θ∈Θ

τ∑
i=t

log
f1
k (yi|θ)
f0
k (yi)

.

Example 6 (Generalized likelihood ratio): For the same
set of data as in Example 5, assume that there are three types
of potential anomalies at each region. Since any combination
of these anomalies can occur simultaneously, there are 7
potential distributions under anomalous conditions. We char-
acterize these distributions as different hypothesis and assume
that the observations under each hypothesis h ∈ {1, . . . , 8}
are sampled from a normal distribution with mean µh and
covariances Σh. Let

µ1 =
[

0
0
0

]
, µ2 =

[
1
0
0

]
, µ3 =

[
0
1
0

]
, µ4 =

[
0
0
1

]
,

µ5 =
[

1
1
0

]
, µ6 =

[
0
1
1

]
, µ7 =

[
1
0
1

]
, µ8 =

[
1
1
1

]
, and

Σ1 =
[

1 0 0
0 1 0
0 0 1

]
,Σ2 =

[
2 1 0
1 3

2 0
0 0 1

]
,Σ3 =

[
1 1 0
1 2 1
0 1 3

2

]
,Σ4 =

[
3
2 0 0
0 1 1
0 1 2

]
,

Σ5 =
[

2 1 0
1 2 1
0 1 1

]
,Σ6 =

[
1 1 0
1 2 1
0 1 2

]
,Σ7 =

[
2 0 1
0 1 1
1 1 2

]
,Σ8 =

[
2 1 1
1 2 1
1 1 2

]
.



12

0 100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

Time

R
ou

tin
g 

po
lic

y

0 100 200 300 400 500 600
0

1

2

3

4

5

6

Time

C
U

SU
M

 S
ta

tis
tic

Time

Time

R
o
u
ti

n
g

P
ol

ic
y

C
U

S
U

M
S
ta

ti
st

ic

(a) CUSUM statistic and vehicle routing probabilities under nominal conditions
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(b) CUSUM statistic and vehicle routing probabilities under anomalous conditions

Fig. 7. Sample evolution of the adaptive ensemble CUSUM algorithm. The
dashed-dotted blue line, dashed green line, solid red line and solid black
line with dots represent data from regions R1,R2,R3 and R4, respectively.
The solid brown horizontal line represents the threshold. The vehicle routing
probability is a function of the likelihood of anomaly at each region. As
the likelihood of an anomaly being present at a region increases, also the
probability to survey that region increases. Anomalies appear at region R2,
R3 and R4 at times 100, 300 and 500, respectively. Once an anomaly is
detected, it is removed and the statistic is reset to zero.
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(b) Expected detection delay as a function of KL divergence

Fig. 8. Performance of the adaptive ensemble CUSUM algorithm. The solid
black line represents the theoretical expected detection delay for the efficient
stationary policy and the black × represent the expected detection delay for
the adaptive ensemble CUSUM algorithm.
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(a) GLR statistic under anomalous conditions

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Hypothesis

Po
st

er
io

r P
ro

ba
bi

lit
y

Hypothesis

N
o
rm

a
li
ze

d
L
ik

el
ih

o
o
d

(b) Normalized likelihood of each hypothesis

Fig. 9. Sample evolution of the adaptive ensemble CUSUM algorithm with
GLR statistic. The dashed-dotted blue line, dashed green line, solid red line
and solid black line with dots represent data from regions R1,R2,R3 and
R4, respectively. The solid brown horizontal line represents the threshold. The
vehicle routing probability is a function of the likelihood of anomaly at each
region. As the likelihood of an anomaly being present at a region increases,
also the probability to survey that region increases. Anomalies appear at region
R2, R3 and R4 at times 100, 300 and 500, respectively. Once an anomaly
is detected, it is removed and the statistic is reset to zero. The true hypothesis
at each region corresponds to the hypothesis with maximum likelihood

We picked region R1 as non-anomalous, while hypothesis 4,
6, and 8 were true at regions R2,R3, and R4, respectively.
The Kullback-Leibler divergence at a region was chosen as the
minimum of all possible Kullback-Leibler divergences at that
region. A sample evolution of the adaptive ensemble CUSUM
algorithm with GLR statistic replacing the CUSUM statistic is
shown in Fig 9(a). It can be seen the performance is similar to
the performance in Example 5. As an additional ramification of
this algorithm, we also get the likelihood of each hypothesis at
each region. It can be seen in Fig 9(b) that the true hypothesis
at each region corresponds to the hypothesis with maximum
likelihood. �

VII. EXPERIMENTAL RESULTS

We first detail our implementation of the algorithms us-
ing the Player/Stage robot control software package and the
specifics of our robot hardware. We then present the results of
the experiment.

Robot hardware: We use Erratic mobile robots from Videre
Design shown in Fig. 10. The robot platform has a roughly
square footprint (40cm × 37cm), with two differential drive
wheels and a single rear caster. Each robot carries an on-
board computer with a 1.8Ghz Core 2 Duo processor, 1 GB of
memory, and 802.11g wireless communication. For navigation
and localization, each robot is equipped with a Hokuyo URG-
04LX laser rangefinder. The rangefinder scans 683 points over
240◦ at 10Hz with a range of 5.6 meters.
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Rear caster

ComputerRangefinder

Drive wheel

Fig. 10. Erratic mobile robot with URG-04LX laser rangefinder.

Region 1
Region 2

Region 3

Fig. 11. This figure shows a map of our lab together with our surveillance
configuration. Three erratic robots survey the selected 8 regions (black dots),
which have been partitioned among the robots. Regions 1, 2, and 3 are also
considered in Fig. 12, where we report the statistics of our detection algorithm.

Localization: We use the amcl driver in Player which imple-
ments Adaptive Monte-Carlo Localization [36]. The physical
robots are provided with a map of our lab with a 15cm
resolution and told their starting pose within the map (Fig. 11).
We set an initial pose standard deviation of 0.9m in position
and 12◦ in orientation, and request updated localization based
on 50 of the sensors range measurements for each change of
2cm in robot position or 2◦ in orientation. We use the most
likely pose estimate by amcl as the location of the robot.

Navigation: Each robot uses the snd driver in Player for the
Smooth Nearness Diagram navigation [37]. For the hardware,
we set the robot radius parameter to 22cm, obstacle avoidance
distance to 0.5m, and maximum speed to 0.2m/s. We let a
robot achieve its target when it is within 10cm of the target.

Experiment setup: For our experiment we employed our
team of 3 Erratic robots to survey our laboratory. As in
Fig. 11, a set of 8 important regions have been chosen and
partitioned among the robots. Each robot surveys its assigned
regions. In particular, each robot implements the single robot
adaptive ensemble CUSUM algorithm in its regions. Notice
that Robot 1 cannot travel from region 1 to region 3 in a
single hop. Therefore, Robot 1 selects the regions according
to a Markov chain with desired stationary distribution. This
Markov chain was constructed using the Metropolis-Hastings
algorithm. In particular, for a set of regions modeled as a graph
G = (V, E), to achieve a desired stationary routing policy
q, the Metropolis-Hastings algorithm [29] picks the transition

Region 3

Region 2

Region 1
Robot 1

Robot 2

Robot 3

Fig. 12. A snapshot of our surveillance experiment, where three robots
survey six locations in our lab (Fig. 11). In this figure we show the three
regions assigned to the first robot. Each region correspond to a part of
our campus, and observations are taken accordingly. Notice that Region 3
contains an anomaly (black smoke), and that the CUSUM statistics, which
are updated upon collection of observations, reveal the anomaly (green peak).
The transition probabilities are updated according to our adaptive ensemble
CUSUM algorithm.

Region 2 Region 2 with anomaly

Region 3 with anomalyRegion 3

Fig. 13. This figure shows sample pictures from Region 2 and Region 3,
both with and without the anomaly to be detected.

matrix P with entries:

Pij =


0, if (i, j) ∈ E ,
min

{
1
di
,
qj
qidj

}
if (i, j) ∈ E and i 6= j,

1−
∑n
k=1,k 6=i Pik if (i, j) ∈ E and i = j,

where di is the number of regions that can be visited from
region Ri.

Observations (in the form of pictures) are collected by a
robot each time a region is visited. In order to have a more
realistic experiment, we map each location in our lab to a
region in our campus. Then, each time a robot visit a region in
our lab, a picture of a certain region in our campus is selected
as observation (see Fig. 12). Pictures have been collected prior
to the experiment.

Finally, in order to demonstrate the effectiveness of our
anomaly detection algorithm, some pictures from regions 2
and 3 have been manually modified to contain an anomalous
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pattern; see Fig. 13. Anomalous pictures are collected by
Robot 1 at some pre-specified time instants (the detection
algorithm, however, does not make use of this information).

Probability density function estimation: In order to imple-
ment our adaptive ensemble CUSUM algorithm, the proba-
bility density functions of the observations at the regions in
presence and absence of an anomaly need to be estimated. For
this task, we first collect sample images, and we register them
in order to align their coordinates [38]. We then select a ref-
erence image, and compute the difference between the sample
pictures and the reference image. Then, we obtain a coarse
representation of each difference image by dividing the image
into blocks. For each difference image, we create a vector
containing the mean value of each block, and we compute the
mean and standard deviation of these vectors. Finally, we fit a
normal distribution to represent the collected nominal data. In
order to obtain a probability density distribution of the images
with anomalies, we manually modify the nominal images, and
we repeat the same procedure as in the nominal case.

Experiment results: The results of our experiment are
summarized in Fig. 12. From the CUSUM statistics we note
that the anomalies in Region 2 and Region 3 are both detected:
indeed both the red curve and the green curve pass the
decision threshold. We also note that few observations are
necessary to detect the anomaly. Since the robots successfully
survey the given environment despite sensor and modeling
uncertainties due to real hardware, we conclude that our
modeling assumptions in Section II are not restrictive.

VIII. CONCLUSIONS

In this paper we studied a spatial quickest detection prob-
lem in which multiple vehicles survey a set of regions to
detect anomalies in minimum time. We developed a novel
ensemble CUSUM algorithm to detect an anomaly in any of
the regions. A stochastic vehicle routing policy was adopted
in which the vehicle samples the next region to visit from
a probability vector. In particular, we studied (i) stationary
policy: the probability vector is a constant function of time;
and (ii) adaptive policy: the probability vector is adapted with
time based on the collected observations. We designed an
efficient stationary policy that depends on the travel time of the
vehicles, the processing time required to collect information
at each region, and the anomaly detection difficulty at each
region. In adaptive policy, we modified the efficient stationary
policy at each iteration to ensure that the regions with high
likelihood of anomaly are visited with high probability, and
thus, improved upon the performance of the stationary policy.
We also mentioned the methods that extend the ideas in this
paper immediately to the scenario in which the distributions of
the observations in presence and absence of anomaly are not
completely known, but belong to some parametrized family,
or to the scenario in which the observations collected from
each region are not independent (e.g., in the case of dynamic
anomalies).

There are several possible extensions of the ideas considered
here. First, in the case of dependent observations at each
region, the current method assume known distributions in

presence and absence of anomalies. An interesting direction
is to design quickest detection strategies that are robust to
the uncertainties in these distributions. Second, the anomalies
considered in this paper are always contained in the same
region. It would be of interest to consider anomalies that can
move from one region to another. Last, to construct the fastest
mixing Markov chain with desired stationary distribution, we
relied on time-homogeneous Markov chains. A time varying
Markov chain may achieve a faster convergence to the desired
stationary distribution [23]. This is also an interesting direction
to be pursued.

APPENDIX

A. Probabilistic guarantee to the uniqueness of critical point

We now provide probabilistic guarantee for Conjecture 5.
The average detection delay for a single vehicle under a
stationary policy q is

δavg(q) =
( n∑
i=1

vi
qi

)( n∑
i=1

qiT̄i +

n∑
i=1

n∑
j=1

qiqjdij

)
,

where vi = wiη̄/Di for each i ∈ {1, . . . , n}. A local minimum
of δavg can be can be found by substituting qn = 1−

∑n−1
j=1 qj ,

and then running the gradient descent algorithm from some
initial point q0 ∈ ∆n−1 on the resulting objective function.

Let v = (v1, . . . , vn) and T = (T̄1, . . . , T̄n). We assume
that the parameters {v,T , D, n} in a given instance of op-
timization problem (5) and the chosen initial point q0 are
realizations of random variables sampled from some space
K. For a given realization κ ∈ K, let the realized value of
the parameters be {v(κ),T (κ), D(κ), n(κ)}, and the chosen
initial point be q0(κ). The associated optimization problem is:

minimize
q∈∆n(κ)−1

δavg(q |κ), (A-1)

where, for a given realization κ ∈ K, δavg(· |κ) : ∆n(κ)−1 →
R>0 ∪{+∞} is defined by

δavg(q |κ) =
( n(κ)∑
i=1

vi(κ)

qi

)(n(κ)∑
i=1

qiT̄i(κ)+

n(κ)∑
i=1

n(κ)∑
j=1

qiqjdij(κ)
)
.

For a given realization κ, let gd(· |κ) : ∆n(κ)−1 → ∆n(κ)−1

be the function that determines the outcome of the gradi-
ent descent algorithm applied to the function obtained by
substituting qn(κ) = 1 −

∑n(κ)−1
j=1 qj in δavg(q |κ). In other

words, the gradient descent algorithm starting from point q0(κ)
converges to the point gd(q0(κ) |κ). Consider N1 realizations
{κ1, . . . , κN1} ∈ KN1 . Let qoptimal(κ) = gd( 1

n(κ)1n(κ) |κ),
and define

γ̂ = max{‖gd(q0(κs) |κs)−qoptimal(κs)‖ | s ∈ {1, . . . , N1}}.

It is known from [39] that if N1 ≥ −(log ν1)/µ1, for some
µ1, ν1 ∈ ]0, 1[, then, with at least confidence 1− ν1, it holds

P({q0(κ)∈∆n(κ)−1 | ‖gd(q0(κ) |κ)− qoptimal(κ)‖ ≤ γ̂})
≥ 1− µ1,

for any realization κ ∈ K.
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We sample the following quantities: the value n as uni-
formly distributed in {3, . . . , 12}; each coordinate of the n
regions in two dimensional space from the normal distribu-
tion with mean 0 and variance 100; the value Ti, for each
i ∈ {1, . . . , n}, from the half normal distribution with mean 0
and variance 100; and the value vi, for each i ∈ {1, . . . , n},
uniformly from ]0, 1[. For a realized value of n, we chose
q0 uniformly in ∆n−1. Let the matrix D be the Euclidean
distance matrix between the n sampled regions.

We considered N1 = 1000 realizations of the parameters
{v,T , D, n} and initial value q0. The sample sizes were
determined for µ1 = 0.01 and ν1 = 10−4. The value of
γ̂ obtained was 10−4. Consequently, the gradient descent
algorithm for the optimization problem (5) starting from any
feasible point yields the same solution with high probability.
In other words, with at least confidence level 99.99% and
probability at least 99%, the optimization problem (5) has a
unique critical point at which the minimum is achieved.
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