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Abstract. This paper discusses distributed approaches for the solution of random convex pro-
grams (RCP). RCPs are convex optimization problems with a (usually large) number N of randomly
extracted constraints; they arise in several applicative areas, especially in the context of decision
under uncertainty, see [2, 3]. We here consider a setup in which instances of the random constraints
(the scenario) are not held by a single centralized processing unit, but are instead distributed among
different nodes of a network. Each node “sees” only a small subset of the constraints, and may
communicate with neighbors. The objective is to make all nodes converge to the same solution as
the centralized RCP problem. To this end, we develop two distributed algorithms that are variants
of the constraints consensus algorithm [4, 5]: the active constraints consensus (ACC) algorithm,
and the vertex constraints consensus (VCC) algorithm. We show that the ACC algorithm computes
the overall optimal solution in finite time, and with almost surely bounded communication at each
iteration of the algorithm. The VCC algorithm is instead tailored for the special case in which the
constraint functions are convex also w.r.t. the uncertain parameters, and it computes the solution
in a number of iterations bounded by the diameter of the communication graph. We further de-
vise a variant of the VCC algorithm, namely quantized vertex constraints consensus (qQVCC), to
cope with the case in which communication bandwidth among processors is bounded. We discuss
several applications of the proposed distributed techniques, including estimation, classification, and
random model predictive control, and we present a numerical analysis of the performance of the
proposed methods. As a complementary numerical result, we show that the parallel computation of
the scenario solution using ACC algorithm significantly outperforms its centralized equivalent.

1. Introduction. Uncertain optimization problems arise in several engineering
applications, ranging from system design, production management, to identification
and control, manufacturing and finance, see, e.g., [6]. Uncertainty arises due to the
presence of imprecisely known parameters in the problem description. For instance,
a system design problem may be affected by the uncertainty in the values of some
system components, and control problems can be affected by the inexact knowledge of
system model and of the disturbances acting on the system. In the case of uncertain
convex optimization problems where the uncertainty in the problem description has
a stochastic model (e.g., one assumes random uncertain parameters, with some given
probability distribution), the random convex programming (RCP) paradigm recently
emerged as an effective methodology to compute “probabilistically robust” solutions,
see, e.g., [7, 8, 9].

An instance of an RCP problem typically results in a standard convex program-
ming problem with a large number N of constraints. There are two main reasons
for which it is interesting to explore distributed methods for solving RCP instances:
first, the number N of constraints may be too large for being stored or solved on a
single processing unit; second, there exist application endeavors in which the problem
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description (objective function and constraints) is naturally distributed among differ-
ent nodes of an interconnected system. This may happen, for instance, when system
constraints depend on measurements acquired by different interacting sensors.

In the last decades, the perspective for solving such large-scale or multi-node
problems has switched from centralized approaches to distributed ones. In the former
approach, problem data are either resident on a single node, or transmitted by each
node to a central computation unit that solves the (global) optimization problem.
In distributed approaches, instead, the computation is fractioned among nodes that
must reach a consensus on the overall problem solution through local computation and
inter-nodal communication. The advantages of the distributed setup are essentially
three-fold: (i) distributing the computation burden and the memory allocation among
several processors; (ii) reducing communication, avoiding to gather all available data
to a central node; (iii) increasing the robustness of the systems with respect to failures
of the central computational unit.

Following this distributed optimization philosophy, we here consider a network
of agents or processors that has to solve a random convex program in a distributed
fashion. Each node in the network knows a subset of the constraints of the overall
RCP, and the nodes communicate with each other with the purpose of determining
the solution of the overall problem. Our solution methodology relies on each node
iteratively exchanging a small set of relevant constraints, and determining the solution
to the RCP in finite time. This methodology is in fact a variation of the constraints
consensus algorithm proposed in [4], and further developed in [5].

Related work. Distributed and parallel optimization has received significant
attention in the literature. In earlier works [10, 11], Lagrangian based decomposition
techniques are used to develop decentralized algorithms for large scale optimization
problems with separable cost functions. In the seminal work [12], Tsitsiklis investi-
gates the parallel computation of the minimum of a smooth convex function under
a setup in which each processor has partial knowledge of the global cost function
and they exchange the information of the gradients of their local cost functions to
compute the global solution. Recently, Nedic et. al. [13] generalize the setup of [12]
to distributed computation and provide results on the convergence rate and errors
bounds for unconstrained problems in synchronous networks. In a similar spirit,
Zhu et. al. [14] study primal-dual subgradient algorithm for distributed computation
of the optimal solution of a constrained convex optimization problem with inequality
and equality constraints. Wei et. al. [15] study a distributed Newton method under a
setup in which each node has a partial knowledge of the cost function, and the opti-
mization problem has linear global constraints. Boyd et. al. [16] propose a technique
based on dual-decomposition that alternates the updates on different components of
the optimization variable. In all these approaches, the proposed algorithms converge
to the global solution asymptotically.

An alternative approach to distributed optimization [5, 17, 18] is based on fol-
lowing idea: nodes exchange a small set of constraints at each iteration, and converge
in finite time to a consensus set of constraints that determines the global solution of
the optimization problem. In particular, Notarstefano et. al. [5] propose constraints
consensus algorithm for abstract optimization, while Biirger et. al. [17, 18] present a
distributed simplex method for solving linear programs. The algorithms studied in
this paper belong to the latter class of algorithms that converge in finite time. Partic-
ularly, our first algorithm, the active constraint consensus (ACC), is an adaptation to
the RCP context of the constraint consensus algorithm in [5]. Both these algorithms
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work under similar setups, they have similar approach, and they have very similar
properties. The main difference between two algorithms is in the computation of the
set of constraints to be transmitted at each iteration. This computation for the al-
gorithm in [5] may require to solve a number of convex programs that grows linearly
in the number of constraints and sub-exponentially in the dimension of the problem,
while the algorithm considered here always requires the solution of only one convex
program. This lower local computation comes at the expense of potentially larger
communication at each iteration. In particular, the number of constraints exchanged
at each iteration may be higher for the ACC algorithm than the constraints consensus
algorithm.

Paper structure and contributions. In Section 2 we recall some prelim-
inary concepts on the constraints of convex programs (support constraints, active
constraints, etc.). In Section 3 we introduce the main distributed random convex pro-
gramming model, and we describe the setup in which the problem has to be solved.
The active constraints consensus algorithm is presented and analyzed in Section 4. In
the ACC algorithm, each node at each iteration solves a local optimization problem
and transmits to its neighbors the constraints that are tight at the solution (i.e., that
are satisfied with equality). We show that the ACC algorithm converges to the global
solution in finite time, and that it requires almost surely bounded communication
at each iteration. We give some numerical evidence of the fact that the ACC algo-
rithm converges in a number of iterations that is linear in the communication graph
diameter. We also provide numerical evidence that parallel implementation of the
ACC algorithm significantly reduces the computation time over the centralized com-
putation time. As a side result, we show that the ACC algorithm may distributively
compute the solution of any convex program, and that it is particularly effective when
the dimension of decision variable is small compared with the number of constraints.

For the special case when the constraints of the RCP are convex in the uncertain
parameters, we develop the vertex constraints consensus (VCC) algorithm, in Sec-
tion 5. In the VCC algorithm, each node at each iteration constructs the convex hull
of the uncertain parameters which define local constraints, and transmits its extreme
points to the neighbors. We prove that the VCC algorithm converges to the global
solution in a number of iterations equal to the diameter of the communication graph.
Moreover, we devise a quantized vertexr constraints consensus ((VCC) algorithm in
which each node has a bounded communication bandwidth and does not necessar-
ily transmit all the extreme points of the convex hull at each iteration. We provide
theoretical bounds on the number of the iterations required for qVCC algorithm to
converge.

Further, we show in Section 6 that each of the proposed algorithms can be easily
modified so to enable a distributed constraints remowval strategy that discards outlying
constraints, in the spirit of the RCPV (RCP with violated constraints) framework
described in [2]. In Section 7 we finally present several numerical examples and appli-
cations of the proposed algorithms to distributed estimation, distributed classification,
and parallel model predictive control. Conclusions are drawn in Section 8.

2. Preliminaries on Convex Programs. Consider a generic d-dimensional
convex program

P[C]: min a'z subject to :
zeX (21)
filx) <0, Vjed,
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where z € X is the optimization variable, X C R? is a compact and convex domain,
a € R? is the objective direction, fi: R? = R, j € C, are convex functions defining
problem constraints, and C' C N is a finite set of indices. We denote the solution of
problem P[C] by 2*(C), and the corresponding optimal value by J*(C); we assume
by convention that z*(C') = NaN and J*(C') = oo, whenever the problem is infeasible.
We now introduce some definitions, in accordance to [2].

DEFINITION 2.1 (Support constraint set). The support constraint set, Sc(C) C
C, of problem P[C] is the set of ¢ € C' such that J*(C\{c}) < J*(C). O

The cardinality of the set of support constraints is upper bounded by d + 1, and
this upper bound reduces to d if the problem is feasible, see Lemma 2.2 and Lemma
2.3 in [2]. We next provide some definitions.

DEFINITION 2.2 (Invariant and irreducible constraint set). A constraint
set S C C is said to be invariant for problem P[C], if J*(S) = J*(C). A constraint

set S C C' is said to be irreducible, if S = Sc(.9). O
DEFINITION 2.3 (Nondegenerate problems). Problem P[C| is said to be non-
degenerate, when Sc(C') is invariant. O

DEFINITION 2.4 (Essential constraint sets). An invariant constraint set S C
C' of minimal cardinality is said to be an essential set for problem P[C]. The collection
of all essential sets of problem P[C] is denoted as Es(C). O

DEFINITION 2.5 (Constraints in general position). Constraints f;(x) < 0,
j € C, are said to be in general position if the index set {i € C : fi(x) = 0} has
cardinality no larger than d, for all x € X. In words, the constraints are in general
position if no more than d of the f;(x) = 0 surfaces intersect at any point of the
domain X. O

DEFINITION 2.6 (Active constraint set). The active constraint set Ac(C) C C
of a feasible problem P[C] is the set of constraints that are tight at the optimal solution
z*(C), that is, Ac(C) = {j € C: f;(*(C)) = 0}. By convention, the active constraint
set of an infeasible problem is the empty set. O

Feasible convex programs may have more than one solution, i.e., several values
of the optimization variable may attain the same optimal objective value. The con-
vex program P|[C] satisfies the unique minimum condition, if problem P[C;] admits a
unique solution, for any C; C C. A convex program that does not satisfy unique min-
imum condition can be modified into an equivalent problem that satisfies the unique
minimum condition, by applying a suitable tie-breaking rule (e.g., choosing the lexi-
cographic smallest solution within the set of optimal solutions), see [2]. Accordingly
and without loss of generality, in the following we consider convex programs satisfying
the unique minimum condition.

2.1. Properties of the constraint sets. We now study some properties of the
constraint sets in a convex program. We first state the properties of monotonicity
and locality in convex programs and then establish some properties of the constraint
sets.

PROPOSITION 2.7 (Monotonicity € Locality, [19, 2]). For the convex opti-
mization problem P[C], constraint sets Cy,Cy C C, and a generic constraint ¢ € C,
the following properties hold:

(i). Monotonicity: J*(C1) < J*(Cy UCy);

(ll) Locality: Zf J*(Ol) = J*(Cl U OQ), then

J*(Cl U{C}) > J*(Cl) < J*(Cl Uy U{C}) > J*(Cl U CQ) (22)
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Let the number of different essential sets in C' be n. and Es;(C) be the i-th
essential set. We now state the following proposition on the relationships between
support, essential, and active constraint sets.

PROPOSITION 2.8 (Properties of the constraint sets). The following state-
ments hold for the constraint sets of a feasible problem P[C]:

(i). The set of active constraints contains the set of support constraints, that is,

Ac(C) D 8c(C);

(ii). The set of active constraints contains the union of all the essential sets, that

is, Ac(C') D U, Es(C);

Proof. See Appendix A.1.

We now state an immediate consequence on Proposition 2.8.

COROLLARY 2.9 (Invariance of active constraint set). The active constraint
set of problem P[C] is an invariant constraint set for P[C].

Proof. The second statement of Proposition 2.8 guarantees that, for any essential
set Es;(C) of problem P[C], it holds Ac(C) 2 Es;(C). By monotonicity, the previous
relation implies that (i) J*(Ac(C)) > J*(Es;(C)). However, by the definition of
essential set and by monotonicity, we obtain (i) J*(Es;(C)) = J*(C) > J*(Ac(C)).
Combining (i) and (ii) we prove that J*(Ac(C)) = J*(C), hence the set Ac(C') is an
invariant constraint set for P[C]. O

3. Distributed Random Convex Programming. In this section, we first
recall some basic concepts on (standard) random convex programming, [2], and then
we define our setup for distributed random convex programming in Section 3.2.

3.1. Definition and properties of RCPs. A random convex program is a
convex optimization problem of the form

P[C]: min a'z subject to :
zeX ‘ (31)
fz,69) <0, jeC={l,...,N},

where 6 are N independent identically distributed (iid) samples of a random pa-
rameter § € A C R’ having probability distribution P, and f(x,6) : R? x A — R is
convex in z, for any 6 € A (the dependence of f on ¢ can instead be generic). The
multi-sample w = {5(1), RIS ,(5(N)} is called a scenario, and the solution of problem
(3.1) is called a scenario solution. Notice that, for given w, an instance of the RCP
(3.1) has precisely the format of the convex program in (2.1), for f;(z) = f(z, 5y,
and for this reason, with slight abuse of notation, we kept the name P[C], for (3.1).

A key feature of a RCP is that we can bound a priori the probability that the
scenario solution remains optimal for a further realization of the uncertainty [2]. We
introduce the following definition.

DEFINITION 3.1 ( Violation probability). The violation probability V*(w) of
the RCP (3.1) is defined as

Viw)=P{de A: J*(wU{6}) > J*(w)},

where, J*(w) denotes the optimal value of (3.1), and J*(wU{d}) denotes the optimal
value of a modification of problem (3.1), where a further random constraint f(x,d) <0
s added to the problem. O

If problem (3.1) is nondegenerate with probability one, then the violation proba-
bility of the solution satisfies

P{lwe AY : V¥(w) <e} >1—®(e;¢ —1,N), (3.2)
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where ®(e;¢, N) = 7 (Zj)ej(l — €)V=J is the cumulative distribution function
of a binomial random variable, and ( is equal to d, if the problem is feasible with
probability one, and is equal to d+ 1, otherwise; see Theorem 3.3 of [2]. Furthermore,
if one knows a priori that problem (3.1) is feasible with probability one, then the
violation probability V*(w) also represents the probability with which the optimal

solution z*(w) of (3.1) violates a further random constraint, that is
Viw)=P{0 € A: f(z"(w),d) > 0},

see Section 3.3 in [2].
For a given 8 € (0, 1), the bound in equation (3.2) is implied by

P{we AN : V*(w) <2(ogf ' +¢—1)/N} >1- 3. (3.3)

In practice, one chooses a confidence level 1 — 3 close to 1 and picks N large enough to
achieve a desired bound on the probability of violation. These bounds on the violation
probability neither depend on the uncertainty set A, nor on the probability distribu-
tion of § over A. Hence, the RCP framework relaxes basic assumptions underlying
robust and chance-constrained optimization [2].

3.2. A distributed setup for RCPs. We next describe a distributed formu-
lation of an RCP problem instance. The proposed formulation is similar to the dis-
tributed abstract optimization setup in [4, 5]. Consider a system composed of n
interacting nodes (e.g., processors, sensors or, more generically, agents). We model
inter-nodal communication by a directed graph G with vertex set {1,...,n}: a di-
rected edge (i,j) exists in the graph if node ¢ can transmit information to node j.
We assume that the directed graph G is strongly connected, that is, it contains a
directed path from each vertex to any other vertex. Let Ni,(i) and Nyyu (i) be the
set of incoming and outgoing neighbors of agent i, respectively. Let the diameter of
the graph G be diam(G). We state the distributed random programming problem as
follows:

PROBLEM 1 (Distributed random convexr programming). A networked sys-
tem with a strongly connected communication graph has to compute the scenario so-
lution for the random convex program (3.1), under the following setup:

(i). each node knows the objective direction a;

(ii). each node initially knows only a subset C; C C of the constraints of problem

(3.1) (the local constraint set), Ur_,C; = C;
(iii). a generic node i can receive information from the incoming neighbors Niy (i)
and can transmit information to the outgoing neighbors Noug ().

Let N; = |Cy], for each i € {1,...,n}, and let N = |C|. Since each node only has
partial knowledge of problem constraints, it needs to cooperate with the other nodes
to compute the solution of P[C]. We say that an iteration at a node has initiated, if
the node has received the local information from its neighbors. In the following, we
assume that, at any iteration ¢ € Z>(, node i in the network is able to solve local
convex optimization problems of the form:

P[L;(t)] : min a'z subject to:
zeX (34)
f](ac) <0 Vj e Li(t)

where L; : Z>¢ — pow(C') is the subset of constraints that is locally known at node i
at time ¢ (possibly with |L;| < |C), and pow(C') represents the set of all subsets of C'.
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We refer to the solution of problem (3.4) as local solution x}(t) = x*(L;(t)), and the
associated value of the objective function as local optimal value J}(t) = J*(L;(t))
(under the convention that x(¢) = NaN and J;(¢) = oo for infeasible problems).

4. Active Constraints Consensus (ACC) algorithm. In this section we
describe the active constraints consensus distributed algorithm for solving the RCP
(3.1). We assume that a generic node ¢ at time ¢ can store a small candidate constraint
set A;(t), the local optimal solution z}(¢), and the local optimal objective J;(¢). In
the ACC algorithm, each node initially solves the local convex program P[C}], finds
the active constraints Ac(C;), and initializes A4,(0) = Ac(C;), z7(0) = 2*(C;), and
JF(0) = J*(C;). At each iteration t of the algorithm, node i receives the objective
values J(t) and the candidate sets A;(¢) from the incoming neighbors, j € N, (4),
and builds the constraint set:

Li(t+1) = Ai(t) U (Ujenr, o) A; (1) UC.

Each node then solves problem P[L;(t 4 1)] and updates the local quantities, setting
Ai(t+1) = Ac(L;(t+1)), af(t+1) = a*(L;i(t+1)), and JF(t+1) = J*(L;(t+1)). The
algorithm is iterated until a stopping condition is met (see Remark 1). The details of
the algorithm to be executed by each node 4, i € {1,...,n}, are reported as a pseudo
code in Algorithm 1. The key properties of the ACC algorithm are summarized in
the following proposition.

Algorithm 1: Active Constraints Consensus (ACC)

Input . a, Cy, and dm = diam(G);
Output : z*(C), J*(C), and Ac(C);

% Initialization:
Ai(0) = Ac(Cy),  JF(0) = J*(Cy), x5 (0) =2*(C;), andncg=1;
t=0;
% ACC iterations:
while ncg < 2dm+ 1 and J/(t) < co do
% Poll neighbors and build:
Li(t+1) = Ai(t) U (Ujen, () 4 (1) UCis
JHt+1) = max;en;, (i) J; (£);
% Check infeasibility:
if J¥(t+ 1) = oo then
Ai(t+1)=0, Ji(t+1)=o00, zf(t+1)=Nal;
exit;
% Update candidate set:
Ait+1) =Ac(Li(t+1)), Jr(t+1)=J"(Li(t+1), ai(t+1)=z"(Li(t+1));
% Update ncg for stopping condition:
if J¥(t+1) = J*(t) then

‘ ncg = ncg + 1;
else
| neg=1;
| t=t+1

return z7(t), JS(t), A;(t);

ProOPOSITION 4.1 (Properties of ACC algorithm). For a distributed RCP
(Problem 1) and the ACC algorithm (Algorithm 1), the following statements hold:
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(i). the local optimal objective J}(t) is monotonically non-decreasing in the iter-
ations t;

(ii). the local optimal objective and the local solution converge in a finite number
T of iterations to the optimal value J*(C') and the scenario solution x*(C) of
the RCP;

(iii). for each node i, the local candidate set A;(T) coincides with the active set
Ac(C) of the RCP;

(iv). if constraints in C are in general position, at each iteration of Algorithm 1,
each node transmits to each of the outgoing neighbors its current objective
value JF(t) and at most d constraints.

Proof. The proof of the proposition is an adaptation of the proof of Theorem IV .4
in [5]. We report the proof in Appendix A.2. The main difference in the proofs is
that we tailor the demonstration to the exchange of active constraints (instead of the
constraints in the basis) and we consider explicitly the case of infeasible programs.

REMARK 1 (Stopping rule for ACC'). An important fact for the demonstration
of claim (i) of Proposition 4.1 is that if the local optimal objective J;(¢) at one node
does not change for 2diam(G) + 1 iterations, then convergence has been reached.
This fact can be used for implementing a local stopping condition: node ¢ stores an
integer (ncg in Algorithm 1) that counts the number of iterations in which the local
optimal objective has not changed. Then the node can stop the algorithm as soon
as this counter reaches the value 2diam(G) + 1. The node can also stop iterating the
algorithm when an infeasible instance is discovered in its local problem or within the
local problems of its neighbors. In particular, as soon a node ¢ discovers infeasibility,
it sets its objective to J; = oo and propagates it to the neighbors; as a consequence,
all nodes are acknowledged of the infeasibility in at most diam(G) iterations. O

REMARK 2 (Comparison with constraints consensus algorithm [5]). The
constraint consensus algorithm [5] also distributively computes of the solution of a
convex program, and is, in fact, identical to the ACC algorithm whenever the active
constraints set and the essential constraints set (basis) are identical. However, in
general, the constraint consensus algorithm requires the nodes to compute a basis of
the local set of constraints at each iteration, and such computation may be expensive.
In particular, for the computation of a basis of a degenerate d-dimensional problem
with V; constraints, the algorithm proposed in [5] requires the solution of a number
of convex optimization problems that depends linearly on NN; and sub-exponentially
on d. On the other hand, the active set computation in the ACC algorithm requires
the solution of at most one convex program. Particularly, if the local solution z7(¢)
satisfies all incoming neighbors constraints, then no optimization problem is solved,
and the update rule of the ACC algorithm only requires to check if some of the
incoming constraints are active. This lower computational expense is achieved at a
potentially higher communication. In particular, the ACC algorithm transmits the
set of active constraints at each iteration, and the active constraints set is a superset
of each basis. O

REMARK 3 (Distributed convex programming and constraints exchange).
The active constraints consensus algorithm can be used for the distributed computa-
tion of the solution of any convex program. The distributed strategy is particularly
advantageous when the dimension of the decision variable is small and the number of
constraints is large (as in the RCP setup), since in this case the nodes only exchange
a small subset of constraints of the local constraint sets. Moreover, each constraint
fi(@) = f(2,09)) of an RCP is parameterized in the realization §(7), therefore “ex-
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changing” the constraint f;(z) reduces to transmitting the vector 6¢) € R’. O

5. Vertex Constraints Consensus (VCC) Algorithms. In this section, we
propose distributed algorithms for RCPs, specialized to the case of constraints that
are convex in the parameter 9.

AssuMPTION 1 (Convex uncertainty). For any given x € X, the function
f(z,9) in (3.1) is conver in 6 € A. O

Consider the random convex program in equation (3.1). Let the feasible set of
problem P[C] be Sat(C) = {z € X : f(z,6U)) <0,V j € C}. Let co(C) denote the
convex hull of uncertainty vectors 6¢) € A, j € C, and let vert(C) C C denote the
indices of the uncertainty vectors that form the vertices of co(C). The following fact,
which is a direct consequence of the Jensen’s inequality for convex functions, holds.

FacT 1 (Invariance of the vertex set). If problem P[C] in (3.1) satisfies
Assumption 1, then vert(C) C C is an invariant constraint set. g

As a consequence of the above fact, solving problem Plvert(C;)] is equivalent to
solving problem P[C]. We now present the VCC algorithm.

5.1. The VCC algorithm. The VCC algorithm assumes that at time t a
generic node 4 in the network can store a candidate set V;(t), which is initialized
to V;(0) = vert(C;) (i.e., it computes the convex hull of the vectors §U), j €
C;, and stores the indices of the vectors being vertices of the convex hull). At
each iteration ¢ of the VCC algorithm, node ¢ receives the candidate sets V;(t)
from the incoming neighbors, 7 € N, (i), and builds the constraint set L;(t + 1) =
Vi(t) U (Ujenrn () Vj(t). Then, the node updates its candidate set with the following
rule: V;(t+1) = vert(L;(t+1)). The algorithm is iterated for diam(G) iterations, as
summarized in Algorithm 2.

Algorithm 2: Vertex Constraints Consensus (VCC)

Input : a, Cy, and dm = diam(G);
Output : z*(C), J*(C), and vert(C);

% Initialization:

Vi(0) = vert(C;);

t = 0;

% VCC iterations:

while ¢ < dm do
% Poll neighbors and build:
Li(t+1) = Vi) U (Ujens, (i) Vi®));
% Update candidate set:
Vi(t +1) = vert (L;(t + 1));
t=t+1;

% Compute optimal solution and optimal objective:

wi(t) = (Vi(t)), J7(t) = J*(Vi(D);

return z7(t), JF(t), V;i(t);

PROPOSITION 5.1 (Properties of the VCC algorithm). For a distributed ran-
dom convex program (Problem 1) that satisfies Assumption 1, and the VCC algorithm
(Algorithm 2), the following statements hold:

(i). the local optimal objective J}(t) = J*(V;(t)) is monotonically non-decreasing

in the iterations t;



(ii). @n T < diam(G) iterations the local solution at a generic node i coincides with
the scenario solution of the RCP;
(iii). for each node i the local candidate set Vi(T') satisfies V;(T)=vert(C)DS8c(C).

Proof. See Appendix A.3.

REMARK 4 (Computational complexity of convex hull). At each iteration
of the VCC algorithm each node computes and transmits the convex hull of a set
of vectors in R’. There is an extensive literature on the complexity of convex hull
computation and on the expected number of vertices in the convex hull, see, e.g.,
[20, 21, 22]. In particular, it is known that the convex hull of N points in R can be
computed in O(N log N + NT¢/21) iterations. Moreover, there exists a O(N) determin-
istic algorithm (see [22]) for computing the convex hull of N points uniformly sampled
from the interior of a ¢-dimensional polytope, and this convex hull has O((log N)*~1)
expected number of vertices. O

REMARK 5 (Distributed uncertain linear programs). A remarkable context
in which the VCC algorithm can be applied is that of uncertain linear programs.
Consider an RCP instance of a standard-form uncertain LP

min a'z subject to :

veX (5.1)
uiT(z(j)) x — vi(z(j)) <0, foreach i € {1,...,7r}, and j € {1,..., N},

where () are iid realizations of some random uncertain parameter z € Z, where Z

is some arbitrary space, entering the data u;(2) € R?, v;(2) € R in an arbitrary way.

This RCP does not satisfy Assumption 1 in general, since u;(2), v;(z) may be generic

nonconvex functions of z. However, the problem is readily re-parameterized as

min a'z subject to :

X (52)
(5§J)[x—r 1]" <0, for each i € {1,...,r}, and j € {1,...,N},

where we defined the parameters 6; = 0;(z) = [u] () wv;i(2)] € R™¥4*1. Clearly,

3

each constraint 5? ) [T 1]7 < 0 is now a linear function of &;, hence Assumption 1 is
satisfied, and the VCC algorithm can be applied to problem (5.2), operating on the
vertices of the convex hull of the 5? ) parameters. Also, problem (5.2) can be formally
cast in the standard RCP format of (1) by setting f(z,0) = max;cqq,.. ) Sz T 1],
where § contains the collection of the d;, 7 € {1,...,r}. O

REMARK 6 (Constraints reexamination). The ACC algorithm requires each
node i to reexamine its local constraint set C; at each iteration. This reexamination
is attributed to the fact that a constraint that is not active at a given iteration
may become active at a later iteration (see [5] for a similar argument for constraints
consensus algorithm). The VCC algorithm, instead, requires the knowledge of C; only
for the initialization, and utilizes only the current candidate set and new received
constraints to determine the new candidate set. At a generic iteration t of the VCC
algorithm at node 7, any constraint that lies in the interior of the computed convex hull
co(L;(t)) will never belong to any candidate set at future iterations, and therefore, it
can be discarded. g

We conclude this section by noticing that the update rule of the VCC algorithm
is independent on the objective direction a. Therefore, each node does not need to
know the objective direction to reach consensus on the set of constraints defining the
feasible set of problem P[C].
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5.2. Quantized VCC algorithm. The size of the constraint set to be transmit-
ted at each iteration of the VCC algorithm may grow exponentially with the dimension
of the parameter vector. Such communication at each iteration of the algorithm may
not be sustainable for nodes with a limited communication bandwidth. In this sec-
tion, we address this issue and modify the VCC algorithm to develop the quantized
VCC (qVCC) algorithm. The qVCC algorithm differs from the VCC algorithm on
the following fronts: (i) each node can transmit at most a fixed number m of con-
straints in a single communication round (bounded communication bandwidth); and
(ii) a generic node 7 at time ¢ stores an ordered set, called transmission set, T;(t), along
with the candidate set, V;(t). The algorithm works as follows. Each node initializes
V;(0) = T;(0) = vert(C;), i.e., both sets contain the indices of the constraints corre-
sponding to the vertices of the convex hull co(C;). At each iteration ¢ of the qVCC
algorithm, each node selects the first m constraints in 7T;(¢), defining the current mes-
sage M;(t), and transmits M;(t) to the outgoing neighbors. When a node receives the
messages M;(t) from the incoming neighbors, j € Ny (4), it builds the constraint set
Li(t+1) = V;(t) U (Ujens, i) M;(t)). Then, node i updates its candidate set with the
following rule: V;(t+1) = vert (Li(t + 1)) Moreover, it updates the transmission set
with the rule: T;(t + 1) = T;(t)\{M; (1) U (Vi(®)\Vi(t + 1))} & {V;(t + 1)\V;(t)}, where
@ denotes the concatenation of two ordered sets. Roughly speaking, the updated
transmission set, T;(t + 1), is obtained from the previous one, T;(t), by removing (i)
the constraints transmitted at time ¢, i.e., M;(t), (ii) the constraints that disappeared
from the candidate set after the update, i.e., V;(¢)\V;(t+1), and adding the constraints
that became part of the candidate set after the update, V;(¢t + 1)\V;(¢). Note that
the set T;(t) has to be ordered to implement a first-in-first-out (FIFO) strategy for
transmitting constraints to the neighbors. The algorithm is iterated until a stopping
condition is met (see Corollary 5.3). The qVCC algorithm for node i is summarized
in Algorithm 3.

Properties of the qVCC algorithm are summarized in Proposition 5.2. Here,
we let Npax be the maximum number of local constraints assigned to a node, i.e.,
Nmax = maxjeqi,.. n) Vi, and let dyax be the maximum in-degree of a node in the
network, i.e., dmax = MaX;eqy,.. pn} [Nin(7)].

PROPOSITION 5.2 (Properties of qVCC algorithm). For a distributed random
convex program (Problem 1) that satisfies Assumption 1, and the qVCC algorithm
(Algorithm 8), the following statements hold:

(). The local optimal objective function J;(t) = J*(Vi(t)) is monotonically non-

decreasing in the iterations t;
dian(9) _
(ii). In T < [Mme] ot D" =1 terations, the local solution at a generic node

dm(l.l?
i converges to the scenario solution of the RCP;
(iil). For each node i the local candidate set V;(T) satisfies V;(T)=vert(C)2Sc(C);
Proof. See Appendix A.4.

We notice that the upper bound on 7' obtained in Proposition 5.2 corresponds
to the worst case in which all constraints in the local sets need to be transmitted
among the nodes. In practice, this bound may be pessimistic, then it is of interest to
provide a stopping rule that allows nodes to autonomously detect convergence. We
now present an example of stopping rule.

COROLLARY 5.3 (Stopping rule for qVCC). For the ¢VCC algorithm, if at
time t all the transmission sets T;(t),i € {1,...,n} are empty, then the qVCC al-
gorithm has converged to the scenario solution of the random convex program P[C].
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Algorithm 3: Quantized Vertex Constraints Consensus (qVCC)

Input i a, Cy, dm = diam(G), m;
Output : z*(C), J*(C), and vert(C);

% Initialization:

Vi(0) = vert(C;), T;(0) =vert(C;), and stop=0;

t=0;

% qVCC iterations:

while stop =0 do

% Build local message M;(t) by selecting the first m constraints in T;(t)
% Poll neighbors and build:

Li(t+1) = Vi(t) U (Ujenn, i) M;(@©));

% Update candidate set and transmission set:

Vi(t+1) =vert (L;(t+ 1));

Ti(t +1) = Ti(O)O\{M: () U (Vi ()\Vi(t + 1))} & {Vi(t + D\Vi()};
% Check stopping condition:

if (all nodes have empty transmission set) then
L stop = 1;
| t=t+1
% Compute optimal solution and optimal objective:

zi (t) = a*(Vi(t), J7(t) = J*(Vi());

(3

return z7(t), JS(t), Vi(t);

Moreover, the situation in which the transmission sets of all nodes are empty can be
autonomously detected by each node in diam(G) iterations.

Proof. If at time ¢ the transmission sets are empty, a generic node i satisfies
Vi(t+1) = Vi(t) (no message is received from the incoming neighbors). Moreover, the
update rule of the transmission set becomes T;(t + 1) = T;(t)\{M; (t) U (V;(t)\Vi(t +
1))} @ {Vi(t + 1)\Vi(t)} = 0. Therefore, the local candidate set and the transmission
set remain unchanged for all future iterations, i.e., the VCC algorithm has converged.

Regarding the second statement, we notice that each node having non-empty
transmission set can communicate to all other nodes this situation in diam(G) itera-
tions. Therefore, if for diam(G) iterations no node notifies that the local transmission
set is non-empty, all transmission sets need be empty, and convergence is reached. [

6. Distributed RCP with Violated Constraints. The RCP framework al-
lows to generalize the probabilistic guarantees of the scenario solution to the case
in which r constraints are purposely violated with the aim of improving the objec-
tive value J*(C). Given a problem P[C] and a set R, C C, with |R,| = r, RCP
theory provides a bound for the probability that a future realization of the random
constraints violates x*(C\R,), see [2].

In this section we study distributed strategies for removing constraints from a
random convex program. RCP theory allows generic constraints removal procedures,
with the only requirement that the procedure is permutation invariant (i.e., changing
the order of the constraints in C' must not change the constraints removed by the
procedure). We now present a distributed procedure for removing the r constraints.
The procedure works as follows: at each outer iteration the nodes perform one of
the distributed algorithms presented before (i.e., ACC, VCC, or qVCC). After attain-
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ing convergence, each node selects the constraint ¢ with largest Lagrange multiplier
(since nodes share the same set of candidate constraints after convergence, they will
choose the same constraint), and each node removes the constraint ¢ from the local
constraint set. The distributed procedure is then repeated for r outer iterations (i.e.,
it terminates after removing the desired number of constraints, r). The distributed
constraints removal procedure is summarized in Algorithm 4. The acronym CC in Al-
gorithm 4 refers to one of the distributed algorithms presented in the previous sections

(i.e., ACC, VCC, or ¢VCC).

Algorithm 4: Distributed Constraints Removal

Input : a, C, dm = diam(G), and r;
Output : z*(C\R,), J*(C\R,), and R,;

% Initialization:

n=0, Ry = 0;

% Outer iterations:

while n <r do
compute [z}, J», Ly] = CC(a, C;, dm, [m]);
select ¢ € L, with largest Lagrange multiplier;
Ciy = Ci\{c}, and Ry41 = R, U{c};
n=n+1L

% Compute optimal solution and optimal objective:
[z%, J}, Ly] = CC(a, C;, dm, [m]);

* * .
return z;, J, Ry;

We now state some properties of distributed constraints removal procedure:

PROPOSITION 6.1 (Distributed constraints remowval). The distributed con-
straints removal procedure in Algorithm 4 is permutation invariant. Moreover, if
active constraints consensus algorithm is used for distributed computation of the so-
lution to the RCP in Algorithm 4, then the set of removed constraints corresponds to
the one computed with the centralized constraints removal based on marginal costs [2].
Proof. We start by establishing the first statement. We consider the case in which
the ACC algorithm is used for implementing the distributed removal procedure. It fol-
lows from Proposition 4.1 that the local candidate set at each node after convergence
coincides with the set of active constraints. Both the set of active constraints and
the Lagrange multipliers do not depend on the order of the constrains in C, therefore
the removal procedure is permutation invariant. The permutation invariance of the
distributed constraints removal based on the VCC algorithm can be demonstrated
using similar arguments. The second statement is a straightforward consequence of
the fact that the active constraints are the only ones that have associated Lagrange
multipliers greater than zero (complementary slackness); therefore, after performing
the ACC algorithm, each node is guaranteed to know all the constraints with nonzero
Lagrange multipliers, from which it can select the one with largest multiplier. O

We conclude this section with some comments on the trade-off between the use of
the ACC and the VCC algorithm in the distributed removal procedure (Algorithm 4).
First of all we notice that the ACC algorithm is able to return a constraint set only in
feasible problems (otherwise the active constraint set is empty, by convention); there-
fore, the ACC-based removal procedure applies only to feasible problem instances.
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On the other hand, under Assumption 1, the VCC-based removal procedure applies
in the infeasible case as well. However, when using the VCC (or the ¢VCC), it is not
possible to establish the parallel with the centralized case, since it is possible to have
constraints with non-zero Lagrange multipliers that are not in the set computed by
the VCC algorithm.

7. Applications and Numerical Examples.

7.1. Distributed ellipsoidal estimation. In this section we discuss the prob-
lem of determining a confidence ellipsoid for an unknown random parameter. We
study this problem considering three settings: (i) nodes in a network can directly
measure the parameter (Section 7.1.1), (ii) nodes can measure a linear function of the
parameter (Section 7.1.2), (iii) nodes may take linear measurements of the parameter
using possibly different measurement models (Section 7.1.3).

7.1.1. Computing a confidence ellipsoid. In this section we discuss the prob-
lem of determining a confidence ellipsoid for an unknown random parameter y € R4
for which N iid realizations y), j € {1,..., N} are available. We consider first
the case in which all the N realizations are collected at a single unit that solves the
problem in a centralized way, and then outline a distributed setup of this problem in
Remark 7.

A generic (bounded) ellipsoid, parameterized in its center § € R? and shape
matrix W, € R?*4 W, > 0, is represented as

£ ={y e R : (y—) Wy(y—g) < 1}. (7.1)

As a measure of size of £, we consider the volume, which is proportional to the square
root of the determinant of W, L. Then, the problem of finding the smallest ellipsoid
enclosing the given realizations can be stated in the form of the following convex
optimization problem

min logdet(W ! subject to :
5 Wi, 1o8det Wy ) : (7.2)

) — Q)TWy(y(j) —g) <1, foreachje{l,...,N}.

The number of variables in this problem is ¢(g + 3)/2, corresponding to ¢ variables
describing the center ¢, plus ¢(q + 1)/2 variables describing the free entries in the
symmetric matrix W,. We can convert the optimization problem (7.2) into an equiv-
alent one having linear cost function by introducing a slack variable (see Remark 3.1
in [2]); the dimension of the problem with linear objective is then d = ¢(¢+ 3)/2 + 1.
Since the realizations y) are assumed random and iid, problem (7.2) clearly belongs
to the class of RCPs. Moreover, this problem is always feasible, and its solution is
unique (see, for instance, Section 3.3 in [23]). Therefore, we can apply (3.3) to con-
clude that with high probability 1 — 8 (here, S is typically set to a very low value,
say B = 107%) the ellipsoid computed via (7.2) is an (1 — €)-confidence ellipsoid for
y, with € = 2(log 87t +d — 1)/N. In words, we know with practical certainty that
&, contains y with probability larger than 1 — ¢, i.e., it encloses a probability mass at
least 1 —e of y. Furthermore, we observe that the constraints in (7.2) are convex func-
tions also with respect to the “uncertainty” terms y©), hence this problem satisfies
Assumption 1, enabling the application of the VCC or qVCC algorithms.

REMARK 7 (Distributed computation of measurement ellipsoid). The
solution to the optimization problem (7.2) can be computed in distributed fashion
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using any of the algorithms proposed in this paper, by considering a setup in which
n nodes are available, and each node only knows initially N; local realizations of ¥,
with Y | N; = N. Application of ACC, VCC, or qVCC algorithms entails that each
node iteratively exchanges a subset of realizations y) with its neighbors in order to
reach consensus on the set of realizations defining the optimal solution to (7.2). O

7.1.2. Ellipsoidal parameter estimation in a linear model. We now extend
the previous setup by considering the case in which linear measurements y of an
unknown parameter 6 are used to infer an ellipsoid of confidence for the parameter
itself. Consider the classical situation in which y is related to 6 via a linear model

y=F0, (7.3)

with F' € R?7*P where 0 is the input parameter, and y is a measured output. Suppose
that 6V, ..., 0Y), are N iid realization of the unobservable parameter 6, and that
yM ... y™N) are the corresponding observed measurements: y(? = FO®). We first
consider the centralized case, in which a single node uses the measurements to infer
an ellipsoid of confidence for 6. Given the observations 4, ..., y™), we can compute
a unique minimum-size ellipsoid &£, containing the observations, by solving problem
(7.2). From the reasoning in Section 7.1.1 we know with practical certainty that &, is
a (1 —e)-confidence ellipsoid for y. Now, the condition y € &,, together with the linear
relation in (7.3), imply that the set of parameters  that are compatible with output
y € &, is a (possibly unbounded) ellipsoid &€ described by the quadratic inequality
condition (FO —§) "W, (F@ — ) < 1, that is

T T T ~
T e o
1 * 7 Wyy—1 1

Since y € &, if and only if § € £, and since with practical certainty P{y € £,} > 1 —e¢,
we also have that P{6 € £} > 1 — ¢, hence we found a region € within which 6 must
be contained with probability no smaller than 1 — e.

In the next section, we provide an extension of this linear estimation framework to
a distributed setup in which n nodes collect linear measurements of #, using possibly
heterogeneous models.

7.1.3. Ellipsoidal parameter estimation in heterogeneous network. Sup-
pose that there are n, subsets of nodes, say Vi,...,V,,, such that each node in V;
uses the same linear measurement model

y; = Fj0, for each i €V, (7.5)
and it collects IV; measurements
yi(k) :ij)(k), for each k € {1,..., N;},

where %), k € {1,...,N;}, are iid. Moreover, it is assumed that realizations of 6
available at a node i are independent from realizations available at node j, for each
i,7. We here detail the procedure for computing a confidence ellipsoid for 6, by first
assuming a centralized case in which all measurements from nodes in V; are available
at a central node, and then we refer to Remark 8 for outlining the corresponding
distributed implementation.
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If all measurements from nodes in V; are available to a central computational unit,
then this unit can first construct (by solving problem (7.2)) an ellipsoid of confidence

55 for the collective measurements ygk), ieV, ke{l,...,N;}:

& ={y: =1, W;ly—19;) <1},

and then infer an ellipsoid of confidence &; for 6 according to eq. (7.4):

T N

0 E'W;F;  F'W;y; 0
e p . J I+ J 797
5]—{9611%.[1} { . a4, 1}[1}<0.

This procedure can be repeated for each V;, j € {1,...,n}, thus obtaining n, el-
lipsoidal sets £; that (with practical certainty) contain 6 with probability no smaller
than 1 —¢;. “Fusing” the information from all the confidence ellipsoids &£;, a stan-
dard probabilistic argument leads to stating that (again with practical certainty) the
unknown parameter is contained in the intersection Z = ﬂ?;lé'j with probability no
smaller than p = H?;l(l —€;). Clearly, any set that contains the intersection Z has
a probability no smaller than p of containing 8. We may then find an ellipsoid £
covering the intersection Z, as follows. We describe the to-be-computed ellipsoid £ as

1Y i ][4] o

where 6 is the center of the ellipsoid and W > 0 is its shape matrix. Then a sufficient
condition for £ to contain Z can be obtained through the so-called S-procedure [24]:

if there exist ns scalars 7; > 0, j € {1,...,n,}, such that
W wé FTW,F;,  FW,i,
R N _ X J J=7 L A] J =< 0’
[ * QTWGI} ;Tj[ w0 gIWg =1 | -

then & 2 N2, ;. Defining a vector § = W8, we can write the previous condition as:

Ng ! Ng ~ T
[ W =30 m(FfWiFy) 0 =300 7 (F Wig,) ]Jr[ 0, ]”7—1 { 0, } <0
1) -

* —1 =370 (9 Wya; — a 07
where 0,, is a matrix in RP*? with all zero entries. Using the Schur complement rule,
this latter condition is equivalent to the following LMI in W, 0, and 71,...,7,,:

W =370 i (F W, Fy) 0— Sy i (F Wigs) 0,
* —1 =370 (g Wyg; —1) 07 | 20 (7.6)
* * w

Then, the shape matrix W of the minimum volume ellipsoid £ 2 Z can be computed
by solving the following convex program

) min logdet(W™1)
0,W~0,71>0,...,7,, >0 (77)
subject to : (7.6).

After obtaining the optimal solution of problem (7.7), the center of the minimum
volume ellipsoid can be computed as § = W~16.
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REMARK 8 (Distributed estimation in heterogeneous metwork). A dis-
tributed implementation of the procedure previously described goes as follows. We as-
sume that each node 7 € {1,...,n}, knows all the measurement models { Fy, ..., F,_},
and acquires N; measurements according to its own model F}, see (7.5). Each node i
then maintains ng different local constraint sets Cf , 7 €41,...,ns}, simultaneously,
and initializes the j-th set Cij to the local measurements set of node 1, if 7 € V;, or
to the empty set, otherwise. Then, each node runs a distributed constraint consensus
algorithm (either ACC, or VCC, or qVCC) simultaneously on each of its local con-
straint sets. In this way, upon convergence, each node has all the optimal ellipsoids
&, j €A{1,...,ns}. Once this consensus is reached, each node can compute locally
the enclosing ellipsoid £ D 0;215]-, by solving the convex program (7.7). g

7.1.4. Numerical results on distributed ellipsoid computation. We now
elucidate on the distributed ellipsoid computation with some numerical examples. In
particular, we demonstrate the effectiveness of our algorithms for (i) distributed com-
putation of the enclosing ellipsoid when each node can measure the random parameter
6 with the same measurement model; (ii) parallel computation of the enclosing ellip-
soid; and (iii) distributed computation of the enclosing ellipsoid when each node can
only measure some components of the random parameter 6.

ExaMPLE 1 (Distributed estimation in homogeneous sensor network).
Consider the setup in which n sensors measure a random variable 6, using the same
measurement model y = F# (homogeneous sensor network), where we set for sim-
plicity F' = I, (the identity matrix of size p). We assumed 6 € R? to be distributed
according to the following mixture distribution:

_m with probability 0.95
1 72 +10y;  with probability 0.05,

where 7, € R? is a standard Normal random vector, and v» € R? is uniformly dis-
tributed in [—1,1]2. The overall number of measurements (acquired by all nodes) is
N = 20000; the size of the local constraint sets is N/n. We consider the case in which
the nodes in the network solve the RCP in equation (7.2) using one of the algorithms
proposed in this paper. We consider two particular graph topologies: a chain graph
and a geometric random graph. For the geometric random graph, we picked nodes uni-
formly in the square [0, 1]? and choose a communication radius r. > 2v/2+/log(n)/n to
ensure that the graph is strongly connected with high probability [25]. In Table 7.1 we
report the maximum number of iterations and the maximum number of exchanged
constraints for each algorithm. Statistics are computed over 20 experiments. The
ACC algorithm requires nodes to exchange a small number of constraints, and it con-
verges in a number of iterations that grows linearly in the graph diameter. For the
VCC algorithm, the maximum number of iterations for convergence is equal to the
graph diameter. For the considered problem instances, the number of constraints to
be exchanges among the nodes is small. We picked m = 5 for the qVCC algorithm.
Table 7.1 reports the number of iterations required by the qVCC to meet the halting
conditions described in Corollary 5.3.

EXAMPLE 2 (Parallel computation of confidence ellipsoid). In this ex-
ample we consider the same setup as in Example 1, but we solve the RCP (7.2) in
distributed fashion assuming a complete communication graph. A complete commu-
nication graph describes a parallel computation setup in which each processor can in-
teract with all the others. In this case, we focus on the ACC algorithm. In Fig. 7.1 we
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No. Di " ACC VCC qVCC
Nodes tameter Iter. ‘ Constr. | Iter. ‘ Constr. | Iter. ‘ Constr.
Geometric 10 ! 0 ! 6
50 2 7 2 8
raildokrln 100 3 10 6 3 19 9 5
grap 500 5 16 5 13
10 10 36 10 21
Chain 50 50 187 5 50 23 101 5
graph 100 100 375 100 200
500 500 1910 500 1000
TABLE 7.1

Distributed computation in homogeneous sensor network: maximum number of iterations, maz-
imum number of exchanged constraints, and diameter for different graph topologies, and for each of

the proposed algorithms.

report the dependence of the number of iterations on the number of nodes, number of
constraints, and dimension of the parameter y = 6 to be estimated. In the considered
problem instances the iterations of the ACC algorithm do not show any dependence
on these three factors. In Fig. 7.2 we show some statistics on the number of exchanged
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(a) Iterations versus number of nodes (b) Iterations versus number of constraints

No. of Iterations
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Dimension

(c) Iterations versus dimension of 6

FiGc. 7.1. Parallel computation of confidence ellipsoid using ACC algorithm. (a) number of
iterations required for convergence with different number of nodes, with fized number of constraints
N = 20000 and fized dimension p = 2 of 0; (b) number of iterations for different number of
constraints, with fized number of nodes n = 50 and fized dimension p = 2; (¢) number of iterations
for different dimensions of 0, with fized number of nodes n = 50 and number of constraints N =
20000. In each figure the cross denotes the average number of iterations, whereas the bar defines

the mazimum and the minimum observed numbers of iterations.

constraints. In particular, we compare the number of constraints exchanged among
nodes at each communication round with the dimension d = p(p+3)/2+1 (recall that
p = ¢ in this example) of the RCP (Section 7.1.1): in Proposition 4.1 we concluded
that the number of constraints exchanged at each communication round is bounded
by d. Fig. 7.2 shows that in the considered problem instances, the number of con-
straints is below this upper bound, which is shown as a dashed line. For space reasons
we do not report results on the dependence of the number of exchanged constraints
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on the total number of constraints N and on the number of nodes n. In our test the
number of exchanged constraints was practically independent on these two factors
and remained below 5 in all tests.

50

Active Constraints
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v
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v
v
\
3
>

Dimension

F1G. 7.2. Parallel computation of confidence ellipsoid using ACC algorithm: (bars) number of
constraints exchanged among nodes for different dimension p of 6, with fixred number of constraints
N = 20000 and fized number of nodes n = 50. The cross denotes the average number of iterations,
whereas the bar defines the mazimum and the minimum observed numbers of iterations; (dashed
line) mazimum number of constraints in generic position d = p(p + 3)/2 + 1.

In Fig. 7.3 we compare the computational effort required by the ACC algorithm
in the parallel setup with a standard centralized solver in charge of solving the convex
program (7.2). We used CVX/SeDuMi [26] as a centralized parser/solver, and we com-
pared the computation times required for solving the problem, for different number of
nodes, number of constraints, and dimension of the parameter 6. The use of the ACC
algorithm provides a remarkable advantage in terms of computational effort. For a
large number of constraints, this advantage is significant even for a small number of
Processors.
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Fic. 7.3. Parallel computation of confidence ellipsoid. The solid black line represents the
parallel computation time required for solving the RCP using the ACC algorithm, and dashed red
line represents the computation time required for centralized solution of the RCP.

EXAMPLE 3 (Distributed estimation in heterogeneous sensor network).
We now consider the distributed computation of a parameter ellipsoid in a network
with n nodes. We assume that half of the nodes in the network takes measurements
of § € R? according to the measurement model y; = Fy6, where F; = [1 0]; the
remaining nodes use the measurement model yo = Fb6, where F» = [0 1]. We con-
sider # distributed according to a mixture distribution, as in Example 1. The nodes
acquires 20000 measurements for each measurement model. They then estimate the
set &£ according to Remark 8. In Table 7.2 we report some statistics related to the
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computation of the sets £ and & using the ACC and the VCC algorithms, see Re-
mark 8. After the computation of £ and &, each node can locally retrieve the set £
solving problem (7.7), see Fig. 7.4.

No. Diameter ACC VCC
Nodes Iter. [ Constr. | Iter. | Constr.
Geometric 10 ! 4 !
random 50 2 7 4 2 4
araph 100 3 10 3
500 5 16 5
10 10 28 10
Chain 50 50 148 4 50 4
graph 100 100 298 100
500 500 1498 500
TABLE 7.2

Distributed estimation in heterogeneous sensor network: mazimum number of iterations, max-
imum number of exchanged constraints, and diameter for different graph topologies, for ACC and
VCC algorithms.

According to Section 7.1.3 we can conclude that for j € {1,2}, with confidence
level 1 — 3=1-1078%, & is a (1 — ¢;)-confidence ellipsoid for 6, with ¢; = 2-1073.
Then, with practical certainty the ellipsoid £ is a p-confidence ellipsoid for 6, with
w=(1-¢€1)(1— €)=~ 0.995.

02
°

FiG. 7.4. Distributed estimation in heterogeneous sensor network: the black dots are 100 re-
alizations of the random parameter 0 = [01 GQ]T. Nodes with measurement model 1 can measure
y1 = F10 = [1 0] 6 = 61 and compute the corresponding measurement set 8?} (shown as a solid
blue line), and the set €1 (the strip delimited by dashed blue lines) of parameters compatible with
5;. Similarly, nodes with measurement model 2 can measure y2 = Fo0 = [0 1] § = 62 from which
the network builds the set S; (shown as a solid magenta line) and the set E> (the strip delimited by
dashed magenta lines) of parameters compatible with 813. From the sets €1 and E2, each node can

compute the bounding ellipsoid £ D E1 N E2, by solving problem (7.7).

7.2. Distributed linear classification. A classical problem in binary linear
classification is to determine a linear decision surface (a hyperplane) separating two
clouds of binary labelled multi-dimensional points, so that all points with label +1
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F1G. 7.5. Binary linear classification: Two clouds of points having labels +1 (full circles) and
—1 (empty circles), respectively, need be separated by a hyperplane H, which maximizes the margin
of separation between the classes.

fall on one side of the hyperplane and all points with label —1 on the other side, see
Fig. 7.5. Formally, one is given a set data points (features) b; € RP, j € {1,..., N},
and the corresponding class label {; € {—1,+1}, and seeks a suitable hyperplane
H=1{seR :0"s+p =0}, with € R? and p € R, such that features with
different labels belong to different half-spaces w.r.t. H, and the margin of separation
between the classes is maximized (maximum margin classifier, see [27]). If the features
are linearly separable, then the optimal separating hyperplane solves the following
minimization problem [28]:

min ||0]]2 subject to :
B (7.8)
T .
1i(b; 0+p)>1, foreach j € {1,...,N}.

To deal with possibly infeasible problem instances (i.e., non-linearly separable data),
it is common to include a slack variable, allowing (but penalizing) misclassification:

min |02 + v subject to :
8o 20 (7.9)
1;(b; "0+ p) >1—v, for each j € {1,...,N}.

If the observed datum/label pairs 60) = (b;,1;), j € {1,..., N}, are interpreted as
realization of a random datum/label variable 6 = (b,1), then problem (7.9) is an
instance of the following RCP in dimension d = p + 3:

g, lun ¢ subject to : (7.10)
1i(b; "0+ p) >1—v, for each j € {1,...,N}, (7.11)
16]l2 + v < ¢.

Such and RCP is always feasible, and it admits a unique optimal solution with proba-
bility one, see, e.g., [28]. Therefore, we can apply (3.3) to conclude that with practical
certainty the hyperplane #, obtained as solution of (7.10), remains an optimal sepa-
rating hyperplane also after adding a new realization to the training data.
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Problem (7.10) is readily amenable to distributed solution via the ACC algorithm,
by assuming that the N constraints in (7.11) are subdivided into n disjoint subsets of
cardinality N; each, i € {1,...,n}, >_I" | N; = N, and that each subset is assigned to
a node as local constraint set. The constraints in (7.11) are linear, hence the problem
can also be solved via the VCC or qVCC algorithm, see Remark 5.

7.2.1. Numerical results on distributed linear classification. We next
present numerical examples of distributed and parallel computation of linear classifier.

EXAMPLE 4 (Distributed linear classification). In this section we consider
the case in which the training set 6¢) = (b;,1;), j € {1,..., N}, is not known at a
central computational unit, but its knowledge is distributed among several nodes. An
example of this setup can be the computation of a classifier for spam filtering [29],
where the datum/label pairs are collected by the personal computers of n users, and
the n computers may interact for computing the classifiers. For our numerical ex-
periments we considered a problem in which features with label '+1’ are sampled
from the normal distribution with mean 10 x 1,, while features with label '—1 are
sampled from the normal distribution with mean —10x 1,. After “sampling” the ran-
dom constraints we distribute them among n nodes. Then, we study the distributed
computation of the solution to problem (7.10) on two network topologies: geometric
random graph, and chain graph. The performance of ACC and VCC algorithms for
p =4 and N = 20000 total constraints is shown in Table 7.3. The values shown in
the table are the worst-case values over 20 runs of the algorithms. It can be seen that
the number of iterations required for convergence of the ACC algorithm are linear in
graph diameter, while they are equal to the graph diameter for the VCC algorithm.
The number of constraints exchanged at each iteration among the nodes is small for
ACC algorithm while this number is large for VCC algorithm.

No. Diameter ACC vee
Nodes Iter. [ Constr. | Iter. | Constr.
. 10 1 5 1
metri
Gre:;ndiin ‘ o0 2 1 5 2 342
araph 100 3 11 3
500 5 24 5
10 10 37 10
Chain 50 50 177 5 50 365
graph 100 100 319 100
500 500 1498 500
TABLE 7.3

Distributed linear classification: maximum number of iterations, mazimum number of ex-
changed constraints, and diameter for different graph topologies, for ACC and VCC algorithms.

EXAMPLE 5 (Parallel linear classification). For the same set of data as in
Example 4, we study the parallel computation of the optimal separating hyperplane.
The parallel computation setup is modelled via a complete graph. The computation
time of the ACC algorithm for parallel computation of the optimal separating hyper-
plane is shown in Fig. 7.6. The computation time is averaged over 20 runs of the
algorithm. The computation time is shown, respectively, as a function of number of
processors for p =4 and N = 200000 total constraints, as a function of total number
of constraints for p = 4 and n = 50 processors, and as a function of dimension p for
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N = 200000 total constraints and n = 50 processors. In the first case, the minimum,
average, and maximum number of active constraints are 2,3.3, and 5, respectively,
while the minimum, average, and maximum number of iterations are 4,4.04, and 5,
respectively. In the second case, the minimum, average, and maximum number of
active constraints are 2,3.09, and 5, respectively, while the minimum, average, and
maximum number of iterations are 4,4.03, and 6, respectively. In the third case, the
minimum, average, and maximum number of iterations are 4, 4.04, and 5, respectively,
and the statistics of the constraints are shown in Fig. 7.6. It can be seen that the par-
allel computation of the optimal solution via ACC algorithm remarkably improves the
computation time over the centralized computation. For large number of constraints,
this improvement is significant even for a small number of processors.
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Fic. 7.6. Performance of ACC algorithm for parallel computation of the solution of linear
classification problem. The solid black and dashed red lines represent parallel and centralized average
computation time, respectively. The cross represents the average number of active constraints and
the error bars represent the minimum and maximum active constraints.

7.3. Parallel random model predictive control. Consider the LTI system

Ty = F(§)ze + G(E)ue + Go (O, (7.12)

where t € Z> is discrete time variable, z; € RP? is the system state, u; € R? is the con-
trol input, ¢ € I' C R? is an unmeasured disturbance vector, ¢ € = C R" is vector
of uncertain parameters, and F(§) € RP*P, G(§) € RP*, G, (&) € RP*?7 are uncertain
matrices. The design problem is to determine a control law that regulates the system
state to some desired set, subject to some constraints on states and controls. In ran-
dom model predictive control [30], one picks a control law of the form u; = K Tt g,
where K¢ € R9*P is the static linear terminal controller gain and v; € R? is the design
variable. The design variable v, is picked to provide robustness with high probabil-
ity. To determine the design variable that achieves such robustness, at each time ¢
and for a given finite horizon length M, N realizations of the uncertain parameter £
and disturbance vectors (v, ..., v+m—1) are sampled and an optimization problem

is solved. Let us denote these realizations by (£, %Sk% .. ,'yﬁ)Mil), ke{l,...,N},

T

) . '75’2;[71]—'—7 for each k € {1,..., N}. The design variable
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v; is determined by the solution of the following optimization problem:

. k .
min ke{r{{?%N}J(xt,Vt,f(k),gﬁ )) subject to :
k
f ( 2(6+)]\t) < 07

fu (Kf$£+)j\t +Vij-1) <0, (7.13)
fo( t+M\t) < 07
for each j € {1,..., M}, and for each k € {1,..., N},

where J : RP x RIM x R* x R"M 5 R is a cost function that is convex in x; and
Vi, fx 1 RP = R, fy : RT — R, and fx, : R? — R are convex functions that capture
constraints on the state at each time, the control at each time, and the final state,
respectively, and

o = (Fa€®) e+ v, 410 g

Fa(§®™) = FEW) + G(EW) Ky

v [FIM IFGED) L Fa(™)GED) GE®) 0...0] e RrxaM
T = [(Fae®)y1G,(EW) ... Fa¢®™)G,(®) G,(eW) 0...0] e RP*®M
Vo o =[], vl

Problem (7.13) is a random convex program of dimension d = ¢M + 1. Moreover,
assuming that the problem admits a unique optimal solution with probability one
and for N > gM + 1, for any realization of the parameter and the disturbance vector,
the constraints on the state and the control are satisfied with expected probability
at least (N — ¢M)/(N + 1) [30]. Problem (7.13) is directly amenable to distributed
solution via ACC algorithm. In the next section we consider the case in which the
random constraints of the RCP are purposely distributed among n processors that
have to solve the problem in parallel fashion.

7.3.1. Numerical results on parallel random MPC. In order to achieve
robustness with high probability, a large number of realizations of the parameter and
disturbances are needed in the random convex program (7.13). This results in a large
number of constraints and makes real-time centralized computation of the solution to
the optimization problem (7.13) intractable. Therefore, we resort to the parallel com-
putation of the solution the optimization problem (7.13) via ACC algorithm. We now
apply the ACC algorithm to an example taken from [30], and show its effectiveness.

EXAMPLE 6 (Parallel random MPC). Consider the LTI system (7.12) with

— 1+& e [ 0.3arctan(és) J1 0
&) = 0.1sin(&y) 11_T_€§2 } , G = { ﬁ } , Gy = { 01 ]’

where each of the random parameters &1, &5, €3 is uniformly distributed in the inter-
val [—0.1,0.1], while &4, &5 are distributed according to Gaussian distributions with
zero mean and unit variance. Let the horizon be M = 10 and the uncertainty

be uniformly distributed over set I' = {y € R? : |7]leo} < 0.05. Assume that
Ix(@) = ||z)lc — 10, fu(u) = |u| =5, and fx,(2) = [zl — 1. Given the termi-
nal controller gain Ky = [—0.72 — 1.70] and the cost function J (¢, Vt7§(k)7g§k)) =
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max;eqi,..,pm} max{0, ||zlgi)j71|t||o<j — 1} + ||V4]|3. For this set of data, the computa-
tion time of the ACC algorithm averaged over 20 runs of the algorithm for parallel
computation of the solution to optimization problem (7.13) is shown in Fig. 7.7. The
computation time is shown, respectively, as a function of number of processors for
1000 realizations of the random parameters, and as a function of number of realiza-
tions of the random parameters for 50 processors. In the first case, the minimum,
average, and maximum number of active constraints are 2,2.55, and 6, respectively,
while the minimum, average, and maximum number of iterations are 3,3.73, and 5,
respectively. In the second case, the minimum, average, and maximum number of
active constraints are 2,2.18, and 4, respectively, while the minimum, average, and
maximum number of iterations are 3,4.03, and 5, respectively.

9 [
: £
= 20, £ 40
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= 10| =20
g0 R e
s 0 20 o, a¥odes 0 20003 0 500 1000 1500
O 0. ob Nodes @) Realizations
(a) Comp. time versus no. of nodes (b) Comp. time versus no. of realizations

Fia. 7.7. Performance of the ACC algorithm for parallel random model predictive control.
The solid black and dashed red lines represent parallel and centralized average computation time,
respectively.

7.4. Example of distributed outliers rejection. We conclude the numerical
part of this paper with a brief example of distributed constraints removal, applied to
the distributed estimation problem presented in Section 7.1.1. We consider n = 50
sensors measuring a random variable €, using the same measurement model of Exam-
ple 1 (homogeneous sensor network). The overall number of measurements (acquired
by all nodes) is N = 3000. The original scenario solution that satisfies all N = 3000
constraints can assure a violation probability smaller than ¢ = 102 with confidence
level greater than 1 — 3 = 1 — 2 x 1078, According to RCP theory we can remove
r = 165 constraints, still guaranteeing that the violation probability is smaller that
10~ with confidence level 1— 3 close to 1. Therefore the nodes apply Algorithm 4 (the
ACC algorithm is used within the removal strategy), computing a scenario solution
which satisfies all but » = 165 constraints. Thus, with a little compromise over the
bound on the violation probability, the constraints removal allows reducing the size
of the ellipsoid, hence improving the informativeness of the confidence ellipsoid. In
Fig. 7.8, we report the confidence ellipsoids computed at one node using Algorithm 4,
after rejecting number of outliers n = {0, 20, 40, ..., 140, 160}, together with the final
ellipsoid satisfying all but » = 165 constraints.

8. Conclusion. In this paper, we studied distributed computation of the solu-
tion to random convex program (RCP) instances. We considered the case in which
each node of a network of processors has local knowledge of only a subset of con-
straints of the RCP, and the nodes cooperate in order to reach the solution of the
global problem (i.e., the problem including all constraints). We proposed two dis-
tributed algorithms, namely, the active constraints consensus (ACC) algorithm and
vertex constraints consensus (VCC) algorithm. The ACC algorithm computes the so-
lution in finite time and requires the nodes to exchange a small number of constraints
at each iteration. Moreover, a parallel implementation of the ACC algorithm remark-
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FiGc. 7.8. Measurements taken by all the sensors in the network (black dots) and confidence
ellipsoids at one node after rejecting number of outliers n = {0,20,40,...,140,160} in Algorithm
4. The red ellipsoid is the one produced after discarding r = 165 measurements according to the
distributed constraints removal procedure.

ably improves the computational effort compared to a centralized solution of the RCP.
The VCC algorithm converges to the solution in a number of iterations equal to the
graph diameter. We also developed a variant of VCC algorithm, namely, quantized
vertex constraints consensus ((VCC), that restricts the number of constraints to be
exchanged at each iteration. We further proposed a distributed constraints removal
strategy for outlier rejection within the framework of RCP with violated constraints.
Finally, we presented several applications of the proposed distributed algorithms, in-
cluding estimation, classification, and random model predictive control.

Appendix.

A.1: Proof of Proposition 2.8. We start by establishing the first statement.
Let ¢ be a support constraint for a feasible problem in the form (2.1). Call £* = z*(C)
and £* = z*(C\{c}). From the definition of support constraints, it follows that
a'#* < a'#*. Assume by contradiction that c is not active at *, i.e. that f.(2*) < 0.
Consider a point Z on the segment connecting #* and &*: Z(\) = A\Z* + (1 — \)&*,
A € [0, 1]. It follows immediately that a' Z(\) < a'&*, for every A € [0, 1). Moreover,
by convexity, Z(\) satisfies all constraints, except possibly constraint ¢. However, since
Z* is in the interior of the convex set defined by f. < 0, there must exist values of
A sufficiently small such that Z(A) satisfies also f.(Z(A)) < 0. But then Z(\) would
satisfy all constraints and yield an objective value that improves upon that of Z*.
This contradicts optimality of 2* and hence proves that ¢ must be active at z*.

We now establish the second statement. We first demonstrate that each essential set
E; = Es;(C) needs be irreducible, i.e., F; = Sc(FE;). By definition, each E; is a min-
imum cardinality set satisfying J*(E;) = J*(C). Now assume by contradiction that
there exists a constraint ¢ € F;, such that J*(E;) = J*(E;\{c}). This implies that
there exists a set E;\{c}, which is also invariant for C, i.e., J*(E;\{c}) = J*(E;) =
J*(C), and has smaller cardinality than E;, leading to contradiction. Now we can
prove the statement: if each constraint in Es;(C) is a support constraint for problem
P[Es;(C)], it needs to be active for the problem P[Es;(C)], see claim (i). Conse-
quently, if =} is the optimal solution for P[Es,(C)], then f;(z}) = 0, V j € Es;(C).
From the unique minimum condition and locality, it follows that

T (Esi(C)) = J*(C) = 2*(Es;(C)) = 2*(C),
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for each ¢ € {1,...,ne}. Therefore, f;(z*(C)) = 0, for each j € Es;(C), i €
{1,...,n¢}, and Ac(C) D U}'s, Es;(C). O

A.2: Proof of Proposition 4.1. We start by establishing the first statement.
According to the update rule of the ACC algorithm, the sequence of local optimal
objective J(t) satisfies

Jr(t+1) = T (Li(t + 1)) = T (Ai(t) U(Ujens, ) A5 (1) U Ci)
[by monotonicity] > J* (A;(t)
[by Corollary 2.9] = J*(L;(t)

then J7(¢) is non-decreasing in ¢.
The proof of the second statement is more involved and works as follows. We first
observe that, for any directed edge (4, j) it holds

Jr(t+1) = J*(Li(t+ 1)) = J* (A (1) U(Upenia ) Ar(t) UCH)
[by monotonicity and i € Ni,(5)] > J*( ( )
[by Corollary 2.9] = J*(L;(t)) = J; (t),

which can be easily generalized to a generic pair of nodes 4, j connected by a directed
path of length I;; (such path always exists for the hypothesis of strong connectivity):

Ji(t+ i) = TS (2). (8.1)
Moreover, we demonstrate that for any directed edge (i, ) it holds
JI(t+1)=J(t) = zj(t+1) =) (8.2)

The reverse implication in (8.2) is straightforward, since the objective function is the
same for both nodes. The direct implication is again trivial in the infeasible case,
while for J7(t + 1) = J(t) < oo it can be proven as follows. For the uniqueness
condition, adding a constraint ¢ that is not satisfied at (or violates) x7(t + 1) leads to
an increase in the objective value, i.e., J*(L;(t+1)U{c}) > J*(L;(t+1)). Now, since
Li(t+1) 2 Ai(t), and J*(L;(t + 1)) = J5(t + 1) = Ji(t) = J*(Ai(t)), by locality, if
J*(Li(t+1)U{c}) > J(L;(t+1)), then J*(A;(t) U{c}) > J*(Ai(t)), which implies
that also 7 (¢) is violated by c¢. Therefore, we concluded that every constraint that
violates (t + 1) also violates z; () and this may happen only if 27 (¢t + 1) = z;(?).
Again the correspondence between objective values and optimal Solutlons can be easily
generalized to a generic pair of nodes 4, j connected by a directed path of length [;;:

THt41y) = Jr(t) = @it +1y) = 2 (2). (8.3)

We now claim that the objective at one node cannot remain the same for 2diam(G)+1
iterations, unless the algorithm has converged. In the infeasible case the proof is
trivial: according to the update rule of the ACC if node ¢ has detected an infeasible
local problem, i.e., J*(t) = oo, it directly stops the execution of the algorithm since
it is already sure of detaining the global solution. Let us instead consider the feasible
case. We assume by contradiction that J;(t) = J*(t+2diam(G)) < oo and there exists
a node j with at least a constraint that is not satisfied by z}(t) = «} (¢ + 2diam(G)).
Let us consider a directed path of length [;; from i to j: we already observed in
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(8.1) that JX(t + l;;) > J7(t). However, since there are constraints at node j that
violates z (), equality cannot hold, see (8.3), and J7 (¢ + 1;;) > J;(t). By definition,
the length l;; of the path from 7 to j is bounded by graph diameter and the local
objective is non-decreasing, therefore J*(t+diam(G)) > J;(t). Now consider the path
from j to 7 of length [j;: according to (8.1) it must hold J(t + diam(G)) < JF(t +
diam(G) +1;;) < JF(t +2diam(G)). Using the two inequalities found so far we obtain
Ji(t) < Jj(t+diam(G)) < J;(t + 2diam(G)), which contradicts the assumption that
the objective at node ¢ remains constant for 2diam(G)+1 iterations. Therefore, before
convergence the local objective J(¢) has to be strictly increasing every 2diam(G) + 1
iterations. Moreover, the sequence J(t) is upper bounded, since, by monotonicity,
for any L C C, J*(L) < J*(C), and J}(t) can assume a finite number of values,
ie, J* € J = {J*(L) : L C C}; therefore the sequence converges to a constant
value, say J(T), in finite time. We now demonstrate that after convergence all nodes
need to have the same local objective, i.e., J*(T) = J, for each i € {1,...,n}. For
simplicity of notation, we drop the time index in the following discussion. Assume by
contradiction that two nodes, say i and j, have different objective values, J; > J7.
From the assumption of strongly connectivity of the graph G, there exist a directed
path between ¢ and j. Using relation (8.1) we obtain J* < .J 7, leading to contradiction.
Therefore, for any pair of nodes ¢ and j, it must hold that J: = J* = J , implying
JF = J, for each i € {1,...,n}. With a similar reasoning, and using (8.3), we can also
conclude that J; = J, for each i € {1,...,n}, implies ] = &, for each i € {1,...,n}.
Now it remains to show that the local objectives J and the local solutions & actually
coincide with J*(C') and z*(C). In the infeasible case this is again trivial: if the local
objectives coincide with J = oo, by monotonicity the global problem cannot be either
than infeasible, then J*(C) = J = oo and 2*(C) = & = NaN. The feasible case can
be proven as follows. If all nodes have the same local solution &, it means that (i) &
satisfies the local constraint set C;, i € {1,...,n}, which implies that & is feasible for
the global problem. Moreover, by monotonicity, J < .J *(C) (since J is the optimal
value of a subproblem having constraint set L C ). Assume by contradiction that
J < J*(C), which implies that (i) J = a"# < aT2*(C) = J*(C); therefore & attains
a smaller objective than x*(C), see (ii), and satisfies all constraints in C, see (i),
contradicting the optimality of *(C'). Therefore it must hold J = J*(C). With the
same reasoning we used for proving (8.2), we also conclude that & = 2*(C).

To prove the third statement, we show that the set A; contains all the constraints
that are globally active for P[C]. If JF = J*(C) = oo the implication is trivial, since
A; = Ac(C) = 0. In the feasible case the proof proceeds as follows. According to the
second statement, we have =¥ = z*(A;) = z*(C), i € {1,...,n}. By contradiction,
let us suppose that there exists a globally active constraint ¢ that is contained in the
local constraint set C; of a node %, but is not in the candidate set A; of node j. Let
us consider a directed path from 4 to j and relabel the nodes in this path from 1 to
[. Starting from node 1 we observe that, since ] = z*(C') and ¢ is active for P[C],
then ¢ € Ay. At each iteration of the active constraint consensus, node 2 in the path
computes Ay = Ac(AzU (Ujen;, (2,0)A5) UC2). Therefore, since ¢ € Ay and ] = 3,
it holds ¢ € A,. Iterating this reasoning along the path from i to j we conclude that
c € A; leading to contradiction.

To prove the fourth statement, we observe that, if the local problem at node 7 is
infeasible, then the node only has to transmit its local objective, J;(t)* = oo, since
the candidate set A;(t) is empty. If the local problem P[L;] is feasible, then the unique
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minimum condition assures that the minimum is attained at a single point, say x*(L;).
If constraints are in general position, then no more than d constraints may be tight
at *(L;), hence at most d constraints are active. Therefore, in the feasible case, the
number of constraints to be transmitted is upper-bounded by d. U

A.3: Proof of Proposition 5.1. We start by recalling a basic property which
is a direct consequence of the definition of the feasible set: for any set of constraints
C4 and (5, it holds:

Sat(C’l) n Sat(02> = Sat(01 @] 02) (84)

To prove the first statement, we consider a generic node i. At time ¢ node 4 receives the
candidate sets from the incoming neighbors and computes V;(t+1) =vert(L;(t+1)) =
vert (Vi(t) U (Ujeni. ) V5(1))). It follows that

Sat(Vi(t + 1)) = sat (vert(V;(t) U (Ujeni i) Vi (t))))
[by Fact 1] = Sat (Vi(t) U (Ujens,. .0 Vi(t))) (8.5)
[by equation (8.4)] = Sat(V;(£)) N ((Njen;, i) Sat(V;(t))) C Sat(V;(t)).

If sat(V;(t)) = 0 (infeasible local problem) also Sat(V;(t+1)) = 0, according to (8.5),
then J*(t 4+ 1) = J}(t) = oo, and the objective is non-decreasing. If Sat(V;(t)) # 0
(feasible local problem) we can prove the statement as follows. Assume by contradic-
tion that there exists # € Sat(V;(t + 1)) such that a'z = J*(V;(t + 1)) < J*(V;(2)).
Equation (8.5) assures that Sat(V;(t + 1)) C Sat(V;(t)), therefore, z € Sat(V;(t))
and exists a point in the feasible set of problem P[V;(¢)], whose value is smaller
than J*(V;(t)). This contradicts the optimality of J*(V;(t)). Therefore, it must hold
J*(Vi(t+ 1)) > J*(Vi(t)).

To prove the second statement, we show that after T' = diam(G) iterations a generic
node ¢ satisfies Sat(V;(T)) = Sat(C). Consider a generic node j and a directed
path from a node j to node i (this path does exist for the hypothesis of strong
connectivity). We relabel the nodes on this path from 1 to [, such that the last node
is 4. Node 1 initializes V1(0) = vert(Ch), then Sat(V4(0)) = Sat(Cy). At the first
iteration, node 2 computes V3(1) = vert(V2(0) U (Ujens, (2) V5(0))). Since node 1 is
in Nin(2), it follows from equation (8.5) that Sat(Va(1)) C Sat(V;(0)). Repeating
the same reasoning along the path, and for the original labeling, we can easily prove
that Sat(V;(l;;)) C Sat(V;(0)) = Sat(C};), where I;; is the distance between i and
j. Therefore, after a a number of iterations equal to the distance between j and
i, every feasible solution at node i satisfies the constraints of node j. Since the
maximum distance between ¢ and any other node is the diameter of the graph, in
T = diam(G) iterations, node 4 satisfies Sat(V;(T")) C Sat(C;) for all j. Since this
last property holds for all 7, it also holds Sat(V;(T')) C Njeq1,....nySat(C;) = Sat(C).
However, V;(T') is a subset of C, and it follows that Sat(V;(T)) 2 Sat(C). Thus,
Sat(V;(T')) = Sat(C). Since the local problem P[V;(T)] and the global problem P[C]
have the same objective direction and the same feasible set they attain the same
(unique) solution, i.e., z*(V;(T)) = 2*(C).

We now establish the third statement. We note that V;(T) = vert(C) is a direct
consequence of the update rule of the VCC algorithm. To prove the latter part of the
statement, we assume by contradiction that ¢ € C'is a support constraint for P[C] but
¢ ¢ vert(C). The relation ¢ ¢ vert(C) implies that vert(C) C C\{c}. It follows from
monotonicity that (i) J*(vert(C)) < J*(C\{c}). According to Fact 1 it also holds
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(ii) J*(vert(C)) = J*(C). Combining (i) and (ii), we obtain J*(C ) < J*(C\{c}). B
monotonicity, it cannot be J*(C) < J*(C\{c}), then J*(C) = J*(C\{c}), but this
contradicts the assumption that c is a support constraint. O

A.4: Proof of Proposition 5.2. The proof of the first and the third statement
follows similar to the proof of the first and third statement in Proposition 4.1.

We now establish the second statement. Similar to the VCC algorithm, we show that
. _ k
after T <5 f:agl(g) ! [ Mmax(dmaxt D7) jterations a generic node i satisfies Sat(V;(T)) =

Sat(C). Consider a gener{g pair of nodes i, j and a directed path of length [;;
from j to 4 (this path does exist for the hypothesis of strong connectivity). Rela-
bel the nodes on this path from 1 to [, such that the last node is i. We observe
that, after the initialization, the local candidate set V;(0) = T7(0) = vert(C) has
cardinality |T7(0)] < Npax. Since the transmission set is managed using a FIFO
policy, after at most fN"‘a’ﬂ communication rounds the node has transmitted all
the constraints in V(0) to node 2. Therefore, Sat(Va([MmaxT)) C Sat(V;(0)) =
Sat(C1). Moreover, |V2 %]ﬂ < deMn(z)u{2} N; < Npax(dmax + 1) (worst
case in which the incoming neighbors have to transmit all their local constraints

and all constraints are vertices of the convex hull). After at most (W]

further iterations, node 2 has transmitted all constraints in V5 ([£=ex])) to node 3.
Therefore, Sat(Vg(f max ] [ m"(dm‘“‘ﬂ)})) C Sat(Vo([HmaxT)) C Sat(Ch). Also,

Nmax max dmax""1 Nmax
1 (X 4 sl D) | <57y V58] < N 12 R
peating the same reasoning along the directed path, for the original labeling, we
P k
obtain Sat (Vz( ;ﬁ&f%])) C Sat(Cj). Therefore, every feasible so-

lution at node ¢ satisfies the constraints of node j at distance /;; in a number of
[’ xnax(dxnax+1) —‘.

iterations no larger than Z Since the maximum distance be-

tween ¢ and any other node 1s the dlameter of the graph, it follows that in T" <

z;ag(g) ! fww iterations node 4 satisfies Sat(V;(T')) C Sat(C;) for all j.

Since this propert; holds for all j, it also holds Sat(V;(T)) C Njeqa,... n1Sat(Cj) =
Sat(C). Since V;(T) is a subset of C, Sat(V;(T)) 2 Sat(C). Therefore, Sat(V;(T)) =

Sat(C). Finally, T' can be rewritten as

diam(G)—1 diam(G)—1

5 [ttt ] 3
[Nmﬂ 1 — (dmax + 1)@ [Nmaxw (dinax + 1)%22(9) — 1
m - (dmax + 1) m dmax ’

which coincides with the bound in the second statement. Since the local problem
P[V;(T)] and the global problem P[C] have the same objective direction and the
same feasible set they attain the same (unique) solution, i.e., *(V;(T)) = «*(C). O
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