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Abstract— Synchronization problems in complex networks
have recently attracted tremendous scientific interested. More-
over, assessing the existence, stability, and robustness of syn-
chronous states is a pervasive topic in the operation of power
networks. Scientists in both communities have long aimed
to identify sharp synchronization conditions as functions of
the network topology and parameters. This paper proposes
an insightful approach to this problem based on algebraic
graph theory. We present a novel synchronization condition
applicable to a general coupled oscillator model. We rigorously
establish that our condition is exact for various interesting
network topologies and parameters. Via statistical studies we
show that our condition predicts accurately the existence of
stable synchronous solutions for generic networks as well as
various power network test cases. From these statistical studies,
we conclude that our proposed condition is correct for almost
all network topologies and parameters. Indeed, we also show
that there exist possibly-thin sets of network topologies and
parameters, where our condition is not sufficiently tight.

I. INTRODUCTION

Synchronization is pervasive in the operation of power
networks. All generating units of an interconnected grid must
remain in strict synchronism while continuously following
demand and rejecting disturbances. In face of the rising
complexity of the future power grid and the stochastic
disturbances caused by renewables, a deeper understanding
of the system complexity becomes increasingly important.

A central question in the operation of a power network
is “under which conditions on the network parameters and
topology and the current load and generation profile, does
there exist an optimal [1], stable [2]–[4], and robust [5]–[8]
synchronous operating point”. A more general concern is
wether the load flow admits any solution [9], [10], or wether
an existing solution vanishes in a saddle node bifurcation
[11], [12]. All these questions are intimately intertwined,
and various security indices have been proposed to quantify
the robustness of an operating condition [13]. In general,
accurate answers to the above questions are known only
for radial (acyclic) distribution networks [1], [9], [13], only
loose conditions are known for arbitrary networks [5], [7],
[8], and various puzzling examples are known [6]. The
assessment of an acceptable synchronous operating point and
the quantification of its robustness will become more and
more important in an increasingly complex and stressed grid.
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Synchronization in complex networks recently attracted
tremendous scientific interest [14]–[16]. Especially, the Ku-
ramoto model of coupled oscillators [17] serves as prototyp-
ical example, and we refer to [18]–[21] for various appli-
cations and results. Despite the vast interest, the search for
sharp and concise synchronization conditions for Kuramoto
oscillators has been in vain so far. The available results to
date include: exact synchronization conditions for specific
network topologies [21]–[23], sufficient conditions for arbi-
trary topologies [19], [24], [25], and numerical investigations
for random networks [26], [27]. Simulation studies indicate
that the known sufficient conditions provide only loose
estimates on the threshold from incoherence to synchrony.
Literally, every review article on the Kuramoto model con-
cludes by emphasizing the question for exact synchronization
conditions for arbitrary networks [14]–[16], [18]–[21].

In summary, the power systems and the synchronization
community ask for concise and sharp conditions that relate
synchronization to the network topology and parameters [28].

Here, we present an insightful approach to synchroniza-
tion. We consider a general coupled oscillator model that in-
cludes the Kuramoto model as well as various power network
models [3], [4]. We study existence and local stability of
synchronized solutions featuring bounded pair-wise angular
distances, which are well-studied in synchronization [24],
[25] and practically relevant in power systems [1]–[8], [11],
[12]. Our analysis is based on algebraic graph theory and
an equivalent reformulation of the synchronization problem
which reveals the crucial role of cycles and cut-sets.

We propose a concise condition on the network topology
and parameters, which includes the condition known for the
homogeneous graph [21] and relaxes the conditions based
on the algebraic connectivity [8], [14], [15], [19], [24]–[26]
or the nodal degree [7], [24], [27], [29]. We prove that
our condition is necessary and sufficient for the existence
of a locally exponentially stable synchronization manifold
for the sparsest (acyclic) and densest (homogeneous) net-
work topologies, for the best (phase synchronizing) and the
worst (cut-set inducing) network parameters, for cycles with
symmetric parameters or of length strictly less than five, as
well as combinations of these networks. Furthermore, we
establish the statistical correctness of our condition for al-
most all topologies and parameters by extensive Monte Carlo
simulations. As a negative result, we also show the existence
of possibly-thin sets of networks for which our condition
is not sufficiently tight. Finally, we validate the predictive
power and high accuracy of our condition for the IEEE power
system test cases 14, RTS 24, 30, New England 39, 57, RTS
96, 118, 300, and the Polish 2383 bus system. We envision the
applicability of our condition as stability and robustness index.

The remainder of this section introduces some notation.



Section II presents the considered models and our synchro-
nization notions. Section III contains our analysis. Section
IV illustrates our results through various test cases. Section
V concludes the paper. The proofs of our theoretical results,
the statistical results, and the numerical implementation is
only sketched here, and we refer to [30] for details.

Geometry on n-torus: The set S1 denotes the unit circle,
an angle is a point θ ∈ S1, and an arc is a connected subset
of S1. With slight abuse of notation, let |θ1 − θ2| denote
the geodesic distance between two angles θ1, θ2 ∈ S1. The
n-torus Tn = S1×· · ·×S1 is the direct sum of n unit circles.

Vectors and functions: Given an n-tuple (x1, . . . , xn), let
x ∈ Rn be the associated vector. Let 1n and 0n be the n-
dimensional vectors of unit and zero entries, let ein ∈ Rn be
the ith canonical unit vector, and define 1⊥n , {x ∈ Rn :
x ⊥ 1n}. For x ∈ Rn, let sin(x) = (sin(x1), . . . , sin(xn))
and arcsin(x) = (arcsin(x1), . . . , arcsin(xn)), where the
arcsin function is defined for the branch [−π/2, π/2].

Algebraic graph theory: Given an undirected, connected,
and weighted graph G(V, E , A) induced by the symmetric
and nonnegative adjacency matrix A ∈ Rn×n, we define the
nodal degree by degi =

∑n
j=1 aij . The Laplacian matrix

L ∈ Rn×n is defined by L = diag({degi}ni=1) − A. If a
number ` ∈ {1, . . . , |E|} and an arbitrary direction is as-
signed to each edge {i, j} ∈ E , the oriented incidence matrix
B ∈ Rn×|E| is defined component-wise as Bk` = 1 if node k
is the sink node of edge ` and as Bk` = −1 if node k is the
source node of edge `; all other elements are zero. For x ∈
Rn, the vector BTx has components xi−xj for any oriented
edge from j to i. If diag({aij}{i,j}∈E) is the diagonal matrix
of edge weights, then L = B diag({aij}{i,j}∈E)BT . If the
graph is connected, then Ker (BT ) = Ker (L) = span(1n),
all n−1 remaining eigenvalues of L are strictly positive (and
real), and the second-smallest eigenvalue λ2(L) is called the
algebraic connectivity. Since L is singular, we will frequently
use its Moore-Penrose inverse L†. The orthogonal vector
spaces Ker (B) and Ker (B)⊥ = Im (BT ) are denoted as
cycle space and cut-set space, and they are spanned by
vectors associated to cycles and cut-sets in the graph.

II. MODELS AND SYNCHRONIZATION NOTIONS

A. General Coupled Oscillator Model
Consider a weighted, connected, and undirected graph

G = (V, E , A) with n nodes V , partitioned node set V =
V1 ∪ V2 and edge E ⊂ V × V set induced by the adjacency
matrix A ∈ Rn×n. Associated to this graph, consider the
following model of |V1| ≥ 0 second-order Newtonian and
|V2| ≥ 0 first-order kinematic phase oscillators

Miθ̈i +Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ V1,

Diθ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ V2,

(1)

where θi ∈ S1 and θ̇i ∈ R1 are the phase and frequency
of oscillator i ∈ V , ωi ∈ R1 and Di > 0 are the natural
frequency and damping coefficient of oscillator i ∈ V , and
Mi > 0 is inertial constant of oscillator i ∈ V1.

The dynamics (1) can be illustrated by points rotating
around the unit circle with first or second-order dynamics,

with respective natural frequencies ωi, and neighboring oscil-
lators are coupled to another by Hookean springs with elas-
ticity aij . The interesting dynamic behavior of the coupled
oscillator model (1) arises from a competition between each
oscillator’s tendency to align with its natural frequency ωi
and the synchronization-enforcing coupling aij sin(θi − θj)
with its neighbors. The coupled oscillator model (1) evolves
on Tn×R|V1|, and features an important symmetry, namely
the rotational invariance of the angular variable θ.

Despite its simplicity, the coupled oscillator model (1)
includes various models studied in the synchronization liter-
ature. For the parameters V1 = ∅ and Di = 1 for all i ∈ V2,
it reduces to the classic Kuramoto model [17]

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} . (2)

Among other models listed in [21], the coupled oscillator
model (1) also includes a variety of power network models.

B. Structure-Preserving Power Network Model

Consider a connected power network with generators
V1 and load buses V2. The network is described by the
symmetric nodal admittance matrix Y ∈ Cn×n (augmented
with the generator transient reactances). If the network is
lossless and the voltage levels |Vi| at all nodes i ∈ V1 ∪ V2
are constant, then the maximum real power transfer between
any two nodes i, j ∈ V1∪V2 is aij= |Vi| · |Vj | ·=(Yij). With
this notation the swing dynamics of generator i are given by

Miθ̈i+Diθ̇i=Pm,i−
∑n

j=1
aij sin(θi−θj) , i ∈ V1, (3)

where θi ∈ S1 and θ̇i ∈ R1 are the generator rotor angle and
frequency, θj ∈ S1 for j ∈ V2 are the voltage phase angles
at the load buses, and Pm,i > 0, Mi > 0, and Di > 0 are
the mechanical power input, inertia constant, and damping
coefficient. We consider the following three load models.

1) Frequency-dependent loads: All buses are PV buses [4]
and the real power drawn by load i consists of a constant
term Pl,i > 0 and a frequency dependent term Diθ̇i with
Di > 0. The resulting in the real power balance equation is

Diθ̇i + Pl,i = −
∑n

j=1
aij sin(θi − θj) , i ∈ V2 . (4)

The dynamics (3)-(4) are known as structure-preserving
power network model [4], and equal the coupled oscillator
model (1) for ωi = Pm,i, i ∈ V1, and ωi = −Pl,i, i ∈ V2.

2) Constant power loads: If each load features a constant
real power demand Pl,i > 0, the load damping in (4) is ne-
glected, that is, Di = 0 for i ∈ V2, and the angular distances
|θi(t)−θj(t)| < π/2 are bounded for each transmission line
{i, j} ∈ E (this condition will be established in Section III),
then the resulting differential-algebraic system has the same
local stability properties as the dynamics (3)-(4), see [3].

3) Constant current loads: If each load demands a constant
amount of current, then the linear current-balance equations
are I = Y V , where I ∈ Cn and V ∈ Cn are the vectors
of nodal current injections and voltages. After elimination of
the bus variables Vi, i ∈ V2, through Kron reduction [29],
the resulting dynamics assume the form (1) with V2 = ∅.



C. Synchronization Notions and Conditions

For γ ∈ [0, π/2[, let ∆̄G(γ) ⊂ Tn be the closed set of
angle arrays (θ1, . . . , θn) with the property |θi− θj | ≤ γ for
{i, j} ∈ E . Also, let ∆G(γ) be the interior of ∆̄G(γ).

A solution (θ, θ̇) : R≥0 → (Tn,R|V1|) to the coupled os-
cillator model (1) is said to be synchronized if θ(0) ∈ ∆̄G(γ)
and there exists ωsync ∈ R1 such that θ(t) = θ(0) +ωsync1nt
(mod 2π) and θ̇(t) = ωsync1|V1| for all t ≥ 0. In other
words, here, synchronized trajectories have the properties of
frequency synchronization and phase cohesiveness, that is,
all oscillators rotate with the same synchronization frequency
ωsync and all their phases belong to the set ∆̄G(γ).

For the coupled oscillator model (1), the explicit synchro-
nization frequency is given by ωsync ,

∑n
i=1 ωi/

∑n
i=1Di,

see [21]. By transforming to a rotating frame with frequency
ωsync and by replacing ωi by ωi−Diωsync, we obtain ωsync =
0 (or equivalently ω ∈ 1⊥n ) corresponding to balanced power
injections Pm = Pl in the model (3)-(4). Hence, without loss
of generality, we assume that ω ∈ 1⊥n such that ωsync = 0.

Given a point r ∈ S1 and an angle s ∈ [0, 2π], let
rots(r) ∈ S1 be the rotation of r counterclockwise by the
angle s. For (r1, . . . , rn) ∈ Tn, define the equivalence class

[(r1, . . . , rn)]={(rots(r1), . . . , rots(rn)) ∈ Tn |s ∈ [0, 2π]}.

Clearly, if (r1, . . . , rn) ∈ ∆̄G(γ), then [(r1, . . . , rn)] ⊂
∆̄G(γ). Given θ ∈ ∆̄G(γ), the set ([θ],0|V1|) ⊂ Tn × R|V1|
is a synchronization manifold of the coupled-oscillator model
(1). A synchronized solution takes value in a synchronization
manifold due to rotational symmetry.1

The coupled oscillator dynamics (1) feature (i) the syn-
chronizing effect of the coupling described by the graph
G(V, E , A) and (ii) the de-synchronizing effect of the dis-
similar natural frequencies ω ∈ 1⊥n . Loosely speaking, syn-
chronization occurs when the coupling dominates the dissim-
ilarity. The coupling is typically quantified by the algebraic
connectivity λ2(L) or the nodal degree degi, and the dissim-
ilarity is quantified by absolute norms ‖ω‖p or incremental
norms ‖BTω‖p, where p ∈ {2,∞}. Sometimes, these condi-
tions can be evaluated only numerically since they are state-
dependent [7], [8] or arise from a non-trivial linearization
process (Master stability function) [14], [15]. In general,
concise and accurate results are known only for specific
topologies with uniform weights such as complete graphs
[21] linear chains [22] and complete bipartite graphs [23].
For arbitrary graphs G(V, E , A) and ω ∈ 1⊥n , simulation
studies indicate that the known conditions are conservative
estimates on the threshold from incoherence to synchrony.

III. SYNCHRONIZATION ASSESSMENT

A. An Algebraic Approach to Synchronization Assessment

It is known [21, Theorem 5.1 and 5.3] that existence and
local exponential stability of synchronized solutions of the
coupled oscillator model (1) can be entirely described by
means of the first-order Kuramoto model (2).

1We restrict our attention to synchronized solutions satisfying |θi−θj | ≤
γ < π/2 for {i, j} ∈ E . Of course, there may exist other possible solutions
but these are not practically relevant for power network applications due to
thermal limits and stability constraints for the transmission lines.

Lemma 3.1: (Sync equivalence) Consider the coupled
oscillator model (1) and the Kuramoto model (2). The
following statements are equivalent for any γ ∈ [0, π/2[ and
any synchronization manifold ([θ],0|V1|) ⊂ ∆̄G(γ)×R|V1|.

(i) [θ] is a locally exponentially stable synchronization
manifold the Kuramoto model (2); and

(ii) ([θ],0|V1|) is a locally exponentially stable synchro-
nization manifold of the coupled oscillator model (1).

Due to equivalence of local exponential stability, we will
from now on focus on first-order Kuramoto model (2).

The following result is known in the synchronization
literature [24], [25] as well as in power systems, where the
saturation of a transmission line is connected to an eventual
singularity of the load flow Jacobian [3]–[8], [11].

Lemma 3.2: (Stable equilibria in ∆G(π/2)) Consider
the Kuramoto model (2) with a connected graph G(V, E , A),
and let γ ∈ [0, π/2[. The following statements hold:

1) The Jacobian of the Kuramoto model is given by
J(θ) = −B diag({aij cos(θi − θj}{i,j}∈E)BT ;

2) If there exists an equilibrium point θ∗ ∈ ∆̄G(γ), then
it belongs to a locally exponentially stable equilibrium
manifold [θ∗] ∈ ∆̄G(γ); and

3) This equilibrium manifold is unique in ∆̄G(γ).
By Lemma 3.2, the problem of finding a locally stable

synchronization manifold reduces to that of finding a fixed
point θ∗ ∈ ∆̄G(γ) for some γ ∈ [0, π/2[. The fixed-point
equations of the Kuramoto model (2) read in vector form as

ω = B diag
(
{aij}{i,j}∈E

)
sin(BT θ) . (5)

Notice that ω necessarily has to be bounded such that fixed
points of (5) exist: since sin(x) ∈ [−1, 1], a necessary
condition for the existence of a fixed point in ∆̄G(γ) is

degi sin(γ) =
∑n

j=1
aij sin(γ) > |ωi|, i ∈ {1, . . . , n}. (6)

In words, the nodal degree must be larger than the frequency
dissimilarity (from the zero synchronization frequency).

In the following we aim to find conditions under which
the fixed-point equation (5) admit a solution θ∗ ∈ ∆̄G(γ).
We resort to a rather straightforward solution ansatz. By
formally replacing each term sin(θi − θj) in the fixed-point
equations (5) by a scalar ψij , the fixed-point equation (5)
can be equivalently written as the set of equations

ω = B diag
(
{aij}{i,j}∈E

)
ψ , (7)

ψ = sin(BT θ) , (8)

where ψ ∈ R|E| is the vector with elements of ψij . We will
refer to equations (7) as the auxiliary-fixed point equations,
and characterize their properties in the following theorem.

Theorem 3.3: (Properties of the fixed point equations)
Consider the Kuramoto model (2) with graph G(V, E , A)
and ω ∈ 1⊥n , its fixed-point equations (5), and the auxiliary
fixed-point equations (7). The following statements hold:

1) Exact solution: Every solution of the auxiliary fixed-
point equations (7) is of the form

ψ = BTL†ω + ψhom , (9)



where the homogeneous solution ψhom ∈ R|E| satisfies
diag

(
{aij}{i,j}∈E

)
ψhom ∈ Ker (B); and

2) Exact synchronization condition: Let γ ∈ [0, π/2[.
The following statements are equivalent:

(i) There exists a locally exponentially stable solu-
tion θ∗ ∈ ∆̄G(γ) to the fixed-point equation (5).

(ii) There exists a solution θ ∈ ∆̄G(γ) to

BTL†ω + ψhom = sin(BT θ) . (10)

for some ψhom ∈ diag
(
{1/aij}{i,j}∈E

)
ker(B).

(iii) There exists a solution ψ ∈ R|E| to the auxiliary
fixed-point equations (7) of the form (9) satisfy-
ing the norm constraint ‖ψ‖∞ ≤ sin(γ) and the
cycle constraint arcsin(ψ) ∈ Im (BT ).

If the equivalent statements (i), (ii), and (iii) are true,
then we have the identities BT θ∗=BT θ=arcsin(ψ).

Note that the particular solution BTL†ω to the auxiliary
fixed-point equations (7) lives in the cut-set space Ker (B)⊥

and the homogenous solution ψhom lives in the weighted
cycle space ψhom ∈ diag

(
{1/aij}{i,j}∈E

)
Ker (B). As a

consequence, for each cycle in the graph, we obtain one de-
gree of freedom in choosing the homogeneous solutionψhom
as well as one nonlinear constraint arcsin(ψ) ∈ Im (BT ).

Remark 1: (Comments on necessity) Notice that a mini-
mum ∞-norm solution ψ∗ to equations (7) can be found via

minψ∈R|E| ‖ψ‖∞ s.t ω = B diag
(
{aij}{i,j}∈E

)
ψ.

By Theorem 3.3, such a minimum infinity-norm solution ψ∗

necessarily satisfies ‖ψ∗‖∞ ≤ sin(γ) so that an equilibrium
θ∗ ∈ ∆̄G(γ) exists. Hence, the condition ‖ψ∗‖∞ ≤ sin(γ)
is an optimal necessary synchronization condition. �

B. Synchronization Assessment for Specific Networks
In this subsection we seek to establish that the condition∥∥BTL†ω∥∥∞ < 1 (11)

is sufficient for the existence of locally exponentially stable
equilibria in ∆G(π/2) or, more generally, that the condition∥∥BTL†ω∥∥∞ ≤ sin(γ) , γ ∈ [0, π/2[ (12)

is sufficient for the existence of locally exponentially stable
equilibria in ∆̄G(γ). Since the right-hand side of (12) is a
concave function of γ ∈ [0, π/2[ that achieves its supremum
value at γ∗ = π/2, it follows that condition (12) implies (11).

Remark 2: (Interpretation of the sync condition) From
a spectral viewpoint, condition (11) can be rewritten as∥∥BT ·(U diag(0, {1/λi}i∈{2,...,n})

)
·
(
UTω

)∥∥
∞ < 1 , (13)

where U ∈ Rn×n is the matrix of orthonormal eigenvectors
of L and λi are the Laplacian eigenvalues. A sufficient condi-
tion for inequality (13) is the algebraic connectivity condition
λ2(L) > ‖BTω‖∞ similar to results developed in [8], [14],
[15], [19], [24]–[26]. Likewise, a necessary condition for
(13) is 2 maxi∈{1,...,n} degi ≥ λn(L) > 2‖ω‖∞ resembling
the necessary condition (6) and the conditions [7], [24], [27],
[29]. Clearly, when compared to (13), both of the previous

conditions feature only one of n − 1 non-zero Laplacian
eigenvalues and are overly conservative. Finally, condition
(12) reduces to the synchronization condition for classic
Kuramoto oscillators with homogeneous coupling [21].

In power systems, the equilibrium equations of (1), ωi =∑n
j=1 aij sin(θi − θj), are known as AC power flow equa-

tions. By conventional engineering wisdom, the AC power
flow equations can be well approximated by the so-called DC
power flow equations ωi =

∑n
j=1 aij(θi−θj) for sufficiently

small phase distances max{i,j}∈E |θi − θj | ≤ γ � 1. In
vector form the DC power flow equations read as ω = Lθ and
their solution θ∗ has the phase differences BT θ∗ = BTL†ω.
According to condition (12), the worst-case phase distance
‖BTL†ω‖∞ obtained by the DC power flow needs to be
smaller than sin(γ), such that the solution to the AC power
flow satisfies max{i,j}∈E |θi− θj | ≤ γ. Thus, condition (12)
extends the common DC approximation from infinitesimally
small angles γ � 1 to large angles γ ∈ [0, π/2[.

The above linear interpretation is not only insightful but
also practical since condition (12) can be quickly evaluated
by numerically solving the sparse system ω = Lθ. �

The exact state-dependent synchronization conditions in
Theorem 3.3 can be easily evaluated for the sparsest (acyclic)
and densest (homogeneous) topologies and for “worst-case”
(cut-set inducing) and “best” (identical) natural frequencies.
For all of these cases the scalar condition (12) is sharp.

Theorem 3.4: (Sync condition for extremal graphs and
parameters) Consider the Kuramoto model (2) with con-
nected graph G(V, E , A) and ω ∈ 1⊥n and the inequality con-
dition (12) for γ ∈ [0, π/2[. The following statements hold:
(G1) Exact synchronization condition for acyclic graphs:

Assume that G(V, E , A) is an acyclic graph. There ex-
ists an exponentially stable equilibrium θ∗ ∈ ∆̄G(γ) if
and only if condition (12) holds. Moreover, in this case
we have that BT θ∗ = arcsin(BTL†ω) ∈ ∆̄G(γ);

(G2) Tight synchronization condition for homogeneous
graphs: Assume that G(V, E , A) is a homogeneous
graph, that is, there is K > 0 such that aij = K for all
distinct i, j ∈ {1, . . . , n}. Consider a compact interval
Ω ⊂ R, and let Ω ⊂ Rn be the set of vectors with
components Ωi ∈ Ω for i ∈ {1, . . . , n}. For all ω ∈
Ω there is an exponentially stable equilibrium θ∗ ∈
∆̄G(γ) if and only if condition (12) holds;

(G3) Exact synchronization condition for cut-set induc-
ing natural frequencies: Let Ω1, Ω2 ∈ R, and let
Ω ⊂ Rn be the set of bipolar vectors with components
Ωi ∈ {Ω1,Ω2} for i ∈ {1, . . . , n}. For all ω ∈ LΩ
there exists an exponentially stable equilibrium θ∗ ∈
∆̄G(γ) if and only if condition (12) holds. Moreover,
Ω induces a cut-set: if |Ω2 − Ω1| = sin(γ), then for
ω = LΩ we obtain the exponentially stable equilib-
rium θ∗ ∈ ∆̄G(γ) satisfying BT θ∗ = arcsin(BTΩ),
that is, for all {i, j} ∈ E , |θ∗i − θ∗j | = 0 if Ωi = Ωj

and |θ∗i − θ∗j | = γ if Ωi 6= Ωj ; and
(G4) Asymptotic correctness: In the limit ω → 0n,

there exists an exponentially stable equilibrium θ∗ ∈
∆̄G(γ) if and only if condition (12) holds. Moreover,
lim
ω→0n

(
BT θ∗

)
i
/arcsin(BTL†ω)i=1, i∈{1, . . . , |E|}.



Theorem 3.3 shows that the solvability of the fixed-point
equations (5) is inherently related to the cycle constraints.
The following lemma establishes feasibility of a single cycle.

Lemma 3.5 (Single cycle feasibility): Consider the Ku-
ramoto model (2) with a cycle graph G(V, E , A) and ω ∈ 1⊥n .
Without loss of generality, assume that the edges are labeled
by {i, i + 1} mod n for i ∈ {1, . . . , n} and Ker (B) =
span(1n). Define x ∈ 1⊥n and y ∈ Rn>0 uniqely by x ,
BTL†ω and yi , ai,(i+1) mod n > 0 for i ∈ {1, . . . , n}. Let
γ ∈ [0, π/2[. The following statements are equivalent:

(i) There exists a stable equilibrium θ∗ ∈ ∆̄G(γ); and
(ii) the function f : [λmin, λmax] → R, with domain

boundaries λmax = mini∈{1,...,n}
sin(γ)−xi

yi
and λmin =

maxi∈{1,...,n}
− sin(γ)−xi

yi
and defined by f(λ) =∑n

i=1 arcsin(xi+λyi), satisfies f(λmin)<0<f(λmax).
If both equivalent statements 1) and 2) are true, then BT θ∗=
arcsin(x+λ∗y), where λ∗ ∈ [λmin, λmax] satisfies f(λ∗)=0.

The condition in Lemma 3.5 leads to the following result.
Theorem 3.6: (Sync conditions for cycle graphs) Con-

sider the Kuramoto model (2) with a cycle graph G(V, E , A)
and ω ∈ 1⊥n and the inequality condition (12) for γ ∈
[0, π/2[. The following statements hold.
(C1) Exact sync condition for symmetric natural fre-

quencies: Assume that ω ∈ 1⊥n is such that BTL†ω is
a symmetric vector2. There is an exponentially stable
equilibrium θ∗ ∈ ∆̄G(γ) if and only if condition (12)
holds. Moreover, BT θ∗=arcsin(BTL†ω).

(C2) Tight sync condition for low-dimensional cycles:
Assume the network contains n ∈ {3, 4} oscillators.
Consider a compact interval Ω ⊂ R, and let Ω ∈ Rn
be the set of vectors with components Ωi ∈ Ω for
i ∈ {1, . . . , n}. For all ω ∈ LΩ there exists an
exponentially stable equilibrium θ∗ ∈ ∆̄G(γ) if and
only if condition (12) holds.

(C3) General cycles and network parameters: In general
for n ≥ 5 oscillators, condition (11) does not guaran-
tee3 existence of an equilibrium θ∗ ∈ ∆G(π/2). As a
sufficient condition, there exists an exponentially stable
equilibrium θ∗ ∈ ∆̄G(γ), γ ∈ [0, π/2[ if∥∥BTL†ω∥∥∞ ≤ min{i,j}∈E aij · sin(γ)

max{i,j}∈E aij + min{i,j}∈E aij
. (14)

Let a patched network {G(V, E , A), ω} be a collection
of subgraphs and natural frequencies ω ∈ 1⊥n , where (i)
each subgraph is connected, (ii) in each subgraph one of the
conditions (G1),(G2),(G3),(G4), (C1), or (C2) is satisfied,
(iii) the subgraphs are connected to another through edges
{i, j} ∈ E satisfying ‖(ei|E| − e

j
|E|)

TL†ω‖∞ ≤ sin(γ), and
(iv) the set of cycles in the overall graph G(V, E , A) is equal
to the union of the cycles of all subgraphs. Since a patched
graph satisfies the synchronization condition (12) as well the
norm and cycle constraints, we can state the following result.

Corollary 3.7: (Sync condition for a patched network)
Consider the Kuramoto model (2) with a patched network

2A vector x ∈ 1⊥n is symmetric if its histogram is symmetric, i.e., up to
permutation of its elements, x is of the form x = [−c,+c]T for n even and
some c ∈ Rn/2 and x = [−c, 0,+c]T for n odd and some c ∈ R(n−1)/2.

3A carefully designed cyclic counterexample is reported in [30].

{G(V, E , A), ω}, and let γ ∈ [0, π/2[. There is an exponen-
tially stable equilibrium θ∗ ∈ ∆̄G(γ) if condition (12) holds.

C. Statistical Synchronization Assessment
After having analytically established condition (12) for

a variety of particular network topologies and parameters,
we seek to establish its correctness for arbitrary networks.
Extensive simulation studies lead us to the conclusions that
the proposed condition (12) is correct in the generic case. In
order to validate this hypothesis, we conducted Monte Carlo
simulation studies over a wide range of natural frequencies
ωi, network sizes n, coupling weights aij , and different
random graph models of varying degrees of sparsity and
randomness. For 1.2 ·106 samples of such nominal networks,
we numerically solve equation (5) and test the hypothesis

H :
∥∥BTL†ω∥∥∞ ≤ sin(γ) =⇒ ∃ θ∗ ∈ ∆̄G(γ) .

The detailed Monte Carlo results can be found in the journal
version of this paper [30]. By invoking the Chernoff bound,
our simulations establish the following probabilistic result:

Statistical result: With at least 99% confidence
and least 99% accuracy, the hypothesis H is true
with 99.97% probability for a nominal network.

From this statistical result, we deduce that the proposed con-
dition (12) is sufficient for almost all networks, and it fails for
possibly-thin sets of topologies and parameters. In particular,
for 0.03% of all cases, condition (12) is not sufficiently tight
and fails marginally with an error of order O(10−4).

Overall, our analytical results and statistical studies vali-
date the correctness of the proposed condition (11). We refer
to [30] for further investigations on the accuracy and the
predictive power of condition (12) in random networks.

IV. SYNC ASSESSMENT FOR POWER NETWORKS

We envision that condition (12) can be applied to quickly
assess synchronization and robustness in power networks
under volatile operating conditions. Since real-world power
networks are carefully engineered systems with particular
network topologies and parameters, we do not extrapolate
the previous statistical results to power grids. Rather, we con-
sider ten widely-established IEEE power network test cases.

Under nominal operating conditions, the power generation
is optimized to meet the forecast demand, while obeying the
AC power flow laws and respecting the thermal limits of
each transmission line. In order to test the synchronization
condition (12) in a volatile smart grid scenario, we make the
following changes to the nominal network: 1) We assume
fluctuating demand and randomize 50% of all loads to
deviate from the forecasted loads with Gaussian statistics
(with standard deviation 0.3 p.u.). 2) We assume that the
grid is penetrated by renewables with severely fluctuating
power outputs, and we randomize 33% of all generating
units to deviate from the nominally scheduled generation
with Gaussian statistics (with standard deviation 0.3 p.u.). 3)
The fluctuations are mitigated by fast-ramping generation (or
fast-response energy storage), and controllable loads. Here,
we assume that the grid is equipped with 10% fast-ramping
generation and 10% controllable loads, and the power im-
balance (caused by fluctuating demand and generation) is



TABLE I

Randomized test case Correctness Accuracy Cohesiveness
Chow 9 bus system always true 4.1218 · 10−5 0.12889
IEEE 14 bus system always true 2.7995 · 10−4 0.16622
IEEE RTS 24 always true 1.7089 · 10−3 0.22309
IEEE 30 bus system always true 2.6140 · 10−4 0.1643
New England 39 always true 6.6355 · 10−5 0.16821
IEEE 57 bus system always true 2.0630 · 10−2 0.20295
IEEE RTS 96 always true 2.6076 · 10−3 0.24593
IEEE 118 bus system always true 5.9959 · 10−4 0.23524
IEEE 300 bus system always true 5.2618 · 10−4 0.43204
Polish 2383 bus always true 4.2183 · 10−3 0.25144
system (winter 99)

uniformly dispatched among these adjustable sources. For
each of the ten IEEE test cases, we construct 1000 random
realizations of the scenario 1), 2), and 3) described above,
we numerically check for the existence of a synchronous
solution, and we compare the numerical solution with the
results predicted by our synchronization condition (12).

Our findings are reported in Table I, and further details
are provided in [30]. “Correctness” is evaluated according to
the criterion ‖L†ω‖E,∞ ≤ sin(γ) =⇒ max{i,j}∈E |θ∗i −
θ∗j | ≤ γ, “Accuracy” is evaluated by max{i,j}∈E |θ∗i −
θ∗j | − arcsin(‖L†ω‖E,∞), and “Cohesiveness” is evaluated
by max{i,j}∈E |θ∗i − θ∗j |. The accuracy and cohesiveness
results are averaged over all instances. It can be observed
that condition (12) predicts the correct phase cohesiveness
with extremely high accuracy even for large-scale networks.

V. CONCLUSIONS

We have presented an insightful approach to synchroniza-
tion in coupled phase oscillators based on algebraic graph
theory. We proposed a novel synchronization condition which
is provably exact for various interesting network topologies
and parameters. Furthermore, we showed through statistical
studies that our condition appears is accurate for generic
networks as well as various power system test cases.

Since there exist possibly-thin sets of topologies and pa-
rameters for which the proposed condition is not sufficiently
tight, and further research must be carried out. Also, the
results in this article are based on models requiring the
classic separation of angle and voltage dynamics in active
and reactive power flows. We are currently also working on
extending the present results to non-constant voltages.
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