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Abstract— Future power grids will be required to operate
safely and reliably against cyber-physical attacks. The large
dimensionality and the difficulty in calibrating dynamical net-
work models precludes the use of centralized attack detection
algorithms. This paper proposes a unified modeling framework
and an advanced detection procedure whose implementation
requires only local network knowledge. We model a power
network as a linear time-invariant descriptor system and cyber-
physical attacks as unknown inputs. This modeling framework
captures, for instance, network components malfunction and
measurements corruption. In our detection method the power
network is partitioned among geographically deployed control
centers, possibly located at transmission substations. Each
control center has knowledge of only its respective subarea
dynamics, is able to acquire information from neighboring
areas, and is capable of performing basic computations. Under
these minimal technological requirements and a reasonable
observability assumption, we design an entirely distributed
detection filter which requires only local network knowledge
and yet achieves guaranteed global performance. Our detection
filter is based on a sparse residual filter in descriptor form,
which can be stabilized via decentralized output injection and
implemented distributively via waveform relaxation.

I. INTRODUCTION

Cyber-physical security is a topic of primary concern in
the envisioned smart power grid [1]–[3]. Besides failures and
attacks on the physical power grid infrastructure, the smart
grid is also prone to cyber attacks on its communication
and computation layer. In short, cyber-physical security is a
fundamental obstacle challenging the smart grid vision.
Related work. While the security of the electricity network
has always been an important research subject, there has been
a recent explosion of publications concerning cyber-physical
security in smart power grids. Traditionally, state estimation
and detection procedures have been designed for static power
network models [4]–[6], but the development of security
procedures that exploit the power network dynamics has
been recognized [7] as an important problem. In this work,
we consider the linearized version of the classic structure-
preserving power network model [8], which is composed
by the linearized swing equation for the generator rotor
dynamics and the DC power flow equation for the loads.
The resulting linear continuous-time descriptor model of a
power network has also been studied for dynamic estimation,
fault detection, and security assessment in [9]–[13].

The difficulty of obtaining and calibrating accurate wide-
area dynamical power system models, the low-bandwidth
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Fig. 1. Partition of IEEE 118 bus system into 5 areas. Each area is
monitored and operated by a control center. The control centers cooperate
to estimate the state and to assess the functionality of the whole network.

communication capabilities versus the extremely fast phys-
ical dynamics, and the high dimensionality of the electric
power network preclude the use of centralized estimation,
detection, and identification procedures. One possibility to
overcome these issues is to geographically deploy some
monitors in the network, each one responsible for a different
subarea of the whole system, as illustrated in Fig. 1. Local
estimation schemes can successively be used, together with
an information exchange mechanism to recover the perfor-
mance of a centralized scheme. Such distributed monitoring
paradigm has been applied to static and discrete-time state
space power network models [6], [9]. In this paper we
consider a dynamic descriptor model and exploit the classic
waveform relaxation method to develop a fully distributed
attack detection procedure. The waveform relaxation method
is an extension of the classic relaxation method for systems
of algebraic equations, with the difference that the iteration
is carried out over functions (or waveforms) rather than
vectors. We refer the reader to [14]–[16] for a comprehensive
discussion of waveform relaxation methods.
Contributions. This paper features three contributions.

First, we propose a setup for distributed estimation and
detection of cyber-physical attacks in large-scale intercon-
nected power networks. Analogously to [10]–[13], we model
a power network by a linear time-invariant descriptor system.
Cyber-physical attacks on the power network are modeled as
unknown inputs affecting the system state and measurements.



Our model can represent either genuine faults of network
components or malicious attacks on sensors, actuators, and
the communication infrastructure. Finally, following [6], we
propose a block-diagonal partition of the power network
model according to geographically deployed control centers
equipped with computation and communication capabilities.
We remark that the considered descriptor model is very gen-
eral and features no power network specific assumptions such
as invertible algebraic equations (index one). Consequently,
our detection methods are also applicable to other large-scale
interconnected systems described by descriptor models, such
as water, gas, and sensor networks.

Second, starting from the centralized filter presented in
our earlier work [13], we develop a fully distributed attack
detection filter. In a first design step, we propose a centralized
but sparse residual filter in descriptor form to detect cyber-
physical attacks. Contrary to the treatment in [13], this attack
detection filter is sparse and thus amenable to distributed
implementation. Next, we stabilize the attack detection filter
based on a decentralized output injection. In a final design
step, we distribute the attack detection filter by iterative local
computations using the Gauss-Jacobi waveform relaxation
technique. In the end, we propose a fully distributed attack
detection filter that achieves guaranteed global performance.
The implementation of this filter requires communication
among the local control centers, local observability of each
subnetwork, and a block-diagonal dominance condition to
be satisfied. The latter condition can be verified locally and
ensures both the decentralized stabilization of the filter as
well as the convergence of the waveform relaxation iteration.

Third and finally, we illustrate the performance of our
distributed attack detection filter with an example of cyber
attack on the IEEE 118 bus system. We show that the control
centers cooperatively detect the attack, although none of
them knows the network model and measurements entirely.
Paper organization. The remainder of this paper is orga-
nized as follows. Section II presents the problem setup and
some preliminary results on centralized attack detection. In
Section III we develop a distributed attack detection filter,
and in Section IV we demonstrate its performance through a
numerical example. Finally, Section V concludes the paper.

II. PROBLEM SETUP AND CENTRALIZED DETECTION

A. Mathematical model of dynamical systems under attack
Consider the linear time-invariant descriptor system

Eẋ(t) = Ax(t),
y(t) = Cx(t),

(1)

where x : R≥0 → Rn is the state, y : R≥0 → Rp is the
output with measurement matrix C ∈ Rp×n, and the state
matrices E ∈ Rn×n and A ∈ Rn×n are assumed to satisfy
(A0) the matrix E is diagonal and, possibly, singular;
(A1) the pair (E,A) is regular, that is, det(sE − A) does

not vanish for all s ∈ C.
The structural assumption (A1) guarantees the existence of
a unique solution x(t), and it is typically satisfied when
circuits and power networks are modeled by linear descriptor
systems, see [10]–[13]. We refer the reader to [17]–[19]
for a comprehensive discussion of descriptor systems. We

remark that assumption (A0) is automatically verified for
power systems [10], and, although it simplifies the notation,
it is not necessary for the derivation of our results.

We allow for the presence of unknown disturbances affect-
ing the behavior of the system (1), which, besides reflecting
the genuine failure of system components, can be the effect
of an attack against the cyber-physical system. We classify
these disturbances into state attacks, if they show up in
the measurements vector after being integrated through the
network dynamics, and output attacks, if they corrupt directly
the measurements vector. The dynamics of the descriptor
system (1) in the presence of an attack can be written as

Eẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

(2)

where B ∈ Rn×m, D ∈ Rp×m, and u : R≥0 → Rm. The
input signal u(t), as well as the input matrices B and D are
assumed to be unknown and arbitrary. We let y(x0, u, t) be
the output signal generated from the initial state x0 under
the attack signal u(t). We refer to the triple (B,D, u(t)) as
cyber-physical attack, and make the following assumptions
on the descriptor system (2):
(A2) the initial condition x(0) ∈ Rn is consistent, that is,

(Ax(0) + Bu(0)) ⊥ Ker(E) = 0; and
(A3) the input signal u : R≥0 → Rm is smooth.
Assumptions (A2) and (A3) simplify the technical presenta-
tion in this paper since they guarantee smoothness of the
state trajectory x(t), t ∈ R≥0; see [20, Lemma 2.5] for
further details. However, we remark that the results in this
paper can also be established under weaker assumptions.
If the consistency assumption (A2) is dropped, then the
additional cases of initial jumps and impulses in the state
x(t ↓ 0) have to be considered that possibly affect the initial
measurements y(t ↓ 0). Hence, in presence of inconsistent
initial conditions, the results in paper are valid only for
strictly positive times t > 0. For power networks models,
the smoothness assumption (A3) can actually be replaced
by continuity of u(t) (since these models are of index one
[12], [13]). If assumption (A3) is further weakened to u(t)
belonging to the class of impulsive smooth distributions, then
a powerful attacker capable of commanding an impulsive
input u(t∗) at some time t∗ can directly reset the state x(t∗)
[20, Theorem 3.2] and, possibly, evade detection.

B. Centralized attack detectability

A cyber-physical attack may remain undetected from the
measurements if there exists a normal operating condition of
the network under which the output would be the same as
under the perturbation due to the attacker.

Definition 1 (Undetectable attack): For the linear de-
scriptor system (2), the attack (B,D, u(t)) is undetectable
if there exist initial conditions x1, x2 ∈ Rn, such that, for
all t ∈ R≥0, y(x1, u, t) = y(x2, 0, t).

Necessary and sufficient algebraic conditions for the de-
tectability of cyber-physical attacks are described in [13],
while graph-theoretic conditions are given in [12]. In [13]
we present a centralized method for the detection of attacks
based upon Kron reduction [21] of the algebraic equations in



model (2), which results in a convenient but non-sparse state-
space detection filter. In what follows, we present a similar
but sparse centralized attack detection filter. This sparsity
will be key to develop a distributed detection method later on.

Theorem 2.1 (Centralized attack detection filter):
Consider the descriptor system (2) and assume that the
attack is detectable, and that the network initial state x(0)
is known. Consider the centralized attack detection filter

Eẇ(t) = (A + GC)w(t)−Gy(t),
r(t) = Cw(t)− y(t),

(3)

where w(0) = x(0) and the output injection G ∈ Rn×p is
such that the generalized eigenvalues of the pair (E,A+GC)
have negative real part. Then r(t) = 0 at all times t ∈ R≥0

if and only if u(t) = 0 at all times t ∈ R≥0. �
Proof: Consider the error e(t) = w(t)− x(t) between

the dynamic states of the filter (3) and the descriptor system
(2). The error dynamics with output r(t) are given by

Eė(t) = (A + GC)e(t)− (B + GD)u(t),
r(t) = Ce(t)−Du(t),

(4)

where e(0) = 0. To prove the theorem we show that the
error system (4) has no invariant zeros, that is, r(t) = 0 for
all t ∈ R≥0 if and only if u(t) = 0 for all t ∈ R≥0. Since
the initial condition x(0) and the input u(t) are assumed to
be consistent (A2) and non-impulsive (A3), the error system
(4) has no invariant zeros if and only if [20, Proposition 3.4]
there exists no triple (s, w̄, g) ∈ C× Rn × Rp satisfying[

sE − (A + GC) B + GD
C −D

] [
w̄
g

]
=

[
0
0

]
. (5)

The second equation of (5) yields Cw̄ = Dg. Thus, by
substituting Cw̄ by Dg in the first equation of (5), the set
of equations (5) can be equivalently written as[

sE −A B
C −D

] [
w̄
g

]
=

[
0
0

]
. (6)

Finally, note that a solution (s,−w̄, g) to above set of
equations would yield an invariant zero, zero state, and
zero input for the descriptor system (2). By the detectability
assumption,1 the descriptor model (2) has no zero dynamics
and the matrix pencil (6) necessarily has full rank. It follows
that the triple (E,A, C) is observable, so that G can be cho-
sen such that the pair (E,A+GC) is Hurwitz [19, Theorem
4.1.1], and the error system (4) has no zero dynamics. This
concludes the proof of Theorem 2.1.

Remark 1 (Detection with unknown initial conditions):
If the network initial state x(0) is not available, then an
arbitrary filter initial state w(0) ∈ Rn can be chosen.
Consequently, the performance of the detection filter
(3) becomes asymptotic, and some attacks may remain
undetected. For instance, if the generalized eigenvalues of
the detection filter pair (E,A + GC) have been assigned to
have real part smaller than some constant c < 0, then, in
the absence of attacks, the filter output r(t) exponentially
converges to zero with rate less than c [19, Section 3.1.1].

1Due to linearity of the descriptor system (2), the detectability assumption
reads as “the attack (B, D, u(t)) is detectable if there exist no initial
conditions x0 ∈ Rn, such that y(x0, u, t) = 0 for all t ∈ R≥0.”

Hence, only inputs u(t) that vanish faster or equal than e−ct

can remain undetected by the filter (3). �

III. DISTRIBUTED DETECTION

A. Setup for distributed detection
Let G = (V, E) be the directed graph associated with the

pair (E,A), i.e., the graph describing the interconnection
structure of the state variables. In particular, each element of
V corresponds to a system state, and there is a directed edge
from vertex j to vertex i if the entry aij or eij is nonzero.
Assume that V has been partitioned as V = V1 ∪ · · · ∪ VN ,
and let Gi = (Vi, Ei), with i ∈ {1, . . . , N}, be the subgraph
of G with vertices Vi and edges E ∩ (Vi×Vi). Let |Vi| = ni.
According to this partition and possibly after relabeling the
nodes, the matrices E and A in (1) can be written as

E = blkdiag(E1, . . . , EN ), A =

 A1 · · · A1N

...
...

...
AN1 · · · AN

 .

where Ei, Ai ∈ Rni×ni , and Aij ∈ Rni×nj . Furthermore,
assume that the output matrix C in (2) reads as

C = blkdiag(C1, . . . , CN ),

where Ci ∈ Rpi×ni . Given such a partition and in the
absence of attacks, the descriptor system (1) can be written
as the interconnection of N subsystems of the form

Eiẋi = Aixi(t) +
N∑

j=1,j 6=i

Aijxj(t),

yi(t) = Cixi(t), i ∈ {1, . . . , N},

(7)

where xi(t) and yi(t) are the state and output of the i-th
subsystem. We assume the presence of a control center in
each subnetwork Gi with the following capabilities:
(A4) the i-th control center knows only the diagonal ma-

trices Ei, Ai, and Ci, as well as the neighbouring
matrices Aij , j ∈ {1, . . . , N} \ {i};

(A5) the i-th control center can exchange information with
control center j if the matrix Aij is non-zero; and

(A6) the pair (Ei, Ai) is regular, and the triple (Ei, Ai, Ci)
is observable.

Under assumptions (A4), (A5), and (A6), we consider the
problem of designing a distributed algorithm for the control
centers to cooperatively detect cyber-physical attacks.

B. Decentralized detection
Before deriving a fully distributed version of the attack

detection filter (3), we explore the question of decentralized
stabilization of the error dynamics of the filter (3). For each
subsystem (7), consider the local residual generator

Eiẇi(t) = (Ai + GiCi)wi(t) +
N∑

j=1,j 6=i

Aijxj(t)−Giyi(t),

ri(t) = yi(t)− Ciwi(t), i ∈ {1, . . . , N},
(8)

where wi(t) is the i-th estimate of xi(t) and Gi ∈ Rni×pi .
In order to derive a compact formulation, let w(t) =



[wT
1 (t) · · · wT

N (t)]T and r(t) = [rT
1 (t) · · · rT

N (t)]T, and
define the matrices AD = blkdiag(A1, . . . , AN ), AC =
A−AD, and G = blkdiag(G1, . . . , GN ). The interconnection
structure among the subsystems is described by the matrix
AC and the overall filter dynamics (8) read in vector form as

Eẇ(t) = (AD + GC)w(t) + ACw(t)−Gy(t) ,

r(t) = y(t)− Cw(t) .
(9)

Due to the observability assumption (A6) each output injec-
tion matrix Gi can be chosen such that (Ei, Ai − GiCi)
is Hurwitz [19, Theorem 4.1.1]. Notice that if each pair
(Ei, Ai + GiCi) is regular and Hurwitz, then (E,AD +
GC) is also regular and Hurwitz since the matrices E and
AD + GC are block-diagonal. We are now ready to state a
condition for the decentralized stabilization of the filter (9).

Lemma 3.1: (Decentralized stabilization): Consider the
filter dynamics (9), and let G = blkdiag(G1, . . . , GN ) be
such that (E,AD + GC) is regular and Hurwitz. The filter
error x(t)− w(t) is asymptotically stable if

ρ
(
(jωE −AD −GC)−1AC

)
< 1 for all ω ∈ R , (10)

where ρ(·) denotes the spectral radius operator.

Proof: The error e(t) = x(t)−w(t) obeys the dynamics

Eė(t) = (AD + AC + GC)e(t),
r(t) = Ce(t) .

(11)

We employ a small-gain approach to large-scale intercon-
nected systems [22] and rewrite the error dynamics (11) as
the closed-loop interconnection of the two subsystems

Γ1 : Eė(t) = (AD + GC)e(t) + u(t) ,

Γ2 : u(t) = ACe(t) .

Since both subsystems Γ1 and Γ2 are causal and internally
Hurwitz stable, the overall error dynamics (11) are stable
if the loop transfer function, say Γ1(jω) · Γ2, satisfies the
spectral radius condition ρ(Γ1(jω) · Γ2) < 1 for all ω ∈ R
[23, Theorem 4.11]. The latter condition is equivalent to (10)

It should be observed that, even if each subsystem is
assumed to be observable, the stability of the decentralized
filter depends on the off-diagonal blocks of the system
matrix, and it cannot be always achieved. Moreover notice
that, although each control centers can compute the output
injection matrix independently of each other, the decentral-
ized attack detection filter (9) requires the control center to
continuously exchange their local estimation vector. Hence,
this scheme has high communication complexity, and may
be applicable only in particular scenarios. A solution to this
problem is presented in the next section.

C. Waveform relaxation method
In this subsection we exploit the classic waveform relax-

ation method to develop a fully distributed variation of the
decentralized attack detection filter (9). The Gauss-Jacobi
waveform relaxation method applied to the system (9) yields
the waveform relaxation iteration

Eẇ(k)(t) = ADw(k)(t) + ACw(k−1)(t)−Gy(t) , (12)

where k ∈ N denotes the iteration index, t ∈ [0, T ] is the
integration interval for some uniform time horizon T > 0,
and the initial condition at each iteration is w(k)(0) = w0.
Notice that (12) is a descriptor system in the variable wk(t)
and the vector ACw(k−1)(t) is a known input, since the value
of w(t) at iteration k − 1 is used. The iteration (12) is said
to be convergent if

lim
k→∞

w(k)(t)− w(t) = 0 , t ∈ [0, T ] ,

where w(t) is the solution of the non-iterative dynamics (9).
In order to obtain a low-complexity distributed detection
scheme, we use the waveform relaxation iteration (12) to
iteratively approximate the decentralized filter (9). We start
by presenting a convergence condition for the iteration (12).

Recall that a function f : R≥0 → Rp is said to be
of exponential order β if there exists β ∈ R such that
the exponentially scaled function f̃ : R≥0 → Rp, f(t) =
f(t)e−βt and all its derivatives exist and are bounded. An
elegant analysis of the waveform relaxation iteration (12) can
be carried out in the Laplace domain [24], where the operator
mapping w(k−1)(t) to w(k)(t) is given by (sE − AD −
GC)−1AC . As in the analysis of the regular Gauss-Jacobi
iteration, convergence of the waveform relaxation iteration
(12) follows from contractivity of the iteration operator.

Lemma 3.2: (Convergence of the waveform relaxation
[24, Theorem 5.2]): Consider the waveform relaxation iter-
ation (12). Assume that the pair (E,AD + GC) is regular
and the initial condition w0 is consistent. Let y(t), with
t ∈ [0, T ], be of exponential order β. Let α be the least
upper bound on the real part of the spectrum of (E,A), and
define σ = max{α, β}. The waveform relaxation method
(12) is convergent if

ρ
(
((σ + jω)E −AD −GC)−1AC

)
< 1 for all ω ∈ R .

(13)
In the reasonable case of bounded (integrable) measure-

ments y(t), t ∈ [0, T ], and stable filter dynamics, we have
that σ = α = β = 0, and the convergence condition (13) for
the wave-form relaxation iteration (12) equals the condition
(10) for decentralized stabilization of the filter dynamics.

Remark 2 (Distributed implementation): The waveform
relaxation iteration (12) can be implemented in the following
distributed fashion. Assume that each control center i ∈
{1, . . . , N} is able to integrate the descriptor system

Eiẇ
(k)
i (t) =(Ai + GiCi)w

(k)
i (t)

+
N∑

j=1,j 6=i

Aijw
(k−1)
j (t)−Giyi(t) ,

(14)

over a time interval t ∈ [0, T ], with initial condition
w

(k)
i (0) = wi,0, measurements yi(t), and the neighboring

filter states w
(k−1)
j (t) as external inputs. Let w

(0)
j (t) be

an initial guess of the signal wj(t). Each control center i
performs the following operations in order (k = 0):

(1) set k := k + 1, and compute the signal w
(k)
i (t) by

integrating equation (14),
(2) transmit w

(k)
i (t) to the j-th control center if Aij 6= 0,

(3) update the input w
(k)
j with the signal received from the

j-th control center and iterate.



If the waveform relaxation is convergent, then, for k suffi-
ciently large, the residuals r

(k)
i (t) = yi(t) − Ciw

(k)
i (t) can

be used to detect attacks; see Theorem 3.3. In summary,
a distributed implementation of the iteration (12) requires
integration capabilities at each control center, knowledge of
the measurements yi(t), t ∈ [0, T ], as well as synchronous
communication between neighboring control centers. �

D. Distributed attack detection filter
We now propose our distributed attack detection filter.
Theorem 3.3: (Distributed attack detection filter): Con-

sider the descriptor system (2) and assume that the attack is
detectable, and that the network initial state x(0) is known.
Let the assumptions (A1) through (A6) be satisfied and
consider the distributed attack detection filter

Eẇ(k)(t) =
(
AD + GC

)
w(k)(t) + ACw(k−1)(t)−Gy(t) ,

r(t) = y(t)− Cw(k)(t) , (15)

where k ∈ N, t ∈ [0, T ] for some T > 0, w(k)(0) = x(0)
for all k ∈ N, and G = blkdiag(G1, . . . , GN ) is such that
the pair (E,AD + GC) is regular, Hurwitz, and

ρ
(
(jωE −AD −GC)−1AC

)
< 1 for all ω ∈ R . (16)

Then limk→∞ r(k)(t) = 0 at all times t ∈ [0, T ] if and only
if u(t) = 0 at all times t ∈ [0, T ].

Proof: Since the initial condition w(k)(0) = x(0)
is consistent, it follows from Lemma 3.2 that the solution
w(k)(t) of the iteration (15) converges, as k → ∞, to
the solution w(t) of the non-iterative filter dynamics (9) if
condition (13) is satisfied with σ = 0 (due to integrability of
y(t), t ∈ [0, T ], and since the pair (E,AD+GC) is Hurwitz).
The latter condition is equivalent to condition (16).

Under condition (16) and due to the Hurwitz assumption,
it follows from Lemma 3.1 that the error e(t) = x(t)−w(t)
between the state x(t) of the descriptor model (2) and
the state w(t) of the decentralized filter dynamics (9) is
asymptotically stable. Thus, the pair (E,AD +AC +GC) =
(E,A+GC) is Hurwitz. Due to the detectability assumption
and by analogous reasoning as in the proof of Theorem 2.1, it
follows that the error dynamics e(t) have no invariant zeros.
This concludes the proof of Theorem 3.3.

It should be observed that the distributed attack detection
filter (15) needs to be implemented in a receding-horizon
fashion. Indeed, the control centers collect measurements and
check for attacks every time window of length T .

Remark 3 (Distributed filter design): As discussed in
Remark 2, the filter (15) can be implemented in a distributed
fashion. In fact, it is also possible to design the filter (15), i.e.,
the output injections Gi, in an entirely distributed way. Since
ρ(A) ≤ ‖A‖p for any matrix A and any induced p-norm,
condition (16) can be relaxed by the small gain criterion to∥∥(jωE −AD −GC)−1AC

∥∥
p

< 1 for all ω ∈ R . (17)

With p = ∞, in order to satisfy condition (17), it is sufficient
for each control center i to verify the quasi-block diagonal
dominance condition [25]∥∥∥(jωEi −Ai −GiCi)−1

∑n

k=1
Aik

∥∥∥
∞

< 1 for all ω ∈ R.

(18)

Notice that condition (18) can be checked with only local
information, and that, although fully distributed, it is a
conservative relaxation of condition (16). In summary, each
control center i needs to choose the output injection matrix
Gi such that Ai + GiCi is Hurwitz stable and the block-
diagonal dominance condition (18) is satisfied. �

IV. ILLUSTRATIVE EXAMPLE

The IEEE 118 bus system represents a portion of the
American Electric Power System as of December 1962. This
test case system is composed of 118 buses, 186 branches,
54 generators, and 99 loads. The IEEE 118 bus system is
illustrated in Fig. 1. The network parameters can be found for
example in [26]. Following [12], a linear, continuous time,
descriptor model of the network dynamics assumes the form

Eẋ(t) = Ax(t) + Px(t),
y(t) = Cx(t) + Py(t),

(19)

where, being n (resp. m) the number of generators (resp.
loads), E ∈ R(2n+m)×(2n+m), A ∈ R(2n+m)×(2n+m), C ∈
Rp×2n, p ∈ N, and Px(t), Py(t) are (known) vector-valued
functions of time of appropriate dimension. Due to linearity
of the system (2), the known inputs Px(t) and Py(t) will
been neglected in the forthcoming analysis, since they do
not affect the detectability of unknown input attacks.

For estimation and attack detection purposes, we partition,
the IEEE 118 bus system into 5 disjoint areas, we assign a
control center to each area, and we implement our procedure
via the filter (15). See Fig. 1 for a graphical illustration.
Suppose that each control center continuously measure the
angle of the generators in its area, and suppose that an
attacker compromises the measurements of all the generators
of the first area. In particular, starting at time 30, the attacker
adds a signal u(t) to the network measurements, so that the
measurements equation becomes

y(t) = Cx(t) + Du(t),

where, at each time t, each component of the vector u(t)
is randomly distributed in the interval [0, 0.5]. We assume
that the attack u(t) is detectable, and we refer the reader
to [13] for a detailed discussion of attack detectability. The
control centers implement the distributed attack detection
procedure described in (15), with G = ACT. It can be
verified that the pair (E,AD + GC) is Hurwitz stable, and
that ρ

(
jωE −AD −GC)−1AC

)
< 1 for all ω ∈ R. Hence,

as predicted by Theorem 3.3, our distributed attack detection
filter is convergent (cf. Fig. 2).

Regarding the identification of the corrupted variables,
we remark that a regional identification may be possible
by analyzing the residual functions. In this example, for
instance, since the residuals associated with the generators
of the first area are much larger than the other residuals, the
attacker is more likely to have corrupted the measurements
of the first area. This important aspect of attack identification
is left as the subject of future research.

For completeness, in Fig. 3 we illustrate the convergence
of our waveform relaxation-based filter as a function of
the number of iterations k. Notice that the number of
iterations directly reflects the communication complexity of
our detection scheme.
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Fig. 2. In this figure we show the residual functions computed through
the distributed attack detection filter (15). In particular, Gi represents
the residual associated with a generator in the i-th area. The attacker
compromises the measurements of all the generators in area 1 from time
30 with a signal uniformly distributed in the interval [0, 0.5]. The attack is
correctly detected, because the residual functions do not decay to zero. For
the simulation, we run 100 iterations of the attack detection method.
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Fig. 3. The plot represents the error of our waveform relaxation based
filter (15) with respect to the corresponding decentralized filter (9). On the
abscissa axis we plot the infinity norm of the difference of the outputs of
the two filters. As predicted by Theorem 3.3, the error is convergent.

V. CONCLUSIONS

We presented a fully distributed procedure for the detec-
tion of cyber-physical attacks in power networks modeled
by linear descriptor systems. Our procedure is based on a
sparse residual filter in descriptor form, which can be sta-
bilized via decentralized output injection, and implemented
distributively via waveform relaxation.

In future work, we plan to address the extension of the
results in this paper to the attack identification problem. Of
interest is also the question of optimal network partitioning
so as to automatically verify the proposed spectral radius
condition for the convergence of our distributed attack detec-
tion filter. Furthermore, modeling uncertainties, constraints
on communication capabilities, and the presence of noise
should be included.
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[25] Y. Ohta, D. Šiljak, and T. Matsumoto, “Decentralized control using
quasi-block diagonal dominance of transfer function matrices,” IEEE
Transactions on Automatic Control, vol. 31, no. 5, pp. 420–430, 1986.

[26] R. D. Zimmerman, C. E. Murillo-Sánchez, and D. Gan, “MAT-
POWER: Steady-state operations, planning, and analysis tools for
power systems research and education,” IEEE Transactions on Power
Systems, vol. 26, no. 1, pp. 12–19, 2011.


