
Distributed multi-camera synchronization for smart-intruder detection

Markus Spindler Fabio Pasqualetti Francesco Bullo

Abstract— This work proposes algorithms to control the
trajectory of a team of cameras for video surveillance. We
consider a chain of cameras installed in an environment. These
cameras are used to detect smart intruders, who are aware
of the cameras’ configuration at each time instant, and who
schedule their motion to avoid detection, if possible. For this
problem setup, we first obtain a lower bound on the worst-case
and on the average detection time of a smart intruder. We then
propose a team trajectory for the cameras, called the equal-
waiting trajectory, with minimum worst-case detection time and
constant-factor optimal average detection time. Additionally, we
design and analyse a distributed algorithm to steer the cameras
in finite time towards the equal-waiting trajectory. Finally, the
performance and robustness of our distributed algorithm is
further analyzed through a simulation study.

I. INTRODUCTION

Coordinated teams of autonomous agents have recently
been used for many tasks requiring repetitive execution,
including the monitoring of oil spills [1], the detection of
forest fires [2], the track of border changes [3], and the
patrol (surveillance) of an environment [4]. The surveillance
of an area of interest requires the agents to continuously
and repeatedly sweep the environment, and the challenging
problem consists of scheduling the agents’ trajectories so as
to optimize a certain performance criteria.

A. Problem description
In this work we consider a network of identical Pan-

Tilt-Zoom cameras for video surveillance, and we focus on
the development of distributed and autonomous surveillance
strategies for the detection of moving intruders. We make
combined assumptions on the environment to be monitored,
the cameras, and the intruders. We assume the environment
to be one dimensional, in the sense that it can be completely
observed by a chain of cameras by using the panning motion
only. The problem of perimeter surveillance is a special case
of this framework. We assume the cameras to be subject to
physical constraints, e.g., limited field of view (f.o.v.) and
panning speed, and to be equipped with a low-level routine
to detect intruders that fall within the f.o.v. of a camera.
Regarding intruders, we assume them to be smart, in the
sense that they have access to the cameras’ configuration
at every time instant, and schedule their trajectory to avoid
detection, if possible. We study the problem of scheduling the
cameras trajectory as to minimize the worst case detection
time and the average detection time of a smart intruder.

This work was supported in part by NSF Award CPS 1035917 and ARO
Award W911NF-11-1-0092.

Markus Spindler, Fabio Pasqualetti, and Francesco Bullo are with
the Center for Control, Dynamical Systems and Computation, Univer-
sity of California, Santa Barbara, spindlermarkus@gmail.com,
{fabiopas,bullo}@engineering.ucsb.edu.

c1 c2

c3

c4 c5

d5

Γ

d3

d1

d 2

d
4

l1 r1

Fig. 1. This figure shows five cameras installed along a one dimensional
path. The field of view of each camera is a point on the path. The cameras
synchronize their motion to detect smart moving intruders along the path.

B. Related work

The problem of patrolling an environment by means of
a team of autonomous robots has received attention from
scientists interested in mobile robotics. Typically, (i) the
environment is represented by a graph on which the agents’
motion is constrained, and (ii) the patrolling performance is
given by the worst-case detection time of a static event. In
[5], [6] an empirical evaluation of certain patrolling heuristics
is performed. In [4] and [2], an efficient and distributed
solution to the (worst-case) perimeter patrolling problem
for robots with zero communication range is proposed. In
[7] the computational complexity of the patrolling problem
is studied as a function of the environment topology, and
optimal strategies as well as constant-factor approximations
are proposed. With respect to these works, we consider
smart intruders, as opposed to static ones, and we focus on
the average detection time, as opposed to the worst case
detection time.

In the context of camera networks, the perimeter patrolling
problem has recently been studied in [8], [9]. In these
works, distributed algorithms are proposed for the cameras to
partition a one-dimensional environment, and to synchronize
along a trajectory with minimum worst-case detection time of
static events. We improve the results along this direction by
showing that the strategies proposed in [8], [9] generally fail
at detecting smart intruders, and by focusing on the average
detection time of smart intruders while maintaining minimum
worst case detection time.

C. Contribution

The contribution of this work is threefold. First, we
mathematically formalize the concept of camera trajectory

2012 American Control Conference
Fairmont Queen Elizabeth, Montréal, Canada
June 27-June 29, 2012

978-1-4577-1094-0/12/$26.00 ©2012 AACC 5120

and smart intruder, then we prove a lower bound for the
worst-case and average detection time of smart intruders.
Second, we propose the equal-waiting camera trajectory.
This trajectory achieves minimum worst case detection time,
and an average detection time within a constant factor from
the minimum. Third and finally, we develop a distributed syn-
chronization algorithm to steer the cameras towards an equal-
waiting trajectory. In our distributed setup, only neighboring
cameras need to communicate at some specific times. Our
synchronization algorithm converges in finite time, which we
characterize, and it requires only minimal information to be
implemented. Moreover, we perform a simulation study to
show that our synchronization algorithm is robust against
camera failures and motion uncertainties.

The remainder of the paper is organized as follows. In
Section II we introduce our notation and we formulate the
considered problem. In Section III we present and charac-
terize our equal-waiting trajectory and our synchronization
algorithm. Section IV and Section V contain, respectively,
an illustrative example and a proof of our theoretical results.
Finally, our conclusion and final remarks are in Section VI.

II. PROBLEM FORMULATION

Consider a set of n ∈ N identical cameras installed along a
one dimensional open path Γ (cf. Fig 1). Assume that (i) the
f.o.v. of each camera is a point on Γ, and that (ii) the motion
of each f.o.v. is uniquely determined by the pan movement of
the corresponding camera. Furthermore, we assume that, for
a sufficiently high image resolution, the f.o.v. of each camera
cannot move faster than ẋmax. Without affecting generality,
we let |ẋmax| = 1. Consequently, we assume each camera
to be equipped with a low-level controller that maintains the
speed of its f.o.v. at ẋmax.1 Let Γ0 and Γf be the two extremes
of Γ. For simplicity, we label the cameras in increasing order
from c1 to cn according to their distance from Γ0 on Γ. Let
xi(t) and ẋi(t) be the position and the velocity of the i-
th f.o.v., where li ≤ xi(t) ≤ ri and li, ri ∈ Γ. We refer
to si = [li, ri] as to the i-th cluster, and we let di be the
distance on Γ between li and ri. We additionally assume
that li = ri−1, with i = 2, . . . , n, so that {s1, . . . , sn} is
in fact a partition of Γ. A (camera) trajectory is an array
X(t) = {x1(t), . . . , xn(t)} of n continuous and periodic
functions describing the motion of the camera f.o.v. on Γ,
with uniform period T ∈ R≥0. Hence, it holds X(t+ T) =
X(t), that is xi(t+ T) = xi(t) for i ∈ {1, . . . , n}.

In this work, we focus on the problem of detecting moving
objects, referred here as to intruders, by means of a set
of cameras. We consider the case of intruders with speeds
greater than or equal to the camera speed. We represent the
intruder as a point on Γ, and we let t0 ∈ R≥0 be the time
at which the intruder appears on Γ. Moreover, we let the
continuous map p : R≥t0 7→ Γ describe the position of the
intruder at a certain time t ≥ t0. We say that an intruder is
detected at time td ∈ R≥t0 if p(td) ∈ X(td). We focus on

1For instance, the controller may set the panning velocity of the i-th
camera to α̇i = ẋmax/(aisec2(α)), where α denotes the panning angle,
and ai is the distance of the i-th camera from Γ.

Γ
t

d
1

d
2

d
3

x1(t)

x2(t)

x3(t)
e2

e1

Fig. 2. The figure shows a cameras trajectory in which cameras 1 and 2
are synchronized, while cameras 2 and 3 are not synchronized. Notice that,
because of the synchronization, intruder e1 is eventually detected when the
f.o.v. of cameras 1 and 2 occupy the same position. Instead, intruder e2
may avoid detection by properly choosing its trajectory.

smart intruders that appear uniformly distributed on Γ. We
assume that intruders have full knowledge of the cameras
trajectory, and choose their trajectory p(t) to avoid detection
as long as possible. More formally, given an initial time
t0 ∈ R≥0, an initial point p0 ∈ Γ and a cameras trajectory
X , the trajectory of a smart intruder p∗t0,p0(t) is such that

p∗t0,p0(t) = arg max{t∗d(p)− t0 | p ∈ Φ(t0, p0)},
where Φ(t0, p0) is the set of continuous maps p : R≥t0 7→ Γ
with p(0) = p0, and

t∗d(p) = min{t | t ≥ t0, p(t) ∈ X(t)}.
Notice that the trajectory p∗t0,p0(t) is, in general, not unique.
In what follows, we design camera trajectories that mini-
mizes the worst case detection time (WDT) and the average
detection time (ADT) of a smart intruder. In particular,

WDT(X(t)) = max
p0,t0

t∗d(p)− t0, (1)

and

ADT(X(t)) =
1

TL

∫ T

0

∫
Γ

(t∗d(p
∗
τ,γ)− τ)dγ dτ, (2)

where T = 2 max{d1, . . . , dn}, and L =
n∑
i=1

di.

Problem 1 (Trajectory design) For a set of n cameras on
an open path, design a camera trajectory X∗(t) such that

X∗(t) = arg min
X̄(t)

ADT(X(t)).

With the above definition of X∗(t), we let

ADT∗ = ADT(X∗(t)).

Finally, we say that a camera’s trajectory is synchronized,
if, for each pair of neighboring cameras ci and ci+1, there
exists t ∈ [0, T] such that xi(t) = xi+1(t).

Remark 1 (Worst-case detection time) It can be shown
that the minimum value of WDT(X(t)) equals 2dmax, where
dmax = max{d1, . . . , dn} [7], [8]. Observe that any 2dmax-
periodic synchronized cameras trajectory attains minimum
worst-case detection time of smart intruders (cf. Fig. 2).
In the next section we propose a particular 2dmax-periodic

5121

t

Γ d
1

d
2

=

d
m

a
x

d
3

d
4

T = 2dmax

l1 = 0

l2 = r1

l3 = r2

l4 = r3

r4 = Γf

Fig. 3. This figure shows the equal-waiting trajectory for 4 cameras. Notice
that (i) the cameras are synchronized, (ii) the trajectory is 2dmax-periodic,
and (iii) the waiting time of each camera is the same at both its boundaries.

synchronized camera trajectory as solution to Problem 1.
Hence, our proposed trajectory is also optimal with respect
to the worst-case detection time of smart intruders. Finally
note that, for the trajectories described in [8], the worst-case
detection time of a smart intruder is unbounded (cf. Fig. 2).

A second focus of this paper is on developing a distributed
synchronization algorithm for the cameras to converge to
the desired trajectory. In our distributed setting we allow
communication only between neighboring cameras.

Problem 2 (Distributed Algorithm design) For a set of n
cameras on an open path, design a distributed algorithm
to steer the cameras towards a trajectory with minimum
average detection time of smart intruders.

III. MAIN RESULTS

In this section we describe an approximate solution to
Problem 1, and we design a distributed algorithm for the
cameras to converge to such a trajectory. We remark that,
for some cases, an exact solution to Problem 1 could be
computed through standard optimization techniques [10].
Such computation, however, is not scalable with the number
of cameras, and it is not amenable to distributed implementa-
tion. Our approximate solution, instead, is extremely simple
and efficient to compute, and its performance is shown to
be within a certain bound of the optimum. Moreover, our
approximate solution is valid for every number of cameras
and environment configuration. The camera trajectory we
propose can informally be described as follows.

(Informal description) Each camera continuously
sweeps its cluster at maximum speed, and it stops
for a certain waiting time when its f.o.v. reaches a
boundary. The waiting time of each camera is the
same at both boundaries. Additionally, all cameras
have the same period, and the trajectories are
synchronized such that two neighboring cameras
arrive at their shared boundary at the same time.

Since we let each camera wait the same interval at its two
boundaries, we call this cameras trajectory equal-waiting
trajectory. An example of equal-waiting trajectory is in
Fig. 3, and a formal description is in Trajectory 1. As
discussed in Remark 1, the equal-waiting cameras trajectory

is optimal with respect to the worst-case detection time
criterion. Indeed, by construction, the equal-waiting camera
trajectory is synchronized and 2dmax-periodic. Next we show
that the equal-waiting camera trajectory is constant factor
optimal with respect to the average detection time criterion.
A proof of this result is postponed to Section V.

Trajectory 1: Equal-waiting trajectory (camera i)
Input : dmax, ri, li, di;
Set : τi(k) := (k + 1)dmax − di, k = 0, 2, . . . ;

1 if i is odd then
2 xi(t) := ri for τi(k − 1) + di ≤ t ≤ τi(k);

3 xi(t) := −t+ τi(k) + ri for τi(k) ≤ t ≤ τi(k) + di;

4 xi(t) := li for τi(k) + di ≤ t ≤ τi(k + 1);

5 xi(t) := t− τi(k+ 1) + li for τi(k+ 1) ≤ t ≤ τi(k+ 1) + di;

6 else if i is even then
7 xi(t) := li for τi(k − 1) + di ≤ t ≤ τi(k);

8 xi(t) := t− τi(k + 1) + li for τi(k) ≤ t ≤ τi(k) + di;

9 xi(t) := ri for τi(k) + di ≤ t ≤ τi(k + 1);

10 xi(t) := −t+ τi(k) + ri for τi(k + 1) ≤ t ≤ τi(k + 1) + di;

Theorem III.1 (Performance of equal-waiting trajectories)
For a set of n cameras with cluster lengths d1, . . . , dn and
periodic trajectories, let X(t) be the equal-waiting trajectory
defined in Trajectory 1.

1) The optimal average detection time for a smart in-
truder satisfies the lower bound:

ADT∗ ≥
∑n
i=1 d

2
i

L
, (3)

where L =
n∑
i=1

di.

2) The equal-waiting trajectory X(t) has performance

ADT(X(t)) =
1

2
dmax +

1

2

∑n
i=1 d

2
i

L
, (4)

where dmax = max{d1, . . . , dn}.
3) The equal-waiting trajectory X(t) has performance

within a constant factor of the optimum, that is,

ADT(X(t))

ADT∗
≤ min

{
1

2

(
1 +

dmax

dmin

)
,

3 +
√
n

4

}
,

(5)

where dmin = min{d1, . . . , dn}.

The following facts follow from Theorem III.1. First, the
performance of the equal-waiting trajectory is within a
constant factor of the optimal if either dmax/dmin or n are
constant. Second, if all clusters have the same length, i.e.
dmax = dmin, then Trajectory 1 is an optimal solution to
Problem 1. Third, the lower bound is independent of the
cluster arrangement. We now design a distributed feedback
algorithm that steers the cameras towards an equal-waiting
trajectory. The algorithm is informally described as follows.

5122

Algorithm 2: Distributed camera synchronization along
an equal-waiting trajectory (camera i)

Input : dmax, li, ri, di;
Set : ti,w := dmax − di, x0(t) := l1 and xn+1(t) := rn for

all t;

1 Move towards li with |ẋi(t)| = 1;

2 while True do
3 if xi(t) = xi−1(t) or xi(t) = xi+1(t) then
4 wait until time t+ ti,w;

5 move towards the opposite boundary with |ẋi(t)| = 1;

6 else wait;

(Informal description) Each camera moves to its
left boundary, and waits until the f.o.v. of its left
neighboring camera occupies the same position.
Then, both cameras stop as specified in Trajectory
1, and finally move towards the opposite boundary.

Our distributed algorithm is formally described in Algorithm
2. Two comments are in order. First, we set x0(t) := l1
(resp. xn+1(t) := rn) for all times t, because l1 (resp. rn) is
the left (resp. right) extreme of the path Γ. Second, for the
implementation of the proposed distributed algorithm, each
camera is required to know only the endpoints of its cluster,
the length of cluster, and the longest clusters length, and to
be able of communicating with a neighboring camera. The
following theorem characterizes the convergence properties
of Algorithm 2, where we write X(t ≥ t̄) to denote the
restriction of the trajectory X(t) to the interval t ∈ [t̄,∞).

Theorem III.2 (Convergence of Algorithm 2) For a set of
n cameras with cluster lengths d1, . . . , dn, let X(t) be the
camera trajectory generated by Algorithm 2. Let t̄ = ndmax.
Then, X(t ≥ t̄) is an equal-waiting trajectory.

Proof: Notice that the f.o.v. of camera 1 coincides with
the f.o.v. of camera 2 within time max{2d1, d2} ≤ 2dmax.
Then, the f.o.v. of camera ci coincides with the f.o.v. of
camera ci+1 within time (i + 1)dmax. Hence, within time
ndmax the camera trajectory coincides with the equal-waiting
trajectory in Trajectory 1. The statement follows.

Notice that In Algorithm 2 (line 1) the cameras could
equivalently move to their right boundary.

IV. AN ILLUSTRATIVE EXAMPLE

Three simulation studies are presented in this section. For
our first simulation study, we let the number of cameras n
vary from 2 to 50. For each value of n, we generate 50 sets
of clusters lengths {d1, . . . , dn}, where d1 = dmax = 1, and
di, with i = 2, . . . , n, is uniformly distributed within the
interval (0, 1]. For each configuration, we design the equal-
waiting trajectory X(t) and evaluate the cost ADT(X(t)).
Additionally, for each configuration we compute the lower
bound in equation (3). Fig. 4 a) shows the results of this
study. Observed that, for large values of n and uniformly
distributed cluster lengths, the expected average detection

0 5 10 15 20 25
0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Number of cameras

Fa
ct

or

ADT(X(t))

ADT∗
ADT(X(t))

ADT∗

n
dmax

dmin

a) b)

1

2
+

dmax

2dmin

3 +
√

n

4
2.0

1.2

1.4

1.6

1.8

2.2

2.4

1.0
0 10 20 30 40 50 50 10 15 20 25

4

6

8

12

2

0

10

Fig. 4. Average detection time for the equal-waiting trajectory as a function
of the number of cameras (a), and of the path partitioning (b). Notice that the
bounds in Theorem III.1 for the equal-waiting trajectory are conservative.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Time
P

at
h

Simulation of n=4 w/ initialization phase and temporary camera failure

t

Γ

initialization noisefailure

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

Fig. 5. This figure shows the trajectory obtained via Algorithm 2. Notice
that (i) the cameras are synchronized after the initialization transient, (ii) the
algorithm recovers after a temporary failure of camera 4 between time 340s
and 440s, and (iii) the algorithm is robust when the cameras speed (unitary)
is affected by noise starting from time t = 700s. For the simulation, the
noise is normally distributed with mean 0.2 and unitary standard deviation.

time is much smaller than the bound described in Theorem
III.1.

For our second simulation study, we let the number of
cameras be fixed (50 cameras), and we vary the value
dmax/dmin between 2 and 25. Specifically we let d1 = dmax =
1, and di, with i = 2, . . . , 50 be uniformly distributed
within the interval [dmin/dmax, 1]. For each value of dmax/dmin
we generate 50 sets of cluster lengths {d1, . . . , dn}, then
compute the equal-waiting trajectory X(t), evaluate the cost
ADT(X(t)), and compute the lower bound in equation (3).
Fig. 4 b) shows that, for large values of dmax/dmin, the bound
in Theorem III.1 is again conservative.

For our third simulation study, we consider a set of 4
cameras, and a fixed set of clusters with lengths {d1, . . . , d4}.
Fig. 5 shows the trajectory obtained by means of Algorithm
2. Notice that (i) the cameras start at random initial positions,
(ii) the algorithm is robust to temporary camera failures, and
(iii) the average detection time degrades gracefully in the
presence of motion uncertainties.

V. PROOF OF THEOREM III.1

This section contains a sketch of the proof of Theorem
III.1. All missing proofs can be found in [10]. In subsection
V-A we characterize some useful properties of a minimum
average detection time cameras trajectory. In subsection V-B

5123

T = 2dmax

θr
i (t) − t

θl
i(t) − t

ri − xi(t)

xi(t) − li

t1

t2

t3

ADTr
i

ADTl
i

di

ADTr
i

(t0, p0)

xi(t)

ADTl
i

t

Fig. 6. This figure illustrates the computation of the average detection
time of the periodic trajectory xi(t) within the period [t1, t3]. Three catch-
points are considered for this example (t1, t2, t3). Following Lemma V.1,
the average detection time of xi(t) is computed as ADTr

i + ADTl
i. Smart

intruders appearing at time t and in the interval [li, xi(t)) are detected at
time t3. Likewise, smart intruders appearing at time t and in the interval
(xi(t), ri] are detected at time t2. Finally, intruders appearing at time t and
xi(t) are immediately detected.

we prove a lower bound for the minimum average detection
time, we characterize the performance of the equal-waiting
camera trajectory, and we conclude the proof. The following
definition will be used in the proof. For a camera trajectory
X(t), the sets of left catch-points are defined as

CPli =

{
{t | xi(t) = xi−1(t)}, if 2 ≤ i ≤ n,
{t | xi(t) = Γ0}, if i = 1,

and the sets of right catch-points as

CPri =

{
{t | xi(t) = xi+1(t)}, if 1 ≤ i ≤ n− 1,

{t | xi(t) = Γf}, if i = n.

A. Properties of an optimal trajectory

The performance function (2) can be rewritten in a more
convenient form (see Fig. 6).

Lemma V.1 (Modified performance function) Let X(t) =
{x1(t), . . . , xn(t)} be a T -periodic camera trajectory. Let
CPli and CPri denote, respectively, the sets of left and right
catch-points of X(t). We have

ADT(X(t)) =
1

T
n∑
i=1

di

n∑
i=1

ADTli(xi(t)) + ADTri (xi(t)),

(6)

where,

ADTli(xi(t)) =

∫ T

0

(xi(t)− li)(θli(t)− t)dt,

ADTri (xi(t)) =

∫ T

0

(ri − xi(t))(θri (t)− t)dt,

and

θli(t) = min
q∈CPl

i

q ≥ t, θri (t) = min
q∈CPr

i

q ≥ t.

Notice that a cameras trajectory is synchronized if and
only if all the sets CPli and CPri are nonempty. It is now clear

a) b) c)

d) e) f)

tj

tjtjtj

tjtj tj+1 tj+1

tj+1 tj+1 tj+1

tj+1

Fig. 7. This figure shows all possible trajectories between two catch-points
leading to a minimum average detection time camera trajectory. Notice that
the cameras either move at maximum speed, or they stop at a boundary.

from Lemma V.1 that the camera trajectories X(t) must be
synchronized for ADT(X(t)) to be finite.

Lemma V.2 (Necessity of synchronization) Let X(t) =
{x1(t), . . . , xn(t)} be a periodic trajectory. Then

ADT(X(t)) <∞
if and only if CPli 6= ∅ and CPri 6= ∅ for all i = 1, . . . , n.

Following Lemma V.1 it is possible to determine the shape
of an optimal trajectory between two consecutive catch-
points. Given the sets CPli and CPri , let CPi = (t0, . . . , tk),
where ti ∈ CPli ∪ CPri , ti < ti+1, and tk ≤ t0 + T . Notice
that CPi is an ordered sequence of catch-points.

Lemma V.3 (Trajectory shape) Let CP = {CP1, . . . ,CPn}
be a given sequence of catch-points. A camera trajectory
X(t) with CP as catch-points satisfies ADT(X(t)) = ADT∗

if and only if the trajectory of each camera i between any
two consecutive points tj , tj+1 ∈ CPi is as in Fig. 7.

As a consequence of Lemma V.2, if the catch-points are
given, then an optimal cameras trajectory can be obtained
from the trajectories in Fig. 7, where the speed of each
camera is either zero or maximum. Hence, the problem of
designing optimal camera trajectories reduces to the problem
of finding a set of catch-points yielding optimal performance.

B. Performance bounds

We now derive a lower bound for the average detection
time, and we characterize the performance of the equal-
waiting trajectory. The lower bound is obtained as the sum
of the lower bounds for the detection time of each cluster.
The lower bound for a single cluster is obtained by assuming
that, for each camera ci, neighboring cameras ci−1 and ci+1

are such that xi−1(t) = li and xi+1(t) = ri at all times.

Lemma V.4 (Sequence of catch-points) For a camera tra-
jectory X(t), assume that CPli = {t | xi(t) = li} and
CPri = {t | xi(t) = ri} for each camera i. Let CPi be the
ordered sequence of catch-points within time [0, T]. Then,
ADT(X(t)) = ADT∗ only if there exists no consecutive
catch-points tj , tj+1, tj+2 ∈ CPi such that tj , tj+1, tj+2 ∈
CPli or tj , tj+1, tj+2 ∈ CPri , for each camera i.

5124

case 1 case 2

a)

b)

improved

(1b)

(1a) (2a)

(2b)

h1 h2

di

2di
c

2di − εdi di di

tj tj+2 tj tj+2

Fig. 8. Sequence of catch-points. Case 1 and case 2 illustrate the two
possible cases of tj , tj+1, tj+2 ∈ CPl. The cases in row a) show the
trajectories with three consecutive catch-points on one boundary. Row b)
shows how these trajectories can be improved in order to get a smaller ADT.

section 1 section 2 section k

h3

h4

h1

h2

h2k−1

t0 t1

t2 t3

t4

di

di

h2k

li

ri

Fig. 9. A cameras trajectory is reported in this picture as a function of
the parameters hi and k. A minimum average detection time trajectory is
obtained by optimizing the average detection time over values of hi and k.

Lemma V.4 can be proven by showing that the average
detection time of a trajectory with three consecutive catch-
points on the same boundary can be improved by modifying
such trajectory to have only two consecutive catch-points
(cf. Fig. 8). Following Lemma V.4 and Lemma V.3, we
now derive a parameterized model for an optimal single
camera trajectory. This model is illustrated in Fig. 9 and an
explanation follows. Notice that there are no three consecu-
tive catch-points at the same boundary, and that the camera
moves at maximum speed between catch-points. Moreover,
since we assume that the neighboring cameras behave as
walls, the catch-points coincide with the instants at which
camera ci is at the boundaries. Finally, the parameters k and
h1, . . . , h2k fully describe the trajectory. Next, we compute a
set of parameters yielding minimum average detection time.

Lemma V.5 (Lower bound) For a set of n cameras with
clusters lengths d1, . . . , dn, the optimal average detection
time for a smart intruder satisfies the lower bound:

ADT∗ ≥
∑n
i=1 d

2
i

L
,

where L =
n∑
i=1

di.

We now characterize the performance of the equal-waiting
trajectory.

Lemma V.6 (Equal-waiting trajectory performance) For a
set of n cameras with clusters lengths d1, . . . , dn, let X(t)
be the equal-waiting trajectory defined in Trajectory 1. Then

ADT(X(t)) =

∑n
i=1(dmax + di)di

2L
,

where dmax = max{d1, . . . , dn} and L =
n∑
i=1

di.

A proof of Lemma V.6 follows from simple manipulation
of equation (6) and it is omitted here.

We are now ready to prove the following result, which,
combined with Lemma V.5 and Lemma V.6, concludes the
proof of Theorem III.1.

Lemma V.7 (Equal-waiting trajectory approximation) For
a set of n cameras with clusters lengths d1, . . . , dn, let X(t)
be the equal-waiting trajectory defined in Trajectory 1. Then,

ADT(X(t))

ADT∗
≤ min

{
dmin + dmax

2dmin
,

3 +
√
n

4

}
,

where dmin = min{d1, . . . , dn} and dmax =
max{d1, . . . , dn}.

VI. CONCLUSION

In this work we address the problem of surveilling a one
dimensional open path by means of a team of autonomous
cameras against smart intruders. As performance function
we define and adopt the average detection time criterion.
We propose a camera trajectory, the equal-waiting trajectory,
which is shown to be constant factor optimal with respect
to the average detection time criterion. Additionally, we
design a distributed algorithm to steer the cameras towards
an optimal trajectory. The proposed algorithm is shown to
be robust against cameras failures and motion uncertainties.

REFERENCES

[1] J. Clark and R. Fierro, “Mobile robotic sensors for perimeter detection
and tracking,” ISA Transactions, vol. 46, no. 1, pp. 3–13, 2007.

[2] D. B. Kingston, R. W. Beard, and R. S. Holt, “Decentralized perimeter
surveillance using a team of UAVs,” IEEE Transactions on Robotics,
vol. 24, no. 6, pp. 1394–1404, 2008.

[3] S. Susca, S. Martı́nez, and F. Bullo, “Monitoring environmental
boundaries with a robotic sensor network,” IEEE Transactions on
Control Systems Technology, vol. 16, no. 2, pp. 288–296, 2008.

[4] Y. Elmaliach, A. Shiloni, and G. A. Kaminka, “A realistic model
of frequency-based multi-robot polyline patrolling,” in International
Conference on Autonomous Agents, Estoril, Portugal, May 2008, pp.
63–70.

[5] A. Machado, G. Ramalho, J. D. Zucker, and A. Drogoul, “Multi-agent
patrolling: An empirical analysis of alternative architectures,” in Multi-
Agent-Based Simulation II, ser. Lecture Notes in Computer Science.
Springer, 2003, pp. 155–170.

[6] Y. Chevaleyre, “Theoretical analysis of the multi-agent patrolling prob-
lem,” in IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology,
Beijing, China, Sep. 2004, pp. 302–308.

[7] F. Pasqualetti, A. Franchi, and F. Bullo, “On cooperative patrolling:
Optimal trajectories, complexity analysis and approximation algo-
rithms,” IEEE Transactions on Robotics, Jan. 2011, to appear.

[8] M. Baseggio, A. Cenedese, P. Merlo, M. Pozzi, and L. Schenato,
“Distributed perimeter patrolling and tracking for camera networks,” in
IEEE Conf. on Decision and Control, Atlanta, GA, USA, Dec. 2010,
pp. 2093–2098.

[9] R. Carli, A. Cenedese, and L. Schenato, “Distributed partitioning
strategies for perimeter patrolling,” in American Control Conference,
San Francisco, CA, USA, Jun. 2011, pp. 4026–4031.

[10] M. Spindler, “Distributed multi-camera synchronization for smart-
intruder detection,” Master’s thesis, University of Stuttgart, Sep. 2011.

5125

