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Abstract—This work presents a distributed method for control
centers in a power network to estimate the operating condition
of the power plant, and to ultimately determine the occurrence
of threatening situations. Specifically we consider (static) state
estimation problems, in which the state vector consists of the
voltage magnitude and angle at all network buses. We consider
the state to be linearly related to network measurements, which
include power flows, current injections, and voltages phasors
at some buses. We admit the presence of several cooperating
control centers, and we design two distributed methods for them
to compute the minimum variance estimate of the state given
the network measurements. The two distributed methods rely on
different modes of cooperation among control centers: in the first
method an incremental mode of cooperation is assumed, whereas,
in the second method, a diffusive interaction is implemented.
These estimation strategies are provably convergent in a finite
number of steps to the weighted least-squares solution and are
exploited to develop a distributed algorithm to detect corrupted
data among the network measurements.

I. INTRODUCTION

Power systems are operated by system operators from the
area control center. The main goal of the system operator
is to maintain the network in a secure operating condition,
in which all the loads are supplied power by the generators
without violating the operational limits on the transmission
lines. In order to accomplish this goal, at a given point in
time, the network model and the phasor voltages at every
system bus need to be determined, and preventive actions
have to be taken if the system is found in an insecure state.
For the determination of the operating state, remote terminal
units and measuring devices are deployed in the network to
gather measurements. These devices are then connected via
a local area network to a SCADA (Supervisory Control and
Data Acquisition) terminal, which supports the communication
of the collected measurements to a control center. At the
control center, the measurement data is used for control and
optimization functions, such as contingency analysis, auto-
matic generation control, load forecasting, optimal power flow
computation, and reactive power dispatch [1]. Various sources
of uncertainties, e.g., measurement and communication noise,
lead to inaccuracies in the received data, which may affect the
performance of the control and optimization algorithms, and,
ultimately, the stability of the power plant. This concern was
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first recognized and addressed in [2] by introducing the idea
of (static) state estimation in power systems.

Power network state estimators are broadly used to obtain an
optimal estimate from redundant noisy measurements, and to
estimate the state of a network branch which, for economical
or computational reasons, is not directly monitored. For the
power systems state estimation problem, several centralized
and parallel solutions have been developed in the last decades,
e.g., see [3]. Being an online function, computational issues,
storage requirements, and numerical robustness of the solu-
tion algorithm need to be taken into account. Within this
regard, distributed algorithms based on network partitioning
techniques are to be preferred over centralized ones. On the
other hand, as outlined in [4] concerning the blackout of
August 2003, an estimation of the entire network is essential
to prevent networks damages, so that, even in a decentralized
setting, the whole state vector should be preferably estimated
by every unit. In [5], [6] the idea is explored of using a
global control center to coordinate estimates obtained locally
by several local control centers. In this work, we improve
the results along these directions, by proposing a fully de-
centralized and distributed estimation algorithm, which, by
only assuming local knowledge of the network structure by
the local control centers, allows them to obtain in finite-
time an optimal estimate of the network state. Our procedure
appears scalable against the power network dimension, and,
furthermore, numerically reliable and accurate.

Because of the increasing reliance of nowadays power
systems on communication networks, the possibility of cyber-
attacks to networked systems is an actual threat [7]. One
possibility for the attacker is to corrupt the data coming from
the measuring units and directed to the control center, in
order to introduce arbitrary errors in the estimated state, and,
consequently, to compromise the performance of control and
optimization algorithms [8]. This important type of attack
is often referred in the power systems literature to as false
data injection attack. The presence of false data is classically
checked by analyzing the statistical properties of the estima-
tion residual z — HZ, where z is the measurements vector,
T is a state estimate, and H is the state to measurements
matrix. For an attack to be successful, the residual needs to
remain within a certain confidence level, and one approach
to circumvent false data injection attacks is to increase the
number of measurements so as to obtain a more accurate
confidence bound. Clearly, by increasing the number of mea-
surements, the data to be transmitted to the control center
increases, and the dimension of the estimation problem grows.
By means of our estimation method, we address the above



dimensionality problem by distributing the false data detection
problem among several control centers.

The contributions of this work are twofold. First, we adopt
the static state network estimation model, in which the state
vector is linearly related to the network measurements. We
develop a method for a group of connected control centers to
compute an optimal estimate of the system state via distributed
computation. Our estimation method is iterative, and it is
shown to converge in a finite number of steps. Furthermore, it
requires only local information for its implementation, because
each control center uses only the measurements coming from
a local neighborhood of the whole network. Second, we
describe a finite-time algorithm to detect corrupted data in
the network measurements via distributed computation. Our
detection method is based upon our state estimation algorithm,
and it inherits its convergence properties. Additionally, we
characterize a class of corrupted vectors that are guaranteed
to be detected by our procedure. Finally, we show the effec-
tiveness of our procedures on the IEEE 118 bus system.

The rest of the paper is organized as follows. In Section II
we introduce the problem under consideration, and we describe
the mathematical setup. Section III contains our main results
on the state estimation and on the detection problem, as well
as our algorithmic procedures. In Section IV we study the
IEEE 118 bus system, and we present some simulation results.
Finally, Section V contains our conclusion.

II. PROBLEM DEFINITION AND PRELIMINARY NOTIONS

The state of a power network at a certain instant of time
consists of the voltage angles and magnitudes at all the system
buses. The (static) state estimation problem introduced in
the seminal work by Schweppe [2] refers to the procedure
of estimating the state of a power network given a set of
measurements of the network variables, such as, for instance,
voltages, currents, and power flows along the transmission
lines. To be more precise, let x € R™ and z € RP be,
respectively, the state and measurements vector. Then we have

2= h(z) +1, (1)

where h(:) is a nonlinear measurement function, and 7 is a
zero mean random vector satisfying E[nn'] = £, = X7 > 0.
An optimal estimate of the network state coincides with the
most likely vector & that solves equation (1). It should be ob-
served that the network state could be obtained by measuring
directly the voltage phasors by means of phasor measurement
devices.! Such an approach, however, would be economically
expensive, and it would be very vulnerable to communica-
tion failures [1]. In this work, we adopt the approximated
estimation model presented in [9], which follows from the
linearization around the origin of equation (1). In particular,
letting H € RP*", E[v] =0, and E[vvT] =¥ = XT > 0, the
state estimation problem becomes

z=Hzx+wv. 2)

Phasor measurement units are devices that synchronize by using GPS
signals, and that allow for a direct measurement of voltage and current phasors.

Observe that, because of the interconnection structure of a
power network, the measurement matrix H is sparse. Let
Ker(H) denote the null space defined by the matrix H.
For the equation (2), without affecting generality, assume
Ker(H) = {0}, and recall from [10] that the vector

zws = (H'S'H)TH'™S 2 3)

is such that it minimizes the weighted variance of the estima-
tion error, i.e., Tyiy = argmin, (z — H2) TSz — HZ).

The centralized computation of the minimum variance esti-
mate to (2) assumes the complete knowledge of the matrices
H and ¥, and it requires the inversion of the matrix H Ty-1q.
For a large power network, such computation imposes a
limitation on the dimension of the matrix H, and hence on the
number of measurements that can be efficiently processed to
obtain a real-time state estimate. Because the performance of
the network control and optimization algorithms depend upon
the precision of the state estimate, a limitation on the network
measurements constitutes a bottleneck toward the development
of a more efficient power grid. A possible solution to address
this complexity problem is to distribute the computation of ;s
among geographically deployed control centers (monitors), in
a way that each monitor is responsible for a subpart of the
whole network. To be more precise, let the matrices H and
3., and the vector z be partitioned as

H1 21 Z1
H, X 22

H=1| . 1], X¥= , 2= ) 4)
H,, Ym Zm,

where, for i € {1,...,m}, m; € N, H; € R™*" %, €
R™*" z; € R™, and Y/ m; = p. Let G = (V,€) be a
connected graph in which each vertex ¢ € V = {1,...,m}
denotes a monitor. Assume that each monitor ¢ knows the
matrices H;, 3;, and the vector z;, and that two neighboring
monitors are allowed to cooperate by exchanging information.
Notice that, if the full matrices H and X are nowhere available,
and if they cannot be used for the computation of xy,, then,
with no cooperation among the monitors, the vector Ty
cannot be computed by any of the monitor. Hence we consider
the following problem.

Problem 1 (Distributed state estimation) Design an algo-
rithm for the monitors to compute the minimum variance
estimate of the network state via distributed computation.

Given the distributed nature of a power system and the
increasing reliance on local area networks to transmit data to
a control center, there exists the possibility for an attacker to
compromise the network functionality by corrupting the mea-
surements vector. When a malignant agent corrupts some of
the measurements, the state to measurements relation becomes

z=Hx+v+w,

where the vector w € RP is chosen by the attacker, and, hence,
it is unknown and unmeasurable by any of the monitoring



stations. We refer to the vector w to as false data. From the
above equation, it should be observed that there exist vectors
w that cannot be detected through the measurements z. For
instance, if the bad data vector is intentionally chosen such that
w € Im(H), then the attack cannot be detected through the
measurements z, because, denoting with T the pseudoinverse
operation, the vector # + Hiw is a valid network state. In
this work, we assume that the vector w is detectable from the
measurements z, and we consider the following problem.

Problem 2 (Distributed detection) Design an algorithm for
the monitors to detect the presence of false data in the
measurements via distributed computation.

III. OPTIMAL STATE ESTIMATION AND FALSE DATA
DETECTION VIA DISTRIBUTED COMPUTATION

The objective of this section is the design of distributed
methods to compute an optimal state estimate from mea-
surements. With respect to a centralized method, in which a
powerful central processor is in charge of processing all the
data, our procedures require the computing units to have access
to only a subset of the measurements and are shown to reduce
significantly the computational burden.

For a distributed method to be implemented, the interaction
structure among the computing units needs to be defined.
Here we consider two modes of cooperations among the
computing units, and, precisely, the incremental and the dif-
fusive interaction. In an incremental mode of cooperation,
information flows in a sequential manner from one node to
the adjacent one. This setting, which usually requires the least
amount of communications [11], induces a cyclic interaction
graph among the processors. In an diffusive strategy, instead,
each node exchange information with all (or a subset of) its
neighbors as defined by an interaction graph. In this case,
the amount of communication and computation is higher than
in the incremental case, but each node possesses a good
estimate before the termination of the algorithm, since it
improves its estimate at each communication round. This
section is divided into three parts. In Section III-A, we develop
a distributed incremental method to solve a minimum variance
estimation problem. In Section III-B we derive a diffusive
strategy which is amenable to asynchronous implementation.
Finally, in Section III-C we propose a distributed algorithm
for the detection of false data among the measurements.

A. Incremental state estimation via distributed computation

We start by introducing a distributed incremental procedure
to compute the minimum norm solution to a set of liner
equations. This procedure constitutes the key ingredient of the
incremental method we later propose to solve the minimum
variance estimation problem.

Let H € RP*™, and let z € Im(H), where Im(H)
denotes the range space spanned by the matrix H. Consider
the system of linear equations z = Hx, and recall that the
unique minimum norm solution to z = Hx coincides with
the vector Z such that z = HZ and ||Z||2 is minimum. It can
be shown that ||Z||2 being minimum corresponds to & being

Algorithm 1: Incremental minimum norm solution (i-th
monitor)
Input : H;,z,
Require : [z] ... zT|T e Im([H] ... H}]");
if i=1then z,:=0, Ky := I,;
else receive Z; and K;_; from monitor i — 1;
Ti=21+ K'—l(HiKi—l)T(Zi - H;z,1);
Ki = BaSiS(KZ',1 Ker(HiKi,l));
if i < 1 then transmit z; and K;_; to monitor i + 1;
else return z,,;

A N A W N -

orthogonal to the null space Ker(H) of H [10]. Let H and
z be partitioned in m blocks as in (4), and let G = (V,€)
be a directed graph such that V' = {1,...,m} corresponds to
the set of monitors, and, denoting with (7, j) the directed edge
fromjtoi, & ={(i+1,i):i=1,...,m—1}U{(1,m)}. Our
incremental procedure to compute the minimum norm solution
to z = HZ is in Algorithm 1, where, given a subspace V, we
write Basis()) to denote any full rank matrix whose columns
span the subspace V.

The next theorem states the convergence properties of the
Incremental minimum norm solution algorithm.

Theorem III.1 (Convergence of Algorithm 1) Let z = Hz,
where H and z are partitioned in m row-blocks as in (4). In
Algorithm 1, the m-th monitor returns the vector & such that
z=Hf and & | Ker(H).?

We now focus on the computation of the weighted least
squares solution to a set of linear equations. Let v be an
unknown and unmeasurable random vector, with E(v) = 0
and E(vv") = ¥ = XT > 0. Consider the system of equations

z=Hzx+v, @)

and assume Ker(H) = 0. Notice that, because of the noise
vector v, Algorithm 1 cannot be directly employed to compute
the vector x5 defined in (3). It is possible, however, to
recast the weighted least squares estimation problem to be
solvable with Algorithm 1. Note that, because the matrix ¥ is
symmetric and positive definite, there exists® a full row rank
matrix B such that ¥, = BBT. Then, equation (5) can be
rewritten as

T
c—[H <B] M , ©)
where ¢ > 0, E[o] = 0 and E[00T] = e~21. Observe that, be-
cause B has full row rank, the system (6) is underdetermined,

ie., z € Im([H eB]) and Ker([H eB]) # 0. Let

[i(g)] —[H B] - (7)

S8

2A proof of the results contained in this paper can be found at
http://arxiv.org/abs/1103.0579.

3Choose for instance B = WAL/ 2 where W is a basis of eigenvectors of
3 and A is the corresponding diagonal matrix of the eigenvalues.



The following theorem characterizes the relation between the
minimum variance estimation xys and Z(g).

Theorem IIL.2 (Convergence with €) Consider the system of
linear equations z = Hx + v. Let E(v) = 0 and E(vv") =
Y. = BB" >0, for a full row rank matrix B. Let
C=¢e(l-HH")B,

E=I-C'C,
D=cE[I+e*EB"(HH")'BE|"'BT(HH")(I — eBC").
Then

Tyis = lim Z(e)
e—0t

where x(¢) = (H' —eH'B(C' + D)) z. Moreover, for a
fixed value of €, we have

Tyis — 2(¢) = eH'BDz.

For the system of equations (5), the estimate Z(c)
can be computed by means of Algorithm 1 with input

[HyeB;),...,[Hy, €By) and 21, ..., 2, where, being BBT
is the noise covariance matrix, we have
H1 Bl 21
H2 B2 z2
H= , B= , z= . ®
H’H’L Bm Z’I’ﬂ

and, fori € {1,...,m}, m; € N, H; € R™*" B, € R™i*",
z; € R™i and € > 0.

To conclude this section, we characterize the estimation
residual z — HZ. This quantity will play a important role for
the synthesis of a distributed bad data detection algorithm.

Corollary III.1 (Estimation residual) Consider the system
z=Hx +v, and let E[vv"] = ¥ = %7 > 0. Then*

im ||z - Hie)| < [|( = HW)v],
e—0t
where W = (HTS 1H)"1HTY L

B. Diffusive state estimation via distributed computation

The implementation of the incremental state estimation
algorithm described in Section III-A requires a certain degree
of coordination among the control centers. For instance, an
ordering of the monitors is necessary, such that the i-th
monitor transmits its estimate to the (¢ + 1)-th monitor. This
requirement imposes a constraint on the monitors interconnec-
tion structure, which may be undesirable, and, potentially, less
robust to link failures. In this section, we overcome this limi-
tation by presenting a diffusive implementation of Algorithm
1, which only requires the monitors interconnection structure
to be connected.” To be more precise, let V = {1,...,m}

“Given a vector v and a matrix H, we denote by ||v|| any vector norm,
and by ||H|| the corresponding induced matrix norm.

5 An undirected graph is said to be connected if there exists a path between
any two vertices [12].

Algorithm 2: Diffusive state estimation (i-th monitor)
Input . H;, eB;, z;

1 aAji = [Hi EBZ‘]TZZ‘;

2 K, := Basis(Ker([H; eB;]));

3 while K; # 0 do

4 for j € N; do

5 receive £; and Kj;

7 K; := Basis(Im(K;) NIm(kKj;));
8 transmit z; and K;;

be the set of monitors, and let G = (V, E) be the undirected
graph describing the monitors interconnection structure, where
ECV xV,and (i,j) € F if and only if the monitors ¢ and
j are connected. The neighbor set of node ¢ is defined as
N; ={j €V :(i,j) € E}. We assume that G is connected,
and we let the distance between two vertices be the minimum
number of edges in a path connecting them. Finally, the
diameter of a graph G, in short diam(G), equals the greatest
distance between any pair of vertices. Our diffusive procedure
is described in Algorithm 2, where the matrices H; and €B;
are as defined in equation (8). During the h-th iteration of
the algorithm, monitor ¢, with ¢ € {1,..., N}, performs the
following three actions in order:

(i) transmits its current estimates z; and K; to all its

neighbors;

(ii) receives the estimates £, from neighbors N;; and

(iii) updates z; and K; as in the for loop of Algorithm 2.

We next show the convergence of Algorithm 2 to the
minimum variance estimate.

Theorem II1.3 (Convergence of Algorithm 2) Consider
the system of linear equations z = Hx + v, where E[v] = 0
and E[vv"] = BBT. Let H, B and z be partitioned as in
(8), and let € > 0. Let the monitors communication graph be
connected, let d be its diameter, and let the monitors execute
the Diffusive state estimation algorithm. Then, each monitor
computes the estimate () of x in at most d steps.

As a consequence of Theorem III.2, in the limit for € to
zero, Algorithm 2 returns the minimum variance estimate of
the state vector, being therefore the diffusive counterpart of
Algorithm 1. A detailed comparison between incremental and
diffusive methods is beyond the purpose of this work, and
we refer the interested reader to [13], [14] and the references
therein for a thorough discussion.

C. Detection of false data via distributed computation

In the previous sections we have shown how to compute
an optimal estimate of the system state via distributed com-
putation. We focus now on the problem of detecting the
presence of false data among the measurements in a distributed
manner. When the measurements are corrupted, the state to
measurements relation becomes

z=Hzr+v+w,



Algorithm 3: False data detection (i-th monitor)
Input : H;,eB;, T

1 while True do

2 collect measurements z;(t);

3 estimate network state #(t) via Algorithm 1 or 2;

4

5

if ||z;(t) — H;Z(t)||co > T then
False data detected;

where w is the false data vector. Following Corollary III.1, the
vector w is detectable if it affects significantly the estimation
residual, i.e., if

lim ||z — Hz(e)|| > T,
e—0

where threshold I' depends upon the magnitude of the noise
v. Notice that, because the false data can be injected at any
time by a malignant agent, the detection algorithm needs to
be executed over time by the control centers. Let z(t) be
the measurements vector at a given time instant ¢, and let
E[z(t1)2T(t2)] = O for all ¢; # t,. Based on this consider-
ations, our distributed detection procedure is in Algorithm 3,
where the matrices H; and €B; are as defined in equation (8),
and I is a predefined threshold.

In Algorithm 3, the value of the threshold I' determines
the false alarm and the misdetection rate. Clearly, if I' >
([(I — HW)||||lu(t)|| and € is sufficiently small, then no false
alarm is triggered, at the expenses of the misdetection rate. By
decreasing the value of IT" the sensitivity to failures increases
together with the false alarm rate. Notice that, if the magnitude
of the noise signals is bounded by ~, then a reasonable choice
of the threshold is ' = ~||(I — HW)||«0, Where the use of
the infinity norm in Algorithm 3 is also convenient for the
implementation. Indeed, once the estimation Z(¢) has been
computed, the condition ||z(t) —HZ(t)||cc > I' can be checked
by each leader without any further communication. A related
example is presented in the next section.

IV. AN ILLUSTRATIVE EXAMPLE

The IEEE 118 bus system represents a portion of the
American Electric Power System as of December, 1962. This
test case system is composed of 118 buses, 186 branches, 54
generators, and 99 loads. Following [9], the voltage angles and
the power injections at the network buses are related through
the linear relation

Pbus = Hbusebum

where the matrix Hy,s depends upon the network intercon-
nection structure and the network admittance matrix. Let
z = Pys — v be the measurements vector, where E[v] = 0
and E[vv'] = 02I, 0 € R. Then, following the notation in
Theorem II1.2, the minimum variance estimate of 6y, can be
recovered as

lim [Hyys eo 1)1 2.

e—0+t

N

||6bus (E) - ebus,wls H2

o

. . . .
0.1 0.2 0.3 0.4 05
3

<)

Fig. 1. The normalized Euclidean norm of the error vector Oy (&) — Opus.wis
is plotted as a function of the parameter &, where Opys(g) is the estimation
vector computed according to Theorem III.2, and Opyswis is the minimum
variance estimate of Oyys. As € decreases, the vector Opys(€) converges to the
minimum variance estimate Opys wis-

Fig. 2. The IEEE 118 bus system has been divided into 5 areas. Each area
is monitored and operated by a control center. The control centers cooperate
to estimate the state and to assess the functionality of the whole network.

In Fig. 1 we show that, as € decreases, the estimation vector
computed according to Theorem III.2 converges to the mini-
mum variance estimate of Gpys.

In order to demonstrate the advantage of our decentralized
estimation algorithm, we assume the presence of 5 control
centers in the IEEE 118 network, each one responsible for a
subpart of the entire network. The situation is depicted in Fig.
2. Assume that each control center measures the real power
injected at the buses in its area, and let z; = Fuysi — v,
with E[v;] = 0 and E[v;v]] = 021, be the measurements
vector of the i-th area. Finally, assume that the ¢-th control
center knows the matrix Hy,s; such that z; = HpysiObus + Vs
Then, as discussed in Section III, the control center can
compute an optimal estimate of 6y,,s by means of Algorithm
1 or 2. Let n; be the number of measurements of the ¢-th
area, and let N = Z?:1 n;. Notice that, with respect to a
centralized computation of the minimum variance estimate of
the state vector, our estimation procedure obtains the same
estimation accuracy while requiring a smaller computation
burden and memory requirement. Indeed, the i-th monitor
uses n; measurements instead of N. Let N be the maximum
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Fig. 3. For a fixed value of e, the plot shows the norm of the error
with respect to the true state vector of the estimate obtained by means of
Algorithm 1 (solid) and of the centralized minimum variance estimation with
N measurements (dashed). The = axis denotes the number of measurements
used for the distributed estimation. Because of the presence of several control
centers, the distributed algorithm is more accurate while maintaining the same
(or smaller) computational complexity of the centralized estimation.

number of measurements that, due to hardware or numerical
constraints, a control center can efficiently handle for the state
estimation problem. In Fig. 3, we increase the number of
measurements taken by a control center, so that n; < N, and
we show how the accuracy of the state estimate increases with
respect to a single control center with N measurements.

To conclude this section, we consider a security application,
in which the control centers aim at detecting the presence of
false data among the network measurements via distributed
computation. For this example, we assume that each control
center measures the real power injection as well the current
magnitude at some of the buses of its area. By doing so, a
sufficient redundancy in the measurements is obtained for the
detection to be feasible [1]. Suppose that the measurements
of the power injection at the first bus of the first area is
corrupted by a malignant agent. To be more precise, let the
measurements vector of the first area be z; = z; +e;w;, where
e 18 the first canonical vector, and w; is a random variable.
For the simulation we choose w; to be uniformly distributed in
the interval [0, wmax], Where wy,, corresponds approximately
to the 10% of the nominal real injection value. In order to
detect the presence of false data among the measurements, the
control centers implement Algorithm 3, where, being H the
measurements matrix, and o, > the noise standard deviation
and covariance matrix, the threshold value I' is chosen as
20| — HH™S"'H)"'HTY7!{|,..% The residual functions
||z — HZ|| are reported in Fig. 4. Observe that, since the
first residual is greater than the threshold I, the control centers
successfully detect the false data. Regarding the identification
of the corrupted measurements, we remark that a regional
identification may be possible by simply analyzing the residual
functions. In this example, for instance, since the residuals
{2,...,5} are below the threshold value, the corrupted data
is likely to be among the measurements of the first area.
This important aspect is left, however, as the subject of future
research.

SFor a Gaussian distribution with mean 1 and variance o2, about 95% of
the realizations are contained in the interval [ — 20, pu + 20].

Fig. 4. Residual functions computed by the 5 control centers. Since the
first residual is greater than the threshold value, the presence of false data is
correctly detected by the first control center. A form of regional identification
is possible by simple identifying the residuals above the security threshold.

V. CONCLUSION

Two algorithms have been presented to solve the static state
estimation problem in a power network via distributed com-
putation. Our first algorithm is incremental, and it converges
in a number of steps equal to the number of units involved in
the computation. Our second algorithm is diffuse: it requires
a larger number of operations compared to our first algorithm,
but (i) it allows for an asynchronous update of the estimate by
the computing units, and (ii) it does not impose any particular
interconnection structure among the computing units. Based on
these estimation procedures, a distributed algorithm to detect
false data among the network measurements is also proposed.
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