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Abstract— We study a class of non-convex optimization
problems involving sigmoid functions. We show that sigmoid
functions impart a combinatorial element to the optimization
variables and make them hybrid of continuous and discrete
variables. We formulate versions of the knapsack problem
and the bin-packing problem with such hybrid variables. We
utilize the approximation algorithms from the combinatorial
optimization literature and develop approximation algorithms
for these NP-hard hybrid optimization problems.

I. INTRODUCTION

The modern times have witnessed extensive deployment
of camera networks for surveillance. The feeds from these
camera networks are send to a central location, where a
human operator looks at them to decide on the presence
of some malicious activity [5]. The plethora of information
available from these feeds results in information overload and
is often the root cause for missing critical information [17].
This calls for an investigation into the optimal policies to
handle this information overload.

Recent advances in cognitive psychology [2] have shown
that the performance of a human operator in a decision
making task evolves as a sigmoid function of the time she
allocates to it. This performance of the human operator
should be accounted in order to develop optimal policies
for aforementioned human in the loop systems.

In this paper we study certain non-convex resource alloca-
tion problems with sigmoid utilities. We present versions of
the knapsack problem and the bin-packing problem where
each item has a sigmoid utility. If the utilities are step
functions, then these problems reduce to standard knapsack
and bin-packing problems [13]. Similarly, if the utilities were
concave functions then these problems reduce to standard
convex resource allocation problems [10]. We will show that
with sigmoid utilities the optimization problem becomes a
hybrid of combinatorial optimization problem and convex
resource allocation problem.

The knapsack problem [12] has been extensively studied.
A considerable emphasis has been on the combinatorial
knapsack problem [13] and the knapsack problems with con-
cave utilities. A survey is presented in [4]. Certain knapsack
problems with piecewise linear utilities have been studied
in [11]. Moré et al [15] and Burke et al [6] study knapsack
problem with convex utilities.

Recently, the optimization problems with sigmoid utilities
have received a significant attention. Fazel et al [7] study
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network utility maximization problem where utility of each
source is a sigmoid function of the flow through it. They uti-
lize sum-of-squares relaxation to determine an approximate
solution to this problem. Certain optimal servicing policies
for a queue with sigmoid performance of the operator are pre-
sented in [18]. Ginsberg [9] study a knapsack problem where
each item has identical sigmoid utility. Freeland et al [8]
discuss the implication of sigmoid functions on decision
models and present an approximation algorithm for the
knapsack problem with sigmoid utilities that constructs a
concave envelop of the sigmoid functions and thus, solves the
resulting convex problem. Ağrali et al [1] consider the same
knapsack problem and show that this problem is NP-hard.
They relax the problem by constructing a concave envelop of
the sigmoid function and then determine the global optimal
solution using branch and bound techniques.

We study optimization problems with sigmoid functions.
We show that sigmoid utility renders a combinatorial element
to the problem and resource allocated to each item under
optimal policy is either zero or more than a critical value.
Thus, optimization variable has both continuous and discrete
features. We refer to such variables by hybrid variables
and an optimization problem involving such variables by
hybrid optimization problem. We present hybrid versions
of the knapsack problem and the bin-packing problem. In
particular, we study the following problems: First, given a
set of items with sigmoid utilities and a fixed resource, deter-
mine the optimal resource allocation to each item. Second,
given a set of items with sigmoid utilities and an unlimited
number of bins with fixed resource available at each bin,
determine the minimum number of bins and a mapping of
each item to some bin, such that optimal allocation in the
first problem allocates non-zero resource to each item in
every bin. These problems model situations where a human
operator is looking at the feeds from a camera network and
deciding on the presence of some malicious activity. The first
problem determines the optimal fraction of work-hours, the
operator should allocate to each feed such that her overall
performance is optimal. Assuming that the operators work
in an optimal fashion, the second problem determines the
minimum number of operators and an allocation of each feed
to some operator such that each operator allocates non-zero
fraction of work-hours to each feed assigned to her. The
major contributions of this work are:

i) We show that the optimization problems with sigmoid
functions involve hybrid variables.

ii) We formulate hybrid versions of the knapsack problem
and the bin-packing problem.

iii) We utilize the algorithms from the combinatorial opti-
mization to develop algorithms for these hybrid opti-



mization problems.
iv) We develop constant factor approximation algorithms

for these hybrid optimization problems.
The remainder of the paper is organized in the following

way. We present some preliminaries in Section II. Impli-
cations of the sigmoid functions on the optimal policies
are discussed in Section III. We formulate and solve the
hybrid knapsack problem in Section IV. The hybrid bin-
packing problem is treated in Section V. Our conclusions
are presented in Section VI.

II. PRELIMINARIES

A. Speed-accuracy trade-off in human decision making

Consider the scenario where, based on the collected evi-
dence, the human has to decide on one of the two alternatives
H0 and H1. The evolution of the probability of correct
decision in such scenarios has been studied in cognitive
psychology literature [16], [2] and following models have
been proposed:
Pew’s model: The probability of deciding on hypothesis

H1, given that hypothesis H1 is true, at a given time
t ∈ R≥0 is given by

P(say H1|H1, t) =
p0

1 + e−(at−b)
,

where p0 ∈ [0, 1], a, b ∈ R are some parameters which
depend on the human operator [16].

Drift diffusion model: Conditioned on the hypothesis H1,
the evolution of the evidence for decision is modeled as
a drift-diffusion process [2]. Given a drift rate β > 0,
and diffusion rate σ, with a decision threshold ν, the
conditional probability of the correct decision is

P(say H1|H1, t) =
1√

2πσ2t

∫ ∞

ν

e
−(Λ−βt)2

2σ2t dΛ,

where Λ ≡ N (βt, σ2t) is the evidence at time t.
B. Sigmoid functions

A smooth function f : R≥0 → R≥0 defined by
f(t) = fcvx(t)1(t < tinf) + fcnv(t)1(t ≥ tinf),

where fcvx and fcnv are monotonically increasing convex and
concave functions, respectively, 1(·) is the indicator function,
and tinf is the inflection point. Derivative of sigmoid function
is unimodal with maximum at tinf. Further, f ′(0) ≥ 0 and
limt→∞ f ′(t) = 0. A typical graph of a sigmoid function and
its derivative is shown in Figure 1. Note that the evolution of
the conditional probabilities of correct decision are sigmoid
functions in Pew’s as well as drift-diffusion model.

Fig. 1. A typical sigmoid function and its derivative.

C. Knapsack problem

Given N items with values vi and costs ci, i ∈ {1, . . . , N},
the knapsack problem is to pick a set of items such that the
value of picked items is maximized for a given total cost C.
Formally, the knapsack problem [13], [12] is posed as:

maximize
x

N∑
i=1

vixi

subject to
N∑

i=1

cixi ≤ C

xi ∈ {0, 1}.
The knapsack problem is NP-hard [13]. A 2-factor ap-

proximation algorithm that runs in O(N) time is presented
in Algorithm 1.

Algorithm 1 Knapsack problem: Approximation algorithm
1: Given: (vi, ci), i ∈ {1, . . . , N}.
2: Relabel: Sort tasks such that

v1
c1
≥ v2
c2
≥ · · · ≥ vN

cN
.

3: k := min{j ∈ {1, . . . , N} |
∑j

i=1 ci > C}.
4: Pick the better of the sets {1, . . . , k − 1} and {k}.

D. Bin-packing Problem

Given a set of items with size {ai < 1}i∈{1,...,N}, and
identical bins of unit size. The bin-packing problem [13] is
to determine the assignment of each item Υ : {1, . . . , N} →
{1, . . . ,K} such that the number of bins utilized K is mini-
mum and the items allocated to each bin can be packed into
it. Formally, the bin-packing problem is stated as following:

minimize K

subject to
∑
i∈Aj

ai ≤ 1, ∀j ∈ {1, . . . ,K}

where Aj = {` ∈ {1, . . . , N} | Υ(`) = j}.
The bin-packing problem is strongly NP complete and for

any ρ < 3/2, there exists no ρ-factor approximation scheme
for it, unless P = NP . The next fit algorithm is a 2-factor
approximation scheme for the bin-packing problem and runs
in O(N) time [13]. It is presented in Algorithm 2.

Algorithm 2 Next fit algorithm
1: Given: ai, i ∈ {1, . . . , N}
2: Set: k=1; S=0;
3: for ` ∈ {1, . . . , N}
4: if S + a` > 1, then k = k + 1; S = a`; Υ(`) = k;
5: else S = S + a`; Υ(`) = k;

III. SIGMOID FUNCTION AND LINEAR PENALTY

In order to gain insight into the behavior of sigmoid
functions, we start with a simple problem with a very
interesting result. We study the maximization of a sigmoid
function subject to a linear penalty. In particular, given a
sigmoid function f and a penalty rate c ∈ R>0, we wish to
solve the following problem:

maximize
t≥0

f(t)− ct. (1)

The derivative of a sigmoid function is not a one to one
mapping and hence, not invertible. We define the pseudo-
inverse of the derivative of a sigmoid function f with
inflection point tinf, f† : R>0 → R≥0 by



f†(y) =

{
max{t ∈ R≥0 | f ′(t) = y}, if y ∈ ]0, f ′(tinf)],
0, otherwise.

(2)
We now present the solution to the problem (1).
Lemma 1 (Sigmoid function with linear penalty): For the

optimization problem (1), the optimal allocation t∗ is

t∗ := argmax{f(β)− cβ | β ∈ {0, f†(c)}}.
Proof: The global maximum lies at the point where

first derivative is zero or at the boundary. The first derivative
of the objective function is f ′(t) − c. If f ′(tinf) < c, then
the objective function is a decreasing function of time and
the maximum is achieved at t∗ = 0. Otherwise, a critical
point is obtained by setting first derivative zero. We note that
f ′(t) = c has at most two roots. It can be verified using the
second derivative conditions that if there exist two roots, then
the bigger of the two roots corresponds to a local maximum.
Otherwise, the only root corresponds to a local maximum.
The global maximum is determined by comparing the local
maximum with the value of the objective function at the
boundary t = 0. This completes the proof.

The optimal solution to problem (1) for different values
of penalty rate c is shown in Figure 2. One may notice
the optimal allocation jumps down to zero at a critical
penalty rate. This jump in the optimal allocation gives rise
to combinatorial effects in the problems involving multiple
sigmoid functions.

Definition 2 (Critical penalty rate): Given a sigmoid
function f and linear penalty, we refer to the maximum
penalty rate at which problem (1) has a non-zero solution
by critical penalty rate. Formally, for a given sigmoid
function f and penalty rate c ∈ R>0, let the solution of the
problem (1) be t∗f,c, the critical penalty rate ψf is defined
by

ψf = max{c ∈ R>0 | t∗f,c ∈ R>0}.

Fig. 2. Optimal allocation to a sigmoid function as a function of linear
penalty

IV. HYBRID KNAPSACK PROBLEM

A. Problem description

Given sigmoid functions f` with associated weights
w`, ` ∈ {1, . . . , N}, and resource T ∈ R>0, the hybrid
knapsack problem is to determine t ∈ RN

≥0 that solves the
following optimization problem:

maximize
t

N∑
`=1

w`f`(t`)

subject to
N∑

`=1

t` ≤ T

t � 0.

(3)

The hybrid knapsack problem models the situation where
a human operator has to perform N decision making tasks
within time T . If the performance of the human operator on
task ` is given by sigmoid function f` and a weight w` is

assigned to it, then the optimal duration allocation to each
task is determined by the solution of the hybrid knapsack
problem (3).

B. Optimal solution

Before we determine the solution to the hybrid knapsack
problem, we introduce some notations. We define the La-
grangian L : RN

>0×R≥0×RN
≥0 → R for the hybrid knapsack

problem (3) by

L(t, α,µ) =
N∑

`=1

w`f`(t`) + α(T −
N∑

`=1

t`) + µTt.

Let tinf
` be the inflection point of sigmoid function f` and

f†` be the pseudo-inverse of its derivative as defined in
equation (2). We define the maximum weighted derivative
of sigmoid function f` by α` = w`f

′
`(t

inf
` ). We also define

αmax = max{α` | ` ∈ {1, . . . , N}}. We will later show
that αmax is the maximum possible value of the Lagrange
multiplier α.

We define the set of inconsistent sigmoid functions by
I = {` ∈ {1, . . . , N} | tinf

` > T}. We denote the jth element
of the standard basis of the real coordinate space by ej .

Define F : ]0, αmax] → R≥0 as the optimal value of the
objective function in the following α-parametrized knapsack
problem:

maximize
N∑

`=1

x`w`f`(f
†
` (α/w`))

subject to
N∑

`=1

x`f
†
` (α/w`) ≤ T

x` ∈ {0, 1}, ∀` ∈ {1, . . . , N}.

(4)

Let Fapprox : ]0, αmax] → R≥0 be the approximate opti-
mal value of the objective function in the α-parametrized
knapsack problem obtained through Algorithm 1. Define
FLP : ]0, αmax]→ R≥0 as the optimal value of the objective
function in the following α-parametrized fractional knapsack
problem:

maximize
N∑

`=1

x`w`f`(f
†
` (α/w`))

subject to
N∑

`=1

x`f
†
` (α/w`) ≤ T

x` ∈ [0, 1], ∀` ∈ {1, . . . , N}.

(5)

Before we state approximation algorithm to solve hybrid
knapsack problem, we prove the following important prop-
erty of the function FLP.

Lemma 3 (Discontinuity of FLP): The maximal set of
points of discontinuity of the function FLP is {α1, . . . , αN}.

Proof: For each α ∈ [0, αmax], the α-parametrized
fractional knapsack problem is a linear program, and the
solution lies at one of the vertex of the feasible simplex.
Note that if f†` (α/w`) is a continuous function for each
` ∈ {1, . . . , N}, then the vertices of the feasible simplex
are continuous functions of α. Further, the objective function
is also continuous if f†` (α/w`) is a continuous function for
each ` ∈ {1, . . . , N}. Therefore, the function FLP may be



discontinuous only if f†` (α/w`) is discontinuous for some `,
i.e., α ∈ {α1, . . . , αN}.

We will show that if all the sigmoid functions are con-
sistent, then the allocation to each sigmoid function can be
written in terms of the Lagrange multiplier α, and the hybrid
knapsack problem (3) reduces to α-parametrized knapsack
problem (4). Further, the optimal Lagrange multiplier α∗ can
be searched in the interval ]0, αmax]. In order to determine a
constant factor polynomial time approximation algorithm, we
approximately solve the α-parametrized knapsack problem in
Algorithm 3. This algorithm also involves a performance im-
provement heuristic where unemployed resource is allocated
to the most beneficial sigmoid function amongst those with
zero resource. We now analyze the algorithm.

Algorithm 3 Hybrid knapsack problem : Approx. Solution
1: Given: f`, w` ∈ R≥0, ` ∈ {1, . . . , N}, T ∈ R>0

2: Output: t∗ ∈ RN
≥0

% Search for optimal Lagrange multiplier
3: α∗LP ← argmax{FLP(α) | α ∈ [0, αmax]}
4: Approximately solve α∗LP-parametrized knapsack

problem via Algorithm 1 and find x∗

% Determine best inconsistent sigmoid function
5: Find `∗ ← argmax{w`f`(T ) | ` ∈ I}

% Pick the best among consistent and inconsistent tasks
6: if w`∗f`∗(T ) > Fapprox(α∗LP), then t∗ = Te`∗ ;
7: else t†` ← x∗`f

†
` (α∗LP/w`),∀` ∈ {1, . . . , N};

% heuristic to improve performance
% pick the best sigmoid function with zero resource

8: ¯̀← argmax
`∈{1,...,N}

w`(1− x∗` )f`(T −
∑N

`=1 t
†
`);

% allocate remaining resource

9: t∗` ←

{
t†`, if ` ∈ {1, . . . , N} \ ¯̀,
T −

∑N
`=1 t

†
`, if ` = ¯̀.

Theorem 4 (Hybrid knapsack problem): The following
statements hold for the hybrid knapsack problem (3):

i) The Algorithm 3 provides a solution within factor of
optimality 2.

ii) The Algorithm 3 runs in O(N2) time, provided F is
concave on its intervals of continuity.

Proof: We first investigate the properties of the opti-
mal solution. We apply the Karush-Kuhn-Tucker necessary
conditions [3] for an optimal solution:
Linear dependence of gradients

∂L

∂t∗`
(t∗, α∗,µ∗) = w`f

′
`(t

∗
` )− α∗ + µ∗` = 0,

∀` ∈ {1, . . . , N}. (6)

Feasibility of the solution
T − 1T

N t∗ ≥ 0. (7)
t∗ � 0. (8)

Complementarity conditions
α∗(T − 1T

N t∗) = 0. (9)
µ∗` t

∗
` = 0, ∀` ∈ {1, . . . , N}. (10)

Non-negativity of the multipliers
α∗ ≥ 0, µ∗ � 0. (11)

Since f` is a strictly increasing function, for each ` ∈
{1, . . . , N}, the constraint (7) should be active, and thus,
from complementarity condition (9) α∗ > 0. Further, from
equation (10), if t∗` 6= 0, then µ∗` = 0. Therefore, if a
non-zero resource is allocated to sigmoid function fη, η ∈
{1, . . . , N}, then it follows from equation (6)

wηf
′
η(t∗η) = α∗. (12)

Assuming each f` is consistent, i.e., tinf
` ≤ T , for each ` ∈

{1, . . . , N}, the second order condition [14] yields that a
local maxima exists at t∗ only if

f ′′η (t∗η) ≤ 0 ⇐⇒ t∗η ≥ tinf
η . (13)

The equations (12) and (13) yield that optimal non-zero
allocation to sigmoid function fη is

t∗η = f†η(α∗/wη). (14)

Given the optimal Lagrange multiplier α∗, the optimal
non-zero allocation to the sigmoid function fη is given by
equation (14). Further, the optimal set of sigmoid func-
tions with non-zero allocations is the solution to the α∗-
parametrized knapsack problem (4). We now show that α∗

is maximizer of F , and hence, can be searched. Since,
at least one task is processed, w`f

′
`(t

∗
` ) = α, for some

` ∈ {1, . . . , N}. Thus, α ∈ [0, αmax]. By contradiction
assume that ᾱ is the maximizer of F , and F (ᾱ) > F (α∗).
This means that the allocation corresponding to ᾱ yields
higher reward than the allocation corresponding to α∗. This
contradicts equation (14).

If tinf
` > T , for some ` ∈ {1, . . . , N}, then equation (13)

does not hold for any t` ∈ [0, T ]. Since, f` is convex in
the interval [0, T ], the optimal allocation for maximum is
at the boundary, i.e., t` ∈ {0, T}. Therefore, as exemplified
in Figure 3, the optimal allocation is either Te` or lies at
the projection of the simplex on the hyperplane t` = 0. The
projection of the simplex on the hyperplane t` = 0 is again
a simplex and the argument holds recursively.

Fig. 3. Possible locations of the maximum are shown in green stars and
solid green line. The maximum possible allocation T is smaller than the
inflection point of the third sigmoid function. For any allocation to the third
sigmoid function, the corresponding entry in the Hessian matrix is positive,
and the optimal allocation to third sigmoid function is 0 or T . Optimal
allocation to the first and second sigmoid function may lie at the vertex
of simplex, or at a location where Jacobian is zero and Hessian matrix is
negative definite.

Since α∗LP is maximizer of FLP, and the α-parametrized
fractional knapsack problem is relaxation of α-parametrized
knapsack problem, hence

FLP(α∗LP) ≥ FLP(α∗) ≥ F (α∗). (15)

Also, α∗ is maximizer of F and Fapprox is sub-optimal value



of the objective function, hence

F (α∗) ≥ F (α∗LP) ≥ Fapprox(α∗LP) ≥
1
2
FLP(α∗LP), (16)

where the last inequality follows from the standard proof [13]
of the fact that Algorithm 1 is optimal within factor of opti-
mality 2. The value of objective function at allocation t† in
Algorithm 3 is equal to Fapprox(α∗LP). The allocation t† may
not saturate the total available resource T . Since, the sigmoid
functions are increasing function of the allocated resource,
the total resource must be utilized, and it is heuristically done
in step 8 and 9 of the Algorithm 3. This improves the value
of the objective function and the factor of optimality remains
at most 2. This establishes the first statement.

To prove the second statement, we note that if F is
concave on its intervals of continuity, then the maximum
over each interval can be searched through bisection method
in fixed number of steps. It follows from Lemma 3 that the
maximum number of intervals is N+1. Further, each step of
the bisection method involves the solution of α-parametrized
fractional knapsack problem, which can be computed in
O(N) time. Thus, the Algorithm 3 runs in O(N2) time and
this completes the proof of the theorem.

Corollary 5 (Identical sigmoid functions): Given identi-
cal sigmoid functions f and weights in hybrid knapsack
problem (3) the optimal solution t∗ is an N -tuple with m∗

entries equal to T/m∗ and all other entries zero, where

m∗ = argmax
m∈{1,...,N}

mf(T/m). (17)

Proof: It follows from equation (14) that, for identical
sigmoid functions, the optimal non-zero resource allocated is
the same for each sigmoid function. The number of sigmoid
functions with optimal non-zero resource is determined by
equation (17), and the statement follows.

Example 6: Given sigmoid functions f`(t) = 1/(1 +
exp(−a`t + b`)), ` ∈ {1, . . . , 10} with parameters and
associated weights

a = (a1, . . . , a10) = (1, 2, 1, 3, 2, 4, 1, 5, 3, 6),
b = (b1, . . . , b10) = (5, 10, 3, 9, 8, 16, 6, 30, 6, 12),

and w = (w1, . . . , w10) = (2, 5, 7, 4, 9, 3, 5, 10, 13, 6),

and total resource T = 15 units. The optimal solution and the
approximate solution without the heuristic in step 8 and 9 of
the Algorithm 3 are shown in Figure 4. The approximate
solution with the performance improvement heuristic in
step 8 and 9 of the Algorithm 3 gives the same solution
as the optimal solution. The functions F, Fapprox, and FLP
are shown in Figure 5. �

Fig. 4. Optimal allocations and the approximate optimal allocations without
performance improvement heuristic.

V. HYBRID BIN-PACKING PROBLEM

A. Problem description

Consider N sigmoid functions f`, ` ∈ {1, . . . , N}, and
resource T ∈ R>0. Determine the minimum K ∈ N and a
mapping Υ : {1, . . . , N} → {1, . . . ,K} such that, for each

Fig. 5. Exact and approximate maximum value of the objective function.
The functions FLP, F, Fapprox are shown by solid brown line, black dotted
line, and blue dashed line, respectively. The points of discontinuity of
function FLP are at points where the Lagrange multiplier has value in the
set {α1, . . . , αN}.

i ∈ {1, . . . ,K}, the optimal solution to the hybrid knapsack
problem

maximize
∑
`∈Ai

f`(t`)

subject to
∑
`∈Ai

t` = T,
(18)

where Ai = {j ∈ {1, . . . , N} | Υ(j) = i}, allocates non-
zero resource to each sigmoid function f`, ` ∈ Ai. Note
that the Algorithm 3 provides the exact solution to hybrid
knapsack problem when each task is processed.

The hybrid bin-packing problem models a situation where
one needs to determine the minimum number of operators,
each working for time T , required to optimally serve each of
the N tasks characterized by functions f`, ` ∈ {1, . . . , N}.
B. Optimal solution

An approximation algorithm to solve hybrid bin-packing
problem is presented in Algorithm 4. This algorithm is
similar to the standard next-fit algorithm and adds a sigmoid
function to a bin if optimal policy allocates non-zero resource
to each sigmoid function. Otherwise, it opens a new bin. We
now present a formal analysis of this algorithm. We introduce
following notations. Let K∗ be the optimal solution of the
hybrid bin-packing problem, and Knext-fit be the solution
obtained through Algorithm 4. We denote the critical penalty
rate for sigmoid function f` by ψ`, ` ∈ {1, . . . , N}, and
let ψmin = min{ψ` | ` ∈ {1, . . . , N}}. Before we analyze
Algorithm 4, we present the following important property of
optimization problem (18).

Algorithm 4 Hybrid next fit algorithm
1: Given: f`, ` ∈ {1, . . . , N}, T ∈ R>0

2: Output: K ∈ N, Υ
3: K ← 1;AK ← {};
4: for ` ∈ {1, . . . , N};
5: AK ← AK ∪{`};
6: Solve problem (18) for i = K, and find t∗;
7: if t∗j = 0, for some j ∈ AK ;
8: then K ← K + 1, AK ← {`} ;
9: Υ(`)← K;

Lemma 7 (Non-zero allocations): A solution to the opti-
mization problem (18) allocates non-zero resource to sigmoid
function f`, for each ` ∈ Ai, i ∈ {1, . . . ,K}, if

T ≥
∑
`∈Ai

f†` (ψmin).

Proof: It suffices to prove that if T =
∑

`∈Ai
f†` (ψmin),

then ψmin is the optimal Lagrange multiplier α∗ in Algo-
rithm 3. Since, t∗` = f†` (ψmin), ` ∈ Ai are feasible non-
zero allocations, ψmin is a Lagrange multiplier. We now
prove that ψmin is the optimal Lagrange multiplier. Let



Ai = {1, . . . , ai}. By contradiction, assume that t∗ is not
the globally optimal allocation. Without loss of generality,
we assume that the global policy allocates zero resource
to sigmoid function fai , and t̄ be the globally optimal
allocation. We observe that
ai−1∑
`=1

f`(t̄`) + fai(0) ≤
ai−1∑
`=1

f`(t̄`) + fai(t
∗
ai

)− ψmint
∗
ai

≤
ai∑

`=1

f`(t∗` ) +
ai−1∑
`=1

f ′`(t
∗
` )(t̄` − t∗` )− ψmint

∗
ai

=
ai∑

`=1

f`(t∗` ),

where inequalities follow from the definition of critical
penalty and the concavity to the sigmoid function at t∗` ,
respectively. This contradicts our assumption. Hence, t∗ is
the global optimal allocation.

Theorem 8 (Hybrid bin-packing problem): The following
statements hold for the hybrid bin-packing problem:

i) The optimal solution satisfies the following bounds

Knext-fit ≥ K∗ ≥ 1
T

N∑
`=1

min{T, tinf
` }.

ii) The solution obtained through Algorithm 4 satisfies

Knext-fit ≤
1
T

(
2

N∑
`=1

f†` (ψmin)− 1
)
.

iii) The Algorithm 4 provides a solution to the hybrid bin-
packing problem within a factor of optimality

max{2f†` (ψmin) | ` ∈ {1, . . . , N}}
max{min{T, tinf

` } | ` ∈ {1, . . . , N}}
.

Proof: It follows from Algorithm 3 that if tinf
` < T ,

then the optimal non-zero allocation to sigmoid function f` is
greater than tinf

` . Otherwise, the optimal non-zero allocation
is equal to T . Therefore, if each sigmoid function gets a
non-zero allocation under the optimal policy, then at least∑N

`=1 min{T, tinf
` } resource is required, and the lower bound

on the optimal K∗ follows.
It follows from Lemma 7 that if resource t` = f†` (ψmin)

is available for each task ` ∈ {1, . . . , N}, then a non-
zero resource is allocated to it. Therefore, the solution of
the bin-packing problem with bin size T and items of size
{f†` (ψmin) | ` ∈ {1, . . . , N}} provides an upper bound to
the solution of the hybrid bin-packing problem. The upper
bound to the solution of this bin-packing problem obtained
through the next-fit algorithm 2 is (2

∑N
`=1 f

†
` (ψmin)−1)/T ,

and this completes the proof of the second statement.
The third statement follows immediately from the first two

statements.
Example 9: For the same set of sigmoid functions as in

Example 6 and T = 20 units, the solution to the hybrid bin-
packing problem obtained through hybrid next fit algorithm
requires Knext-fit = 3 bins, and the optimal allocations to each
task in these bins are shown in Figure 6. �

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We studied non-convex hybrid optimization problems in-
volving sigmoid functions. We considered the maximization
of a sigmoid function subject to a linear penalty and showed
that the optimal allocations jumps down to zero at a critical

Fig. 6. Allocations to sigmoid functions in each bin.

penalty rate. This jump in the allocation imparts combi-
natorial effects to the constrained optimization problems
involving sigmoid functions. We studied two such problems,
namely, hybrid knapsack problem and hybrid bin-packing
problem. We utilized the approximation algorithms for the
standard knapsack problem and the bin-packing problem to
develop approximation algorithms for these problems.

There are many possible extensions of this work. A similar
strategy for approximate optimization could be adopted for
other problems involving sigmoid functions, e.g., the net-
work utility maximization problem. Other extensions include
problems involving general non-convex functions and opti-
mization in queues with sigmoid characteristics.
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