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Abstract

In this paper we propose a novel distributed algorithm to solve degenerate linear programs on asynchronous peer-to-peer

networks with distributed information structures. We propose a distributed version of the well-known simplex algorithm for

general degenerate linear programs. A network of agents, running our algorithm, will agree on a common optimal solution,
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how the multi-agent assignment problem can be efficiently solved by means of our distributed simplex algorithm. We provide

simulations supporting the conjecture that the completion time scales linearly with the diameter of the communication graph.
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Allgöwer).

Preprint submitted to Automatica 5 December 2011



1 Introduction

The increasing interest in performing complex tasks via multi-agent systems has raised the interest in solving dis-

tributed optimization problems. The fundamental paradigms in distributed computation are that: (i) information,

relevant for the solution of the problem, is distributed all over a network of processors with limited memory and

computation capability, and (ii) the overall computation relies only on local computation and information exchange

amongst neighboring processors.

Although parallelized optimization algorithms have been studied for a long time, see e.g., [4], the multi-agent perspec-

tive has recently become subject of renewed interest. Several algorithms ranging from subgradient to Quasi-Newton

methods were proposed to solve strictly convex programs [17], [22], [5]. The named approaches rely on strict convex-

ity and cannot efficiently handle linear programs. Algorithms explicitly dedicated to distributed linear programming

are, to the best of our knowledge, still rare. Simplex algorithms are of outstanding importance in linear programming

and have been proven extremely successful. This success motivates searching for a distributed realization of it. While

the idea of parallelizing the computation of the simplex algorithm has found some attention in the computer science

literature, see e.g., [13], [20], a first contribution, explicitly dedicated to multi-agent networks, is given in [18], where

distributed abstract programs are introduced as a general class of optimization problems including linear programs.

A constraints consensus algorithm is proposed to solve them. We follow here the trail opened in [18].

A class of problems closely related to linear programs are multi-agent assignment problems. Assignment problems

are combinatorial problems with exact linear programming representations, see [7] for an introduction. In contrast

to general distributed linear programming, distributed multi-agent assignment problems have attained significant

attention in the recent literature, and various problem formulations were studied [16], [8], [19]. To solve the standard

assignment problem in a fully distributed way, suitable versions of the Auction Algorithm [3] combined with a max

consensus law have been recently proposed in [6] or [21]. The progress made on distributed assignment problems has

not been translated into a general theory for distributed linear programming.

The contributions of this paper are as follows. In a first step, the multi-agent assignment problem is used to derive a

more general formulation of distributed linear programs. The assignment problem directly motivates the distribution

of information throughout the network and emphasizes an important challenge for distributed algorithms: the non-

uniqueness of optimal solutions or, more formally, the degeneracy of optimization programs. As main contribution,

we introduce a distributed version of the well known simplex algorithm to solve these degenerate linear programs in

asynchronous networks with time-varying directed communication topology. Our algorithm has the following struc-

ture. Each agent has a candidate basis in its memory that it exchanges with its neighbors. We propose a new pivot

operation, which is a refined version of the operation proposed in [14], for the local basis update performed by each

agent. The pivot operation uses a lexicographic sorting of the problem columns and a lexicographic ratio test. It

is performed on a subset of columns given by its basis, its neighbors’ candidate bases and its original columns it

has been assigned. We prove that a network of agents running our algorithm will agree in finite time on a common
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optimal solution of the linear program even if it is highly degenerate. The proposed algorithm is inspired by the

constraints consensus algorithm proposed in [18]. We show that, if constraints consensus is implemented for non-

degenerate linear programs, then the proposed distributed simplex turns to be its dual implementation. Finally, we

show how to apply the algorithm to the multi-agent assignment problem, a highly degenerate linear program. We

provide numerical experiments for the distributed assignment problem supporting our conjecture that the distributed

simplex algorithm scales linearly with the diameter of the graph in networks with fixed topologies. We want to point

out that our objective is not to improve the convergence speed of a centralized algorithm, but rather to design a

stable and robust distributed negotiation protocol which allows a group of agents in a peer-to-peer network to solve

a complex optimization problem without any coordination unit.

Before presenting the paper’s organization, we want to discuss shortly the relation of our Distributed Simplex to

known methods for linear programming. It is worth mentioning that our approach inherently differs from the classical

decomposition methods such as the Dantzig-Wolfe or Bender’s decomposition [9]. Classical decomposition methods

utilize a master/subproblem structure, whereas the novel approach uses a peer-to-peer communication between iden-

tical agents without any coordination unit. Our algorithm also clearly differentiates form other parallel algorithms

for linear programming, in particular from [10] and [20]. The two algorithms [10] and [20] require a “two-step”

communication. In a first step, a consensus-like algorithm is performed over the whole network to determine the

column with minimal reduced cost. In a second communication step, this column is then transmitted to all agents

for a basis update. In contrast, a basis update in our algorithm happens directly after any information exchange

between neighboring agents, and does not require agreement over the complete network.

The remainder of the paper is organized as follows. Section 2 introduces the multi-agent assignment as a motivating

problem class. The framework set by the assignment problem is used to formulate the notion of distributed linear

programs in Section 3. Section 4 reviews some fundamental principles of degenerate linear programming and intro-

duces a non-standard version of the simplex algorithm. The main results of the paper are presented in Section 5,

where a distributed simplex algorithm for degenerate linear programs is proposed and analyzed. The usefulness of

the algorithm is illustrated in Section 6, where its application to the class of multi-agent assignment problems is

discussed and simulation results are provided for a time complexity analysis of the algorithm.

2 A Motivating Example for Distributed Linear Programming: the Multi-Agent Assignment

Distributing a number of tasks to a number of agents is one of the most fundamental resource allocation problems

and has applications in numerous control systems. It serves as a motivating application in this paper and will lead

to a general definition of distributed linear programs.

We shortly review the assignment problem here, following the standard reference [3]. The assignment problem can

be illustrated with a bipartite assignment graph Ga = {Va, Ua;Ea}, where the node sets Va = {1, . . . , N} and

Ua = {1, . . . , N} represent the set of agents and tasks respectively. An edge (i, κ) ∈ Ea exists if and only if agent i
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can be assigned to the task κ. The cost ciκ ∈ Z for agent i to perform the task κ is a weight on the edge (i, κ). Figure

1 illustrates the assignment graph. For each agent i and task κ a binary decision variable xiκ ∈ {0, 1} is introduced,

1 1

i
...

...

κ

N N

c11

ciκ

Agents Tasks

Fig. 1. Assignment Graph Ga.

which is 1 if agent i is assigned to task κ and 0 otherwise. The assignment problem corresponds now to the integer

optimization problem minxiκ∈{0,1}

∑

(i,κ)∈Ea
ciκxiκ, with the constraints that a full assignment is achieved. The

convex relaxation gives rise to the linear optimization problem [3]:

min
x≥0

∑

(i,κ)∈Ea

ciκxiκ

s.t.
∑

{κ|(i,κ)∈Ea}

xiκ = 1, ∀i ∈ {1, . . . , N},

∑

{i|(i,κ)∈Ea}

xiκ = 1, ∀κ ∈ {1, . . . , N}.

(1)

It is well-known that (1) has always an optimal solution xiκ ∈ {0, 1}, and that this solution corresponds exactly

to the optimal assignment. Note that the linear program (1) has n = |Ea| decision variables with |Ea| ≤ N2, and

d = 2N equality constraints.

Envisioning self-organizing systems, it is important to design algorithms to solve (1) only by negotiation between

agents. We are interested in applications where only the agents can communicate and perform computations, and

where no coordinator or mediator is involved. This setup is different from the one in [2], where the tasks serve

as auctioneers and perform computations in the proposed Distributed Auction Algorithm. We assume that every

agent initially knows the cost it takes for itself to perform a specific task. In particular, agent i knows all ciκ with

(i, κ) ∈ Ea. This is a reasonable assumption in a multi-agent scenario. We want to stress that it is fundamental that

the agents agree upon the same optimal assignment. In this respect, the assignment problem highlights an additional

challenge for distributed optimization algorithms.

Remark 2.1 In general, (1) has several optimal solutions x∗ corresponding to different optimal assignments. �

This property of the optimization problem is called degeneracy, and has strong implications on the design of dis-

tributed algorithms.
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3 Distributed Linear Programming Set-Up

Throughout this paper we consider linear programs in the standard equality form

min cT x

s.t. Ax = b, x ≥ 0,
(2)

where A ∈ R
d×n, b ∈ R

d and c ∈ R
n, are the problem data and x ∈ R

n is the vector of decision variables. Note that

the assignment problem (1) is a particular representation of (2). We assume in the following that rank(A) = d. We

call a column of problem (2) a vector hi ∈ R
1+d defined as

hi := [ ci, AT
i ]T , (3)

where ci ∈ R is the i-th entry of c and Ai ∈ R
d×1 is the i-th column of the matrix A. The set of all columns is

denoted by H = {hi}i∈{1,...,n}. For any subset G ⊂ H, the notation cG and AG refers to the cost vector and the

constraint matrix, respectively constructed from the columns contained in G. The same notation xG is used to denote

the corresponding decision variables. A linear program (2) is fully characterized by the pair (H, b).

Distributed Information Structure: Distributed linear programs are inherently associated with an initial information

structure. We assume that every agent initially knows a subset of the problem columns, i.e., that there exists a

unique partitioning P = {P[1], . . . , P[N ]} of the problem columns. By partitioning we mean that H = ∪N
i=1P

[i] and

P
[i]∩P

[j] = ∅. We assume that agent i initially knows the column set P
[i]. Throughout the paper we use the notational

convention that superscript [i] denotes a quantity belonging to agent i. Note that in the assignment problem (1)

there is a one-to-one correspondence between a column and an edge of the assignment graph Ga and that each agent

initially knows a subset of these edges, i.e., those corresponding to its own assignments.

Communication Network Model: We model the communication between the N agents by a directed graph (digraph)

Gc = ({1, . . . , N}, Ec), named communication graph. The node set {1, . . . , N} represents the agents, and the edge set

Ec ⊂ {1, . . . , N}2 characterizes the communication between the agents. We consider in particular time-dependent

digraphs of the form Gc(t) = ({1, . . . , N}, E(t)), where t ∈ R≥0 represents the universal time. A graph Gc(t) models

the communication in the sense that at time t there is an edge from node i to node j if and only if agent i transmits

information to agent j at time t. The time-varying set of outgoing (incoming) neighbors of node i at time t, denoted

by NO(i, t) (NI(i, t)), are the set of nodes to (from) which there are edges from (to) i at time t. A static digraph is

said to be strongly connected if, for every pair of nodes (i, j), there exists a path of directed edges that goes from

i to j. For the time-varying communication graph, we rely on the notion of a uniformly jointly strongly connected

graph.

Assumption 3.1 (Uniform Joint Strong Connectivity) There exists a positive and bounded duration Tc, such

that for every time instant t ∈ R≥0, the digraph Gt+Tc
c (t) := ∪Tc

τ=tGc(τ) is strongly connected. �
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In a static directed graph, the minimum number of edges between node i and j is called the distance from i to j

and is denoted by dist(i, j). The maximum dist(i, j) taken over all pairs (i, j) is the diameter of the graph Gc and is

denoted by diam(Gc).

A first contribution of this paper is the formal definition of distributed linear programs.

Definition 3.2 (Distributed LinearProgram) A distributed linear program is a tuple (Gc, (H, b),P) that consists

of: (i) a time-varying communication graph Gc(t) = ({1, . . . , N}, Ec(t)); (ii) a linear program (H, b); (iii) a unique

partitioning P = {P[1], . . . , P[N ]} of the problem columns. A solution of the distributed linear program is attained

when all agents have agreed on the same optimal solution solving (H, b). �

We develop in this paper a distributed algorithm which solves this class of problems. A distributed algorithm can be

abstractly described as follows. It consists of: (i) the set W , called the set of states w[i](t), (ii) the set Σ, called the

communication alphabet including the null element, (iii) the map MSG : W×{1, . . . , N} → Σ, called message function,

and (iv) the map STF : W × Σ|NI(i,t)| → W , called the state transition function. The algorithm starts at t = 0 and

each agent initializes its state to w[i](0). Every agent i performs two actions repeatedly: (i) it sends to each of its

outgoing neighbors j ∈ NO(i, t) a message computed as MSG(w[i](t), j); (ii) whenever it receives information from

its in-neighbors NI(i, t), it updates its state w[i](t) according to the state transition function. Each agent performs

these two actions at its own speed and no synchronization is required in the network.

4 Centralized Solution of Degenerate Linear Programs

We discuss in the following a non-standard algorithm, proposed in [14], which solves degenerate linear programs of

the form (2) in a centralized framework without network constraints.

An important concept in linear programming is the one of a basic solution. A set of exactly d columns B ⊆ H is called

a basis if rank(AB) = d. If a linear program (H, b) has an optimal feasible solution, it has an optimal basic feasible

solution, i.e., there exists an optimal vector x∗ composed of d basic variables xB 6= 0, and n− d non-basic variables

xN = 0. Note that for linear programs with d≪ n the dimension of the non-zero components of the solution vector

is significantly smaller than the dimension of the full decision vector. Two bases B1 and B2 are said to be adjacent,

if there exist columns e ∈ B2 and ℓ ∈ B1 such that B2 = {B1 ∪ e} \ {ℓ}. For each feasible basis there is a value called

the primal cost zB = cT
BxB . Given a basis B and a single non-basic column h /∈ B, the reduced cost of the column is

c̄h = ch −AT
h (A−1

B )T cB =: rT
{B∪h}c{B∪h}, (4)

where ch ∈ R and Ah ∈ R
d refer to the problem data related to column h. The reduced cost gives rise to the standard

optimality condition [15]: Given a basis B and the corresponding primal feasible solution xB = A−1
B b, if c̄h ≥ 0, for

all columns h ∈ H, then xB is an optimal solution.

A major challenge in linear programming is the non-uniqueness of optimal solutions, called degeneracy. Commonly,
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two types of degeneracy are distinguished. A linear program is said to be primal degenerate if there are more than

one basis that lead to the same optimal primal solution. It is said to be dual degenerate if there are more than

one primal optimal solutions. That is, there exist several bases, say Bi and Bj , providing different basic solutions,

xBi
6= xBj

but have the same optimal primal cost zBi
= zBj

= z∗. A problem is said to be fully non-degenerate, if

it is neither primal nor dual degenerate. The following holds for non-degenerate linear programs.

Lemma 4.1 (Solution Uniqueness [11]) Every fully non-degenerate linear program has at most one optimal so-

lution. �

Theorem 4.2 (Solution Reachability [11]) If a linear program has an optimal solution and is fully non-degenerate,

then there exists a sequence of adjacent bases from any basis B to the unique optimal basis B
∗. �

However, as we have illustrated with the multi-agent assignment, degeneracy is a very common phenomenon and

requires special attention.

A well established procedure for solving linear programs is the simplex algorithm, which is informally described as

follows: Let a primal feasible basis B be given. While there exists an entering column e /∈ B such that c̄e < 0, find a

leaving basic column ℓ(e) ∈ B such that (B∪ {e}) \ {ℓ} is again a feasible basis. Exchange the column ℓ with e to get

a new basis. The procedure of replacing a basic column with a non-basic one is called pivot.

In order to handle degeneracy, a variant of the simplex algorithm is presented in the following. We use the algorithm

proposed in [14], building on results in [11]. The algorithm relies on the lexicographic ordering of vectors.

Definition 4.3 (Lex-positivity) A vector γ = (γ1, . . . , γr) is said to be lexico-positive (or lex-positive) if γ 6= 0

and the first non-zero component of γ is positive. �

Lexico-positivity will be denoted by the symbol γ ≻ 0. We write γ � 0 if γ is either lex-positive or the zero vector.

The notion γ ≺ 0 denotes that −γ ≻ 0. For two arbitrary vectors v and u, we say that v ≻ u (v � u) if v − u ≻ 0

(v − u � 0). Given a set of vectors {v1, . . . , vr}, the lexicographical minimum, denoted lexmin, is the element vi,

such that vj � vi for all j 6= i. We use lexsort{v1, . . . , vr} to refer to the lexicographically sorted set of the vectors

{v1, . . . , vr}. Note that for any list of pairwise distinct vectors lexsort provides a unique ordering of the vectors. The

concept of lex-positivity gives rise to a refinement of the notion of a feasible basis.

Definition 4.4 (Lex-feasibility) A feasible basis B is called lexicographically feasible (lex-feasible) if every row

of the matrix [A−1
B b, A−1

B ] is lex-positive. �

Starting with a lex-feasible basis, the simplex method can be refined such that after a pivot iteration the new basis

is again primal lex-feasible, see [14]. Let B be a lex-feasible basis and e the entering column, let the leaving column

be chosen by the lexicographic ratio test,

ℓlex(e) = arg lexmin
j∈B

{[A−1
B b, A−1

B ]•j/(A−1
B Ae)•j | (A

−1
B Ae)•j > 0}, (5)
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where the subscript •j denotes selection of the j-th row of the matrix, respectively vector, then the next basis is

again lex-feasible. Such a selection rule prevents the simplex algorithm from cycling. To guarantee convergence to a

unique solution, we change the optimization criterion to the lexicographically perturbed cost

φ(x) = cT x + δ0x1 + δ2
0x2 + . . . + δn

0 xn, (6)

where xi represents the i-th component of the vector x. Note that for a sufficiently small constant δ0, the optimizer

x∗=arg minx φ(x) corresponds to the unique lexicographically minimal solution of (2). Let now δ = [δ0, δ
2
0 , . . . , δn

0 ]T

and write φ(x) = (cT + δT )x. A column becomes admissible with respect to the perturbed cost φ if the reduced cost

is negative, i.e., c̄e = rT
{B∪e}c{B∪e} + rT

{B∪e}δ{B∪e} < 0, which is equivalent to the analytic condition, [14],

[rT
{B∪e}c{B∪e}, r

T
{B∪e}] ≺ 0. (7)

Replacing the original definition of the reduced cost with (7) provides a mean to minimize the lexicographically

perturbed cost (6) without having small numbers involved in the computation.

Algorithms 1 and 2 give a pseudo code description of the modified Pivot and Simplex algorithms. The basic al-

gorithm is here slightly extended to handle unbounded problems. If at some Pivot iteration (5) returns no leaving

column, then the problem is unbounded. We then set the new basis to null, and stop the execution of the algorithm.

This version of the Simplex is proposed in [14] and determines the unique lexicographically optimal solution.

Algorithm 1 Pivot (B, e)

Require: A lex-feasible basis B, a non-basic column e /∈ B

if [rT
{B∪e}c{B∪e}, rT

{B∪e}] ≺ 0 then

select the leaving column ℓlex(e) via lex ratio test (5)
if ℓlex(e) 6= ∅ then

B← (B ∪ {e}) \ {ℓlex(e)} % make the pivot
else

B← null % problem is unbounded
end if

end if
Return B

Algorithm 2 Simplex (H, B)

Require: A set of columns H, a lex-feasible basis B ⊆ H

while ∃e ∈ H such that [rT
{B∪e}c{B∪e}, r

T
{B∪e}] ≺ 0 do

B← Pivot (B, e)
end while

The following remark points out a feature of the algorithm which will need a special care in the distributed setup.

Remark 4.5 The perturbation δ used in (6) and (7) requires a fixed and known ordering of the decision variables

and the corresponding columns. For a centralized algorithm working with a classical simplex tableau, such an ordering

is naturally given. However, this requirement is not naturally satisfied in the distributed settings. �
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5 The Distributed Simplex Algorithm

The main contribution of this paper is the presentation of the Distributed Simplex algorithm, to solve distributed

linear programs within multi-agent systems.

5.1 Distributed Simplex Definition

Using the abstract description for distributed algorithms presented in Section 3, the Distributed Simplex algorithm

is informally as follows.

The state of each agent is a lex-feasible basis, w[i](t) = B
[i], i.e., each agent stores and updates a set of columns

forming a basis. A set of basis columns suffices to fully determine the solution of a linear program, and thus every

agent keeps and updates a copy of a possible solution. A basis is defined by exactly d columns, and therefore the

state w[i](t) ∈ R
d×(d+1). For linear programs with d ≪ n the basis information required to be stored is reasonably

small. To initialize the algorithm, every agent creates an artificial basis using a method known as big-M method. Let,

without loss of generality, each entry of the vector b be non-negative. Then, each agent constructs artificial decision

variables x̂1, . . . , x̂d and generates a corresponding initial basis BM as follows: It chooses ABM
= Id and cBM

= M ·1,

where Id is the d× d identity matrix, and 1 is a d-dimensional vector of ones. The cost coefficients are all given the

artificial value M , which is larger than any cost coefficient in the original problem (M ≫ maxi=1,...,n(ci)), i.e., M

can be chosen as the largest number realizable by the processor.

The message function MSG simply implements the transmission of the current basis B
[i] to the out neighbors. Note

that the size of MSG is bounded by d× (d + 1) numbers, and that therefore the exchanged data is small for problems

with small dimension d≪ n.

The state transition function STF(w[i](t),∪j∈NI(i,t)MSG(w
[j], i)) performed by each agent to update its basis B

[i]

proceeds as follows. Having received columns from its in-neighbors, and having its set of permanent columns P
[i] in

its memory, the agent performs two actions:

(i) it sorts all columns in its memory lexicographically, i.e., lexsort{P[i], B[i],∪j∈NI(i,t)MSG(B
[j], i)};

(ii) it performs the Simplex algorithm (Algorithm 2), and updates its basis with the new, improved basis.

We provide a pseudo code description of the algorithm in the following table.

Problem data: (Gc(t), (H, b),P)

Message alphabet: Σ = H
d ∪ {null}

Processor state: B
[i] ⊂ H with card(B) = d

Initialization: B
[i] := BM

function MSG(B[i], j)

return B
[i]

9



function STF(B[i], y) % executed by agent i, with yj := MSG(B[j], i)

if yj 6= null for all j ∈ NI(i, t) then

H
tmp ← lexsort{P[i] ∪ B

[i] ∪
(

∪j∈NI(i,t) yj

)

}

B
[i] ← Simplex (Htmp, B[i])

else

B
[i] ← null

end if

Two steps of the algorithm deserve particular attention. First, every agent has to evaluate its own permanent columns

P
[i] repeatedly. If the permanent columns were not evaluated, the algorithm is not guaranteed to converge to an

optimal solution. The convergence of the algorithm will be analyzed in the technical proof later on. Second, each

agent needs to perform a lexicographic sorting of the columns in its memory. Note that agents receive columns in

an unsorted manner and an ordering of the decision variables and columns required for (6) and (7) is not given in

distributed systems. The lexicographic comparison provides a unique ordering of the columns and, correspondingly,

the decision variables. In a distributed setup, the lexicographic ordering has the advantage that it can be locally

determined by every agent. Thus, the lexicographic ordering of the column data ensures that all agents optimize

with respect to the same lexicographic objective (6). Since at each time instant an agent is working with a small

subset of the full problem data the computational effort required for this step is small.

5.2 Convergence Analysis

The following theorem summarizes the convergence properties of the Distributed Simplex algorithm.

Theorem 5.1 (Distributed Simplex Correctness) Consider a distributed linear program (Gc(t), (H, b),P) with

a uniformly jointly strongly connected network Gc(t), t ∈ R≥0. Let the agents run the Distributed Simplex algorithm.

Then there exists a finite time Tf such that

(i) if the centralized problem (H, b) has a finite optimal solution, then the candidate bases B
[i] of all agents have

converged to the same lex-optimal basis;

(ii) if the centralized problem (H, b) is unbounded, then all agents have detected unboundedness, in the sense that all

bases are the null symbol; and

(iii) if the centralized problem (H, b) is infeasible, then all agents can detect infeasibility, in the sense that all bases

B
[i] have converged, but still contain artificial columns.

PROOF. Statement (i) is shown first. Here, by assumption the centralized linear program (H, b) is neither in-

feasible nor unbounded. Throughout the proof, let x[i](t) ∈ R
n
≥0 denote a primal feasible solution to (H, b) whose

nonzero components are the ones associated to the columns in the basis B
[i] of agent i at time t. A major premise

for concluding the convergence is the use of the lexicographically perturbed cost φ[i](x[i](t)) = cT x[i](t) + δ0x
[i]
1 (t) +

δ2
0x

[i]
2 (t) + . . . + δn

0 x
[i]
n (t), with δ0 sufficiently small and the ordering of the decision variables defined according to
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the lexicographic ordering of the complete column data set, i.e., lexsort{H}. We denote the unique lexicographically

minimal primal solution with x∗ and correspondingly φ∗ := φ(x∗). To conclude convergence we consider the function

V(t) :=

N
∑

i=1

φ[i](x[i](t)). (8)

The minimum of V(t) is attained if and only if at some time Tf , φ[i](x[i](Tf )) = φ∗ for all i ∈ {1, . . . , N}, which

is equivalent to all agents having converged to the unique lexicographic minimizer, i.e., x[i](Tf ) = x∗. All agents

initialize their local problems with a lex-feasible basis of finite value, i.e., φ[i](x[i](0)) <∞, and the Pivot iteration

never leads to an increase of φ[i](x[i](t)). Thus, V(0) ≥ V(t) ≥ Nφ∗. We have to show that V(t) strictly decreases

within a finite time interval, as long as the algorithm is not converged. Since the number of possible bases for a

problem (H, b) is finite, φ[i](x[i](t)) can take only a finite number of values, and a strict decrease of V(t) ensures

convergence to the optimal solution in finite time.

As long as the algorithm has not yet converged to the optimal solution there must exist at least one agent, say i,

such that φ[i](x[i](t)) > φ∗. As an immediate consequence of Theorem 4.2, there exists at least one column h ∈ H,

such that the cost of the basis Pivot (B[i], h) is strictly less than the cost of B
[i]. We show now that within a finite

time at least one of the following two actions happens: (a) an agent with a non-optimal basis improves its basis with

a column from its permanent columns P
[i], or (b) an agent in the network receives a column which improves its basis

from one of its in-neighbors.

Since the state transition function STF is performed regularly by each agent, update (a) happens, if possible at all, in

finite time. Our claim is now that if no agent can improve its objective with one of its permanent columns, then (b)

happens in finite time. First, let us observe that if all agents have identical objectives φ[i](x[i](t)) = φ[j](x[j](t)) 6= φ∗,

then (a) happens. Thus, if (a) does not happen, there is at least one pair of agents, say i and j, with different

objective values φ[i](x[i](t)) < φ[j](x[j](t)). As long as there are two agents i and j with φ[i](x[i](t)) < φ[j](x[j](t)),

there must exist at least two agents l and k with φ[l](x[l](t)) < φ[k](x[k](t)), such that l is an in-neighbor to k in the

(by Assumption 3.1) strongly connected communication graph GTc
c (t) = ∪t+Tc

τ=t Gc(τ) and the edge (l, k) is an element

of the directed path from i to j. This last implication can be shown by the following contradiction argument. Assume

no such agent pair l and k exists, i.e. φ[l](x[i](l)) = φ[k](x[k](t)), then all agents preceding l in the directed path,

including the agent i must have the same objective value so that φ[i](x[i](t)) = φ[l](x[l](t)). Additionally all agents

succeeding k, including agent j must have the same objective value so that φ[j](x[j](t)) = φ[k](x[k](t)), contradicting

the basic assumption φ[i](x[i](t)) < φ[j](x[j](t)). We conclude that, due to Assumption 3.1, at least after a time

interval with maximal length Tc, agent k will receive from agent l a basis B
[l], which has a smaller objective value

than B
[k]. Thus, within the time interval Tc agent k updates its basis so that φ[k](x[k](t + Tc)) < φ[k](x[k](t)) and

V(t + Tc) < V(t). This concludes the first part of the proof.

Next, we prove part (ii) and (iii) of the theorem. If the original centralized linear program is unbounded, also the

modified problem including the artificial columns ĥ is unbounded. Then at least one agent will detect unboundedness
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in finite time and transmit the null symbol to all its out-neighbors. Since the communication graph is uniformly

jointly strongly connected, after a finite time Tf the whole network will determine unboundedness.

Finally, if the original problem (H, b) is infeasible, then there exists no non-negative solution to Ax = b. Since

φ[i](x[i](t)) is not increasing and is bounded, and the number of possible bases is finite, all agents will converge in a

finite time Tf to some limit bases. These limit bases must then contain some of the artificial columns generated for

the initialization and infeasibility can then be concluded in finite time. �

We provide here, without proof, the stopping criterion for the algorithm proposed in [18] for a synchronous imple-

mentation. We say that the algorithm is implemented synchronous, if all agents exchange information and update

their state at the same times, with the time elapsing between two communications being Tc.

Theorem 5.2 (Stopping Criterion [18]) Consider a network of agents communicating according to a static,

strongly connected digraph Gc and implementing Distributed Simplex algorithm in a synchronous realization. Each

agent can stop the execution of the algorithm if B
[i] has not changed in a time interval of length (2 diam(Gc) + 1)Tc.

5.3 Discussion: Duality to Constraints Consensus Algorithm

Distributed linear programs are strongly related to distributed abstract programs introduced in [18]. An abstract

program is defined as a pair (H, θ), where H is a finite set of constraints, and θ : 2H → Θ is a function taking values

in a linearly ordered set (Θ,≤). In distributed abstract programs, defined in [18], the constraints are distributed

throughout a network of agents. Abstract programs are a generalization of linear programs presented in the dual form

{max bT y, subj. to AT y ≤ c}, see, e.g., [12]. Note that an inequality constraint of the dual formulation corresponds

to a column h of the primal problem, and a basis (in the abstract sense) is a set of d inequality constraints. The

proposed distributed solution algorithm in [18], the Constraints Consensus, is such that agents exchange constraints

which form a local basis. When receiving constraints, an agent updates its local basis based on the constraints

received and its original constraints. We now clarify the relation between the Constraints Consensus algorithm and

the Distributed Simplex algorithm. We write φ[i](t) for the value of the basis of agent i at time t, when applying the

Distributed Simplex algorithm, and θ[i](t) for the value of the basis (in the abstract sense) for an agent applying the

Constraints Consensus algorithm. We speak of the trajectories φ[i] and θ[i] to denote the evolution of these quantities

during the run-time of the algorithm.

Proposition 5.3 (Duality to Constraints Consensus ) Let (H, b) be a fully non-degenerate, feasible linear pro-

gram with a bounded optimal solution. Then the trajectories φ[i] produced by the Distributed Simplex algorithm ap-

plied to the primal problem (2) are equivalent to the trajectories θ[i] produced by the Constraints Consensus algorithm,

[18], applied to the dual linear program {min −bT y, subj. to AT y ≤ c}.

PROOF. Given a subset of columns or constraints, respectively, G ⊂ H, by strong duality, it holds that φG =

{min cT
GxG, AGxG = b, xG ≥ 0} = {min −bT

GyG, AT
GyG ≤ c} = θG. In both algorithms, the “local” solvers
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hiκ: edge of Ga connecting agent i and task κ

H : edges of Ga

b : vector of ones in R
2N−1

P
[i] : edges of Ga connecting agent i with the tasks

B : spanning tree of Ga, with 2N − 1 arcs

Table I: The assignment problem data as a distributed linear program.

Simplex and Subex LP (see [18]) solve the subproblems and determine φG and θG. The corresponding bases (in the

primal and in the abstract sense) are unique, since the problem is by assumption non-degenerate and Subex LP

is applicable since the problem is feasible and bounded. Thus, given the same information set G, both algorithms

compute a basis in the respective sense with the same value. Agents exchange in both algorithms their locally optimal

bases with neighbors, and thus the information available to an agent at a specific instant are dual. Thus, the two

algorithms realize the same trajectories φ
[i]
B and θ

[i]
B and are dual to each other. �

6 Application of the Distributed Simplex to the Multi-Agent Assignment

We motivated the formulation of distributed linear programs with the multi-agent assignment problem. Table I

clarifies now more precisely the relations between the two problem formulations. The assignment problem (1) is

always primal degenerate, since a basis consists of 2N − 1 columns, while only N of the corresponding primal

variables xiκ (representing the optimal assignment) are non-zero. As discussed in Remark 2.1, it is also often dual

degenerate. The Distributed Simplex algorithm is therefore perfectly suited to solve the distributed assignment

problem. This claim is supported by the fact that only very little data exchange between the agents is required.

Proposition 6.1 (Communication Requirements) At each communication instant, every agent transmits at

most O(N log2 N) bytes.

PROOF. The integers ciκ can be encoded with 2 bytes. Then a column can be encoded with 2 + ⌈ 14 (log2(N) + 1)⌉

bytes. Thus, at each round at max (2N − 1) · (2 + ⌈ 14 (log2(N) + 1)⌉) bytes are sent out by each agent. �

We use random assignment problems to analyze by simulation the expected time complexity of the Distributed Sim-

plex algorithm. Although our algorithm is shown to work in asynchronous networks, for the clarity of presenta-

tion we consider here synchronous communication. The time interval between subsequent information exchanges

is called communication round. In the first simulation, shown in Figure 2, we consider random assignment graphs

Ga, generated with an edge probability 100
N2 and cost coefficients ciκ ∈ [0, 20]. We compare two different communi-

cation schemes: an undirected cycle graph and random Erdõs-Rènyi graphs. For the latter, we use the probability

p = (1+ǫ) log(N)
N

, (ǫ > 0), for which the resulting graph Gc is almost surely connected [1]. Note that the diameter of a

cycle graph grows with the number of edges, whereas the average diameter of Erdõs-Rènyi graphs is log(N)/ log(pN).

For each configuration ten simulations are performed, and the average number of communication rounds (with the

corresponding 95% trust intervals) are shown in Figure 2. For the Erdõs-Rènyi graphs, the number of communication
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rounds remains approximately constant as the number of agents grows, whereas for the cycle graph it grows linearly

with the number of agents. This can be explained with the fact that the diameter of the cycle graph grows linearly

with the number of nodes, whereas the one of the random graph remains constant. The second simulation study,
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Fig. 2. Average number of communication rounds and the 95% trust interval for random multi-agent assignment problems

with communication according to cycle graphs (solid) and Erdõs-Rènyi graphs (dashed).

shown in Figure 3, supports this observation. Here, Ga is a complete assignment graph with N = 40 agents, and the

communication graph Gc is a directed k-regular graph. We vary k ∈ {1, . . . , 39} and perform for each configuration 15

problems with random cost coefficients. Figure 3 shows the average time complexity and the 95% confidence intervals

over the diameter diam(Gc) = ⌈(N − 1)/k⌉. The simulations support the following conjecture on the expected time
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Fig. 3. Average number of communication rounds and the 95% trust interval for the complete N = 40 multi-agent assignment

problem with communication according to directed k-regular communication graphs.

complexity of the Distributed Simplex algorithm.

Conjecture 6.2 The average time complexity of the Distributed Simplex algorithm belongs, on a fixed communica-

tion graph Gc, to O(diam(Gc)). �
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7 Conclusions

We have proposed the notion of Distributed Linear Programs, as an extension of linear programs to a multi-agent

setup. By utilizing a non-standard version of the classical simplex algorithm, a distributed algorithm, named Dis-

tributed Simplex has been derived for solving Distributed Linear Programs which are eventually primal and/or dual

degenerate. The algorithm is proven to work in asynchronous networks and poses little requirements on the commu-

nication structure. The multi-agent assignment problem has been introduced as a relevant problem class for which

the algorithm is especially well suited.
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