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Abstract— We study synchronization in the classic structure-
preserving power network model proposed by Bergen and Hill.
We find that, locally near the synchronization manifold, the
phase and frequency dynamics of the power network model are
topologically conjugate to the phase dynamics of a non-uniform
Kuramoto model and decoupled exponentially stable dynamics
for the frequencies. This topological conjugacy implies the
equivalence of local exponential synchronization in power net-
works and in non-uniform Kuramoto oscillators. Hence, we can
harness the results available for Kuramoto oscillators to analyze
synchronization in power networks. We establish necessary
and sufficient conditions for phase synchronization, sufficient
conditions for frequency synchronization, and necessary and
sufficient conditions for frequency synchronization with a uni-
form topology. These conditions also extend the results known
for the classic first-order Kuramoto model and the second-order
linear consensus protocols. Our synchronization conditions all
share a common physical interpretation: the ratio of power
inputs and dissipation has to be sufficiently uniform and the
coupling in the network has to be sufficiently strong.

I. INTRODUCTION

The vast North American interconnected power grid is
often referred to as the largest and most complex machine
engineered by humankind. Local instabilities arising in such
a complex system can trigger cascading failures and ulti-
mately result in wide-spread blackouts. In face of the rising
complexity of the envisioned future power grid and the
stochastic disturbances caused by renewables such as wind
and solar power, the understanding of the system complexity
and stability becomes more and more important.

Power system stability is broadly subdivided into rotor an-
gle and voltage stability. Rotor angle stability is the ability of
the power system to remain in synchronism when subjected
to disturbances, and it is further classied as transient stability
for severe disturbances. Generally, the complexity of a power
network and the related (in)stability issues are not understood
[1]. In particular, an open problem recognized by the power
system community and not resolved yet by classical methods
is the quest for explicit and concise conditions relating
transient stability to the parameters and graph-theoretical
properties of the underlying network [2]. In [3] we provided
a solution to this problem for a network-reduced power
system model with non-zero transfer conductances by means
of a singular perturbation analysis and by using tools from
coupled oscillators and consensus networks. These results
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on the reduced network can then be related to the original
network via Kron reduction and graph theory [4].

In 1981 Bergen and Hill proposed a structure-preserving
power network model [5] to represent the network compo-
nents and topology explicitly and to overcome the difficulties
in the analysis of network-reduced models with non-neglibile
transfer conductances. Since the structure-preserving power
network model can be cast as mixed Hamiltonian and
gradient-like system, the traditional transient stability anal-
ysis methods are based on Hamiltonian arguments together
with computational tools [6]. Even though these Hamiltonian
methods are very powerful, in particular to estimate the
region of attraction of synchronous equilibria, they do not
provide concise conditions for synchronization.

Synchronization recently attracted lots of interest in the
control, dynamical systems, and physics communities. Es-
pecially, the simple and yet rich dynamics of the coupled
oscillator model proposed by Kuramoto [7] have often been
studied as a prototypical example for synchronization. The
Kuramoto model finds application in various biological and
technological synchronization phenomena, and we refer the
reader to [8], [9], [10] for various applications, further refer-
ences, and theoretic results. As observed in [3] and references
therein, a power network can be cast as a second-order
Kuramoto model with inertia, viscous frequency damping,
non-complete coupling topology, and non-identical natural
frequencies. Such a Kuramoto model has been studied
computationally in [9] and references therein, where the
inertial effects have been found to inhibit synchronization.
The second-order consensus protocols studied in [11] and
references therein can also be seen as a linearized version of
the power network model with identical nodal dynamics. For
both the Kuramoto model and consensus protocol the relation
between synchronization and the parameters and topology of
the underlying network is very well understood.

The contributions of this paper are three-fold.
First, we show that, locally near the synchronization

manifold, the phase and frequency dynamics of the power
network model are topologically conjugate to the phase
dynamics of a non-uniform Kuramoto model and decoupled
exponentially stable dynamics for the frequencies. The two
decoupled dynamics correspond exactly to the fast and slow
dynamics found via singular perturbation analysis in [3].
Compared to [3], this local topological conjugacy result holds
without any assumptions on the system parameters such as
a sufficiently strong damping. Moreover, the following three
statements are found to be equivalent: exponential synchro-
nization in the structure-preserving power network model,
exponential synchronization in the non-uniform Kuramoto



model, and exponential stability of a topological Kuramoto
model. Hence, we can combine the tools provided by the
power networks community and the literature on coupled
Kuramoto oscillators to prove local synchronization.

Second, we address the outstanding problem proposed in
[2] and provide novel and explicit conditions relating syn-
chronization in the structure-preserving power model to the
underlying network parameters and topology. Our conditions
are necessary and sufficient for phase synchronization and
sufficient for frequency synchronization. For a complete and
uniform coupling graph, our conditions are also necessary
and sufficient for frequency synchronization. In each case,
the convergence rate of synchronizing solutions is exponen-
tial, we can give bounds on the ultimate phase cohesiveness,
and our synchronization conditions can be interpreted as “the
ratio of power inputs and dissipation has to be sufficiently
uniform and the coupling in the network has to be sufficiently
strong”, which confirms our results on the reduced model [3].

Third and finally, our exact synchronization conditions
for a power network with a complete and uniform coupling
graph also extend the results for the classic Kuramoto model
and the consensus protocol. In particular, our synchronization
conditions are exact for multi-rate Kuramoto models and
second-order Kuramoto models with inertia and viscous fre-
quency damping. Contrary to the numeric observations listed
in [9], we prove that the inertia do not affect the necessary
and sufficient local synchronization conditions. Furthermore,
our approach extends the results [11], where the eigenvalues
of the second-order consensus protocol are related to those
of the corresponding first-order model. We provide a natural
generalization of this result to the nonlinear regime: the
second-order Kuramoto model achieves phase (resp. fre-
quency) synchronization if and only if the corresponding
first-order non-uniform Kuramoto model synchronizes.

This article is organized as follows. The remainder of
this section introduces some notation. Section II introduces
the structure-preserving power network model, the Kuramoto
model, and different synchronization notions. Section III
links the power network model and two variations of the
Kuramoto model via topological equivalence. The resulting
synchronization conditions for the power network model are
stated in Section IV, and Section V concludes the paper.

Geometry on n-torus: The torus is the set T = ]−π,+π],
where −π and +π are associated with each other, an angle
is a point θ ∈ T, and an arc is a connected subset of T.
The product set Tn is the n-dimensional torus. With slight
abuse of notation, let |θ1 − θ2| denote the geodesic distance
between two angles θ1 ∈ T and θ2 ∈ T. For γ ∈ [0, π],
let ∆(γ) ⊂ Tn be the set of angle arrays (θ1, . . . , θn) with
the property that there exists an arc of length γ containing
all θ1, . . . , θn in its interior. Thus, an angle array θ ∈ ∆(γ)
satisfies maxi,j∈{1,...,n} |θi − θj | < γ. For γ ∈ [0, π], we
also define ∆̄(γ) to be the union of the phase-synchronized
set {θ ∈ Tn | θi = θj , i, j ∈ {1, . . . , n}} and the
closure of the open set ∆(γ). Hence, θ ∈ ∆̄(γ) satisfies
maxi,j∈{1,...,n} |θi−θj | ≤ γ; the case θ ∈ ∆̄(0) corresponds
simply to θ taking value in the phase-synchronized set.

Vectors and matrices: Given an n-tuple (x1, . . . , xn), let
x ∈ Rn be the associated vector, and let diag({xi}n

i=1) ∈ Rn

be the associated diagonal matrix. The inertia of a matrix
A ∈ Rn×n are given by the triple {νs, νc, νu}, where νs (resp.
νu) denotes the number of stable (resp. unstable) eigenvalues
of A in the open left (resp. right) half plane, and νc denotes
the number of center eigenvalues with zero real part. The
notation blkdiag(A1, . . . , An) denotes the block-diagonal
matrix with matrix blocks A1, . . . , An. Finally, let 1 and
0 denote the matrices of unit and zero entries of appropriate
dimension, and let In be the n-dimensional identity matrix.

Derivative operators: For a twice continuously differen-
tiable function f : Rn → R, we adopt the shorthand
∇if(x) = ∂f(x)/∂xi, ∇f(x) = (∂f(x)/∂x)T ∈ Rn×1 is
the gradient, and ∇2f(x) ∈ Rn×n is the Hessian matrix.

II. MATHEMATICAL MODELS AND SYNCHRONIZATION

A. Structure-Preserving Power Network Model

In the following we briefly present the structure-preserving
power network model [5] and refer to [12, Chapter 7] for
detailed derivation from a higher order first principle model.
Let n > 0 the number of nodes in the power network, among
which are m ∈ ]0, n[ generators and n−m load buses. The
network is represented by the symmetric nodal admittance
matrix Y ∈ Cn×n (augmented with the generator transient
reactances), where the indices {1, . . . ,m} and {m+1, . . . n}
correspond to the generators and loads, respectively. Define
the maximum real power transfer between any two nodes
i and j with constant positive voltage levels Vi and Vj as
aij = ViVj=(Yij) which is positive if i and j are connected
and zero otherwise. With this notation the constant-voltage
behind reactance swing dynamics of each generator i are

Miθ̈i+Diθ̇i =Pi−
n∑

j=1

aij sin(θi−θj) , i ∈ {1, . . . ,m}, (1)

where θi ∈ T and θ̇i ∈ R are the generator rotor angle and
frequency (formulated w.r.t. the net frequency), and Pi > 0,
Mi > 0, and Di > 0 are the mechanical power input, inertia
constant, and damping coefficient of generator i.

The real power drawn by a load i ∈ {m + 1, . . . , n}
consists of a constant term Pi < 0 and a frequency dependent
term Diθ̇i, where Di > 0 and θi ∈ T is the voltage angle at
bus i. The resulting in the real power balance equation is

Diθ̇i = Pi−
n∑

j=1

aij sin(θi−θj) , i ∈ {m+1, . . . , n} . (2)

The dynamics (1)-(2) evolve in Tn × Rm and feature an
important symmetry, namely the translational invariance of
the angular variable θ on the unit circle S1. This translational
invariance can be removed by restricting the dynamics (1)-
(2) to the quotient space Tn \ S1 ×Rm. The power network
model (1)-(2) can also be formulated with gradient-like and
dissipative Hamiltonian (or Newtonian) dynamics as

Mθ̈i + Diθ̇i = Pi −∇iU(θ) , i ∈ {1, . . . ,m} , (3)

Diθ̇i = Pi −∇iU(θ) , i ∈ {m + 1, . . . , n} , (4)

where U : Tn → R≥0 is the potential energy of the power
flows given by U(θ) = 1−

∑n
i=1

∑n
j=1 aij cos(θi−θj). The



representation (3)-(4) reveals that the load frequency coeffi-
cients Di > 0 essentially model dissipation. In the power
systems literature, the power inputs Pi are traditionally
associated with the artificial potential W : ]− π, π]n → R≥0

defined by W (θ) = −
∑n

i=1 Piθi. Since W is multi-valued
on Tn, it can be defined only locally on subsets of Tn.

In the following we assume that (i) the system parameters
are such that the graph induced by the matrix with elements
aij = aji is connected and (ii) the power network dynamics
(1)-(2) feature a finite number of equilibria in the quotient
space Tn\S1×Rm. Of course, both assumption are satisfied
for physical power systems, and the second assumption is
found to be met for generic parameters aij [13].

B. Synchronization Notions
In power systems, synchronization or transient stability

are usually defined as stability of an equilibrium of the
dynamics (1)-(2) formulated in relative angle coordinates,
which include the center of inertia and reference generator
coordinates, as well as the infinite bus assumption [6], [12].

Alternatively, the controls, dynamical systems, and the
physics community developed and studied various notions of
synchronization and incremental stability without employing
relative coordinates. The latter concepts are also amenable
to relate synchronization to the underlying network topology
and parameters. For the power network model (1)-(2) the
following synchronization concepts are meaningful, where a
synchronized solution has zero angular acceleration (asymp-
totic linear phase) and an exponential convergence rate due
to the locally quadratic nature of the potential function U(θ).

Definition II.1 (Synchronization) A solution (θ, θ̇) :
R≥0 → (Tn, Rn) to the power system model (1)-(2) achieves

1) phase synchronization if there exist constants θsync ∈
T and θ̇sync ∈ R such that all phases θi(t) converge
exponentially fast to a common linear phase θsync +
θ̇synct (mod 2π) as t →∞;

2) phase-cohesiveness if there exists a length γ ∈ [0, π[
such that θ(t) ∈ ∆̄(γ) for all t ≥ 0;

3) frequency synchronization if there exists a constant
θ̇sync ∈ R such that all frequencies θ̇i(t) converge
exponentially fast to a common constant frequency
θ̇sync ∈ R as t →∞; and

4) practical synchronization if it is phase cohesive and
it achieves frequency synchronization.

Note that phase synchronization requires exponential sta-
bility in the incremental variables |θi(t) − θj(t)| and an
asymptotically linear phase. We will show that phase syn-
chronization can occur for the power network model (1)-(2)
iff all ratios Pi/Di are identical. Otherwise, each pairwise
distance |θi(t)−θj(t)| can converge to a constant value which
is not necessarily zero. The concept of phase cohesiveness
addresses exactly this point and means that at each time t
there exists an arc of length γ containing all angles θi(t).

Analogously to phase synchronization, the concept of
frequency synchronization combines incremental exponential
stability together with an asymptotic property. Note that ex-
ponential convergence of each frequency θ̇i(t) to a constant

θ̇sync ∈ R implies that each phase θi(t) = θi(0)+
∫ t

0
θ̇i(τ)dτ

converges exponentially to a linear phase θi,sync + θ̇synct
(mod 2π), where θi,sync ∈ T is not necessarily identical for
every i ∈ {1, . . . , n}. Finally, practical synchronization com-
bines phase cohesiveness with frequency synchronization.
Of course, practical synchronization includes phase synchro-
nization, and, in control-theoretic terms, it corresponds to fre-
quency synchronization with incrementally bounded angles.

C. Kuramoto Model of Coupled Oscillators
A celebrated model for the synchronization of coupled

oscillators is due to Yoshiki Kuramoto [7]. The Kuramoto
model considers n ≥ 2 coupled oscillators, each represented
by a phase variable θi ∈ T and a natural frequency ωi ∈ R.
The system of coupled oscillators obeys the dynamics

θ̇i = ωi −
K

n

n∑
j=1

sin(θi − θj) , i ∈ {1, . . . , n} , (5)

where K > 0 is the coupling strength. For the Kuramoto
model we adopt the synchronization notions in Definition
II.1. For identical natural frequencies ωi, the Kuramoto
model achieves phase synchronization from almost all ini-
tial conditions [14, Theorem 1]. For non-identical natural
frequencies, the Kuramoto model can achive only frequency
synchronization with a certain level of phase cohesiveness.
In particular, the Kuramoto model achieves practical syn-
chronization if and only if the coupling overcomes the worst
non-uniformity among the natural frequencies, that is, K >
maxi,j∈{1,...,n}{ωi−ωj}, see [10, Theorem 4.1] for details.

Instead of the complete and uniform coupling K/n, the
Kuramoto model (5) is also studied with general coupling
topologies with weights aij . In this case, the dynamics are
simply, θ̇i = ωi − ∇iU(θ) similar to the power network
model (3)-(4). The potential function U(θ) depends on the
coupling graph with weights aij , and for a connected and
undirected graph the phase-synchronized state is a local min-
imum of U(θ) [15, Proposition 3.3.2]. Of particular interest
are so-called S1-synchronizing graphs for which the phase-
synchronized state is the only local minimum of U(θ), all
other critical points are local maxima or saddle points, and all
critical points are hyperbolic. The class of S1-synchronizing
graphs is characterized in [15], [16] and references therein,
and it includes the complete graph and undirected trees. For
these graphs almost global phase synchronization can be
concluded by investigating the Hessian of the potential U(θ).

III. PARAMETERIZED HAMILTONIAN AND
GRADIENT-LIKE DYNAMICS AND THEIR PROPERTIES

This section will link the structure-preserving power net-
work model (1)-(2) and the Kuramoto model (5) through a
parametrized system. Consider for n1, n2 ≥ 0 and λ ∈ [0, 1]
the one parameter family Hλ of dynamical systems combin-
ing dissipative Hamiltonian and gradient-like dynamics as

D1ẋ1 =−∇1H(x) ,[
In2 0
0 M

] [
ẋ2

ẋ3

]
=

(
(1− λ)

[
0 In2

−In2 0

]
−

[
λD−1

2 0
0 D2

]) [
∇2H(x)
∇3H(x)

]
,

(6)



where x = (x1, x2, x3) ∈ X1×X2×X3 = X is the state, X1

and X2 are smooth manifolds of dimensions1 n1 and n2, the
matrices D1 ∈ Rn1×n1 , D2 ∈ Rn2×n2 , and M ∈ Rn2×n2

are positive definite, and H : X → R is a smooth potential.
The parameterized system (6) continuously interpolates

between gradient-like and mixed Hamiltonian/gradient-like
dynamics. For λ = 1 system (6) reduces to gradient-like
dynamics with a time constant (or system metric) D as

Dẋ = −∇H(x) , (7)

where D , blkdiag(D1, D2, D
−1
2 M). For λ = 0 the dy-

namics (6) reduce to gradient-like dynamics for x1 and dis-
sipative Hamiltonian (or Newtonian) dynamics for (x2, x3):

D1ẋ1 =−∇1H(x) ,»
In2 0
0 M

–»
ẋ2

ẋ3

–
=

„»
0 In2

−In2 0

–
−

»
0 0
0 D2

–«»
∇2H(x)
∇3H(x)

–
.

(8)

It turns out that all parameterized systems of the form (6)
have the same equilibria, the same local stability properties,
and the same global convergence behavior. In particular, the
dynamics of (6) are fully governed by potential function
H(x). The following theorem summarizes these facts.

Theorem III.1 (Properties of Hλ family) Consider for
λ ∈ [0, 1] the one parameter family Hλ of dynamical
systems (6). The following statements hold independent of
the parameter λ ∈ [0, 1] and independent of the particular
positive definite matrices D1, D2,M :

1) Equilibria: For all λ ∈ [0, 1] the equilibria of Hλ are
given by the critical points of the potential function
H(x), i.e., the set E , {x ∈ X : ∇H(x) = 0}.

2) Local stability: For any equilibrium x∗ ∈ E and for all
λ ∈ [0, 1], the inertia of the Jacobian of Hλ are given
by the inertia of −∇2H(x∗) and the corresponding
center-eigenspace is given by ker∇2H(x∗).

3) Global convergence: For any forward-complete so-
lution x : R≥0 → X of Hλ the function H̃(x) ,
H(x1(t), x2(t),M1/2x3(t)) is non-increasing for all
λ ∈ [0, 1]. In particular, if the sublevel set Ωc =
{x ∈ X : H̃(x) ≤ c} is compact, then for every
initial condition x(0) ∈ Ωc the corresponding solution
x : R≥0 → Ωc is forward-complete and converges to
the set E ∩ Ωc, independently of λ ∈ [0, 1].

Statements 1) and 2) assert that normal hyperbolicity
of the critical points of H(x) can be directly related to
local exponential (set) stability for any λ ∈ [0, 1]. This
implies that all vector fields Dλ, λ ∈ [0, 1], are locally
topologically conjugate [17] near a hyperbolic equilibrium
point x∗ ∈ E . In particular, near x∗ ∈ E , trajectories of the
gradient vector field (7) can be continuously deformed to
match trajectories of the Hamiltonian vector field (8) while
preserving parameterization of time. This topological con-
jugacy holds also for hyperbolic equilibrium trajectories
[18, Theorem 6] considered in synchronization. Finally, if
the evolution x(t) of the dynamics (6) is bounded, then
statement 3) yields global convergence to the equilibria and
also suggests (x1, x2,M

1/2x3) as natural state space.

1Note that we also allow n1 = 0 thereby neglecting the x1-dynamics.

The similarity between second-order Hamiltonian systems
and the corresponding first-order gradient flows is well-
known in mechanical control systems [19], in dynamic
optimization [20], [21], [22], and also in transient stability
studies [23], [24], [25], but we are not aware of any result as
general as Theorem III.1. In [23], [24], [25], statements 1)
and 2) are proved under the more stringent assumptions that
Hλ has a finite number of isolated and hyperbolic equilibria.
We remark that these assumptions are not met for the power
network model (1)-(2) unless the existence of an infinite bus
is postulated (a stationary reference node). Additionally, if
H(x) constitutes an energy function and if a one-parameter
transversality condition is satisfied, then the separatrices
of system (6) can also be characterized accurately [23],
[24], [26]. Also statement 3) can be refined under further
structural assumptions on the potential function H(x), and
various other minimizing properties can be deduced from the
dynamics (6), see [19], [20], [21], [22].

The proof of Theorem III.1 is presented in the appendix.

A. Equivalence of Local Synchronization
As a consequence of Theorem III.1, we can link synchro-

nization in the power network model (1)-(2) and in a variant
of the Kuramoto model (5). Since Theorem III.1 is valid only
for equilibria, we convert synchronization to stability of an
equilibrium manifold by transforming to a rotating frame.
The explicit synchronization frequency of the power network
(1)-(2) is obtained by summing over all equations (1)-(2) as∑m

i=1
Miθ̈i +

∑n

i=1
Diθ̇i =

∑n

i=1
Pi . (9)

In the frequency-synchronized case, equation (9) simplifies
to

∑n
i=1 Diθ̇sync =

∑n
i=1 Pi. We conclude that the synchro-

nization frequency is given by θ̇sync ,
∑n

i=1 Pi/
∑n

i=1 Di.
Accordingly, define the non-uniform Kuramoto model as

Diθ̇i = Pi−
∑n

j=1
aij sin(θi−θj) , i ∈ {1, . . . , n} , (10)

and the globally exponentially stable frequency dynamics as

d

dt
θ̇i = −M1

i Di

(
θ̇i − θ̇sync

)
, i ∈ {1, . . . ,m} , (11)

where Di, Pi, and aij take the same values as the corre-
sponding parameters for the power network model (1)-(2). It
can be easily verified that the non-uniform Kuramoto model
(10) has the same synchronization frequency θ̇sync as (1)-(2).

Finally, we define the topological Kuramoto model by

θ̇i = P̃i −
∑n

j=1
aij sin(θi − θj) , i ∈ {1, . . . , n} , (12)

where P̃i , Pi−Diθ̇sync. Note that the topological Kuramoto
model (12) has the same right-hand side as the uniform
Kuramoto model (10) formulated in a rotating frame with
frequency θ̇sync but no multiple rates Di on the left-hand side.

In a rotating frame with frequency θ̇sync, both the power
network model (1)-(2) and the non-uniform Kuramoto model
(10) together with frequency dynamics (11) are locally
instances of the parameterized system (6) with the potential
H(θ, θ̇) = T (θ̇) + U(θ) + W (θ), where T (θ̇) = 1

2 θ̇T θ̇ is
the normalized kinetic energy of the generator rotors. In the
sequel, we seek to apply Theorem III.1 to these two models.



For a rigorous argumentation, we define a two-parameter
family of functions φr,s : [0,∞[ → T of the form φr,s(t) ,
r + s · t (mod 2π), where r ∈ T and s ∈ R. Consider for
(r1, . . . , rn) ∈ ∆̄(γ), γ ∈ [0, π[ the composite function

Φγ,s : [0,∞[ → Tn , Φγ,s(t) ,
(
φr1,s(t), . . . , φrn,s(t)

)
(13)

mimicking practically-synchronized trajectories of the power
network or the Kuramoto models. We now have all ingredi-
ents to state the following result on synchronization.

Theorem III.2 (Synchronization Equivalences) Consider
the power network model (1)-(2), the non-uniform Kuramoto
model (10), and the topological Kuramoto model (12). The
following three statements are equivalent for any γ ∈ [0, π[,
t ∈ [0,∞[, any function Φγ,θ̇sync

(t) as defined in (13):

(i) (Φγ,θ̇sync
(t), θ̇sync1m) parametrizes a locally expo-

nentially stable practically-synchronized trajectory
(θ(t), θ̇(t)) of the power network model (1)-(2).

(ii) Φγ,θ̇sync
(t) parametrizes a locally exponentially stable

practically-synchronized trajectory θ(t) of the non-
uniform Kuramoto model (10).

(iii) Φγ,0(t) parametrizes a locally exponentially stable
equilibrium of the topological Kuramoto model (12).

If the equivalent statements (i)-(iii) are true, then, locally
near the synchronization manifold (Φγ,θ̇sync

(t), θ̇sync1m), the
trajectories of the power network model (1)-(2) are topo-
logically conjugate to the trajectories of the non-uniform
Kuramoto model (10) and the frequency dynamics (11).

Proof: By Definition II.1, a practically-synchronized
trajectory of the power network model (1)-(2) is exactly
characterized by (θ(t), θ̇(t)) ∈ (Φγ,θ̇sync

(t), θ̇sync1m) for γ ∈
[0, π[ and t ≥ 0. In a rotating frame with frequency θ̇sync,
the power network model (1)-(2) takes the form

Mθ̈i + Diθ̇i = P̃i −∇iU(θ) , i ∈ {1, . . . ,m} , (14)

Diθ̇i = P̃i −∇iU(θ) , i ∈ {m + 1, . . . , n} , (15)

where P̃i = Pi −Diθ̇sync. Hence, a practically-synchronized
trajectory of (14)-(15) is an equilibrium solution deter-
mined up to a translational invariance in S1 and satisfies
(θ(t), θ̇(t)) ∈ (Φγ,0(t),0m). Hence, the phase-synchronized
orbit (Φγ,0(t),0m), understood as a geometric object, con-
stitutes a one-dimensional equilibrium manifold of the power
network model (14)-(15) in Tn×Rn. After factoring out the
translational invariance, the practically-synchronized orbit
(Φγ,0(t),0m) corresponds to an isolated equilibrium of (14)-
(15) in the quotient space Tn \ S1 × Rn. Since an isolated
equilibrium of a smooth nonlinear system with bounded
and Lipschitz Jacobian is exponentially stable if and only
if the Jacobian is a Hurwitz matrix [27, Theorem 4.15],
the locally exponentially stable orbit (Φγ,0(t),0m) must be
hyperbolic in the quotient space. Therefore, the equilibrium
trajectory (Φγ,0(t),0m) is exponentially stable in Tn ×Rm

if and only if the Jacobian of (14)-(15) evaluated along
(Φγ,0(t),0m), has n − 1 stable eigenvalues and one zero
eigenvalue corresponding to the translational invariance in S1.

By an analogous argumentation we reach the same con-
clusion for the non-uniform Kuramoto model (10) written
in a rotating frame as Diθ̇i = P̃i −∇iU(θ): the practially-
synchronized trajectory Φγ,0(t) ∈ Tn is exponentially stable
if and only if the Jacobian of (10) evaluated along Φγ,0(t)
has n− 1 stable eigenvalues and one zero eigenvalue.

Finally, note that both the power network model (14)-
(15) or the non-uniform Kuramoto model (10), the latter
considered in a rotating frame and together with the globally
exponentially stable frequency dynamics (11), are locally
(near every equilibrium in ∆(γ) × Rn) instances of the
parameterized system (6) with the potential function H =T+
U + W . Therefore, by Theorem III.1, the corresponding Ja-
cobians have the same inertia and local exponential stability
of one system implies local exponential stability of the other
system. This concludes the proof of the equivalence (i)⇔ (ii).

The equivalence (ii) ⇔ (iii) follows simply because the
topological Kuramoto model (12) and the non-uniform Ku-
ramoto model (written in a rotating frame) have the same
equilibria and their Jacobians D−1∇2U(x∗) and ∇2U(x∗)
have the same inertia by Sylvester’s inertia theorem [28].

We now prove the final conjugacy statement. By the
generalized Hartman-Grobman theorem [18, Theorem 6], the
trajectories of (1)-(2) and (10)-(11) (both considered in the
rotating frame) are both locally topologically conjugate to
the flow generated by their respective linearized vector fields
(locally near (Φγ,0(t),0m)). Since both vector fields (1)-(2)
and (10)-(11) are hyperbolic with respect to (Φγ,0(t),0m)
and their respective Jacobians have the same hyperbolic iner-
tia (besides the common one-dimensional center eigenspace
corresponding to (Φγ,0(t),0m)), both linearized dynamics
are topologically conjugate [17, Theorem 7.1]. In summary,
we conclude that the trajectories of (1)-(2) and (10)-(11) (in
a rotating frame) are locally topologically conjugate near
the equilibrium (Φγ,0(t),0m). In the original non-rotating
coordinates, the trajectories of (1)-(2) and (10)-(11) are
locally topologically conjugate near (Φγ,θ̇sync

(t), θ̇sync1m).

Remark III.3 (Singular Perturbation Analysis) In [3] we
carried out a singular perturbation analysis to relate
the power network dynamics (1)-(2) (in network-reduced
form) and the non-uniform Kuramoto model (10). For
a sufficiently small inertia over damping ratio ε ,
maxi∈{1,...,m}{Mi/Di}, the reduced slow dynamics are the
non-uniform Kuramoto dynamics (10) and the fast dynamics
are the frequency dynamics (11) in the time-scale t/ε. By
Theorem III.2, the slow and fast dynamics correspond to
two decoupled modes, which are topologically conjugate
to the power network model. Hence, local equivalence of
trajectories of (1)-(2) and (10)-(11) is given by topological
conjugacy (without any parametric assumptions), and for ε
sufficiently small a dynamic equivalence can be established
via singular perturbation analysis as in [3, Theorem IV.2].�

IV. FUNDAMENTAL PROPERTIES OF SYNCHRONIZATION

A. Fundamental Properties of Phase Synchronization

Even though phase synchronization is not relevant for
practical power network applications (due to the resulting



zero real power flows), its analysis yields important insights.
For zero power inputs Pi = 0, the Hamiltonian formulation
(3)-(4) of the power network model and Theorem III.1
imply that phase synchronization depends exclusively on the
Hamiltonian T (θ̇) + U(θ): local maxima and saddle points
obviously correspond to unstable states and local minima to
stable states. The following result confirms this intuition and
also shows the crucial role of the dissipation terms Di.

Theorem IV.1 (Exponential phase synchronization) Con-
sider the power network model (1)-(2).

The following two statements are equivalent
(i) Local phase synchronization: the phase-synchronized

state is locally exponentially and has a constant syn-
chronization frequency θ̇sync ∈ R;

(ii) Uniformity: there exists a constant P̄ ∈ R such that
Pi = DiP̄ for all i ∈ {1, . . . , n}.

Moreover, in either of the two equivalent cases (i) or (ii),
P̄ ≡ θ̇sync and the following three statements hold:

1) Explicit phase: The asymptotic synchronization phase
is given by

∑n
i=1 Diθi(0)/

∑n
i=1 Di+ θ̇synct(mod 2π).

2) Global convergence: For all initial conditions
(θ(0), θ̇(0)) ∈ Tn×Rm all frequencies θ̇i(t) converge
to P̄ and all phases θi(t)− θ̇synct (mod 2π) converge
to the critical points of the potential function U(θ).

3) Almost global stability: If the graph induced by aij is
S1-synchronizing, then for almost all initial conditions
(θ(0), θ̇(0)) ∈ Tn × Rm, the phases of the power
network model synchronize exponentially.

Proof: We first proof the implication (i) =⇒ (ii). In
the phase-synchronized case, there exist constants θsync ∈ T
and θ̇sync ∈ R such that θi(t) = θsync + θ̇synct, θ̇i(t) = θ̇sync,
and θ̈i(t) = 0 for all i ∈ {1, . . . , n}. Hence, the dynamics
(1)-(2) read as Diθ̇sync = Pi for all i ∈ {1, . . . , n}. Hence, a
necessary condition for the existence of phase-synchronized
solutions is that Pi/Di = θ̇sync is constant for i ∈ {1, . . . , n}.

For the implication (ii) =⇒ (i) we transform the model
(1)-(2) to a rotating frame with frequency θ̇sync as

Mθ̈i + Diθ̇i = −∇iU(θ) , i ∈ {1, . . . ,m} , (16)

Diθ̇i = −∇iU(θ) , i ∈ {m + 1, . . . , n} . (17)

By Theorem III.2, we conclude that the phase-synchronized
state of (16)-(17) is locally exponentially stable if and only if
the the phase-synchronized state of the corresponding topo-
logical Kuramoto model (12) (with P̃i = 0 by assumption) is
exponentially stable. The latter is true for a connected graph
[15, Proposition 3.3.2]. This concludes the proof of (ii)⇔ (i).

To prove statement 1), we sum over all equations (16)-(17):∑m

i=1
Miθ̈i +

∑n

i=1
Diθ̇i = 0 . (18)

Integration of equation (18) along phase-synchronized solu-
tions yields that

∑n
i=1 Diθi(t) =

∑n
i=1 Diθi(0) is constant

for all t ≥ 0, where we already accounted for θ̇i(t) = 0 for
all i ∈ {1, . . . , n} and all t ≥ 0. Hence, the synchronization
phase is given by a weighted average of the initial conditions

∑n
i=1 Diθi(0)/

∑n
i=1 Di. In the original coordinates (non-

rotating frame) the synchronization phase is then given by∑n
i=1 Diθi(0)/

∑n
i=1 Di+θ̇synct, which proves statement 1).

Since the level sets of T (M1/2θ̇) + U(θ) are compact,
Theorem III.1 can be applied to system (16)-(17) and yields
convergence to the critical points of the T (M1/2θ̇) + U(θ).
Consequently, we obtain statement 2) in the rotating frame.

By statement 2), all solutions of (16)-(17) converge to the
set of equilibria. By Theorem III.2, these equilibria are ex-
ponentially stable if and only if the corresponding equilibria
of the topological Kuramoto model (12) are exponentially
stable. Statement 3) follows since all non-phase-synchronized
equilibria are unstable for S1-synchronizing graphs

B. Fundamental Properties of Practical Synchronization

According to Theorem IV.1, phase synchronization occurs
if and only if all ratios Pi/Di are identical. This intuition
carries over to a necessary conditions for frequency synchro-
nization. In particular, frequency synchronization of a node
i with the rest of the network cannot occur if the coupling
of node i to the network via the power transfers

∑n
j=1 aij

is too weak and the ratio of power input and dissipation,
Pi/Di, diverges too much from the weighted average θ̇sync.

Lemma IV.2 (Necessary conditions for frequency syn-
chronization) Consider the power network model (1)-(2). If
the power network achieves frequency synchronization, then
the following two statements hold:

1) Explicit frequency: the asymptotic synchronization
frequency is given by θ̇sync ,

∑n
k=1 Pk/

∑n
k=1 Dk.

2) Uniformity: for all i ∈ {1, . . . , n} it holds that∑n

j=1
aij ≥

∣∣Pi −Diθ̇sync
∣∣ . (19)

Proof: Statement 1) has already been proven in Subsec-
tion III-A. To prove statement 2) consider the power network
model (1)-(2) and assume the transformation to a rotating
frame with frequency θ̇sync =

∑n
i=1 Pi/

∑n
i=1 Di has been

carried out. For a frequency-synchronized solutions, the
transformed power network dynamics (written in a rotating
frame) must be in an equilibrium determined by

0 = Pi −Diθ̇sync −
∑n

j=1
aij sin(cij) , i ∈ {1, . . . , n} ,

where cij ∈ T for i, j ∈ {1, . . . , n}. Note that the previous
equation has no solution if condition (19) does not hold.

Before stating conditions for practical synchronization
of the power network model (1)-(2), we first consider the
simpler case of a uniform power network, where all coupling
coefficients take the value aij = K/n for K > 0 and
i, j ∈ {1, . . . , n}. The uniform power network model reads as

Miθ̈i + Diθ̇i =Pi −
K

n

n∑
j=1

sin(θi − θj), i ∈ {1, . . . ,m},

(20)

Diθ̇i =Pi −
K

n

n∑
j=1

sin(θi − θj), i ∈ {m + 1, . . . , n}, (21)



where Mi, Di, and Pi take the same values as the corre-
sponding parameters in the original power network model
(1)-(2). For the uniform power network model we can state
exact synchronization conditions which generalize the results
[10] known for the classic Kuramoto model (5) to multi-rate
and second-order Kuramoto models with inertia and damping.

Theorem IV.3 (Practical synchronization in a uniform
power network model) Consider the uniform power network
model (20)-(21), and define the scaled power inputs P̃i =
Pi −Diθ̇sync, where θ̇sync =

∑n
k=1 Pk/

∑n
k=1 Dk.

The following two statements are equivalent:
(i) The coupling strength K is larger than the maximum

non-uniformity among the scaled power inputs, i.e.,
K > Kcritical := maxi,j∈{1,...,n}{P̃i − P̃j}.

(ii) There exists a locally exp. stable practically synchro-
nized solution of the uniform power network model.

Moreover, in either of the two equivalent cases (i) and (ii),
the practically synchronized solution has the frequency θ̇sync
and it is phase cohesive in ∆̄(γmin), where γmin ∈ [0, π/2[
is the unique solution to sin(γmin) = Kcritical/K.

Proof: By Theorem III.2, a locally exponentially stable
practically synchronized trajectory of the uniform power
network model (20)-(21) exists if and only if there exists a
locally exponentially stable equilibrium of the corresponding
topological Kuramoto model (12), with natural frequencies
P̃i = Pi −Diθ̇sync and uniform coupling aij = K/n for all
i, j ∈ {1, . . . , n}. The latter is true if and only if statement
(i) holds [10, Theorem 4.1]. Moreover, [10, Theorem 4.1]
asserts that a practically synchronized solution is phase
cohesive in ∆̄(γmin) with γmin as stated above.

Lemma IV.2 and Theorem IV.3 give the intuition that
“the coupling via aij has to dominate the non-uniformity in
Pi/Di” for synchronization. This intuition is confirmed by
a sufficient synchronization condition for the original power
network model (1)-(2), where the coupling strength is quan-
tified in terms of the algebraic connectivity λ2(L(aij)), i.e.,
the second smallest eigenvalue of the Laplacian L(aij) =
diag({Aii}n

i=1)−A of the weighted power network graph.

Theorem IV.4 (Sufficient conditions for frequency syn-
chronization) Consider the power network model (1)-
(2). Assume that the graph induced by aij is connected
and has algebraic connectivity λ2(L(aij)). Define the
scaled power inputs P̃i = Pi − Diθ̇sync, where θ̇sync =∑n

k=1 Pk/
∑n

k=1 Dk. Assume that the algebraic connectivity
dominates the non-uniformity in scaled power inputs, i.e.,

λ2(L(aij)) > λcritical :=
(∑n

i,j=1,i<j

∣∣∣P̃i − P̃j

∣∣∣2)1/2

.

(22)
Then the practically synchronized state is locally exponen-
tially stable with synchronization frequency θ̇sync and phase
cohesiveness in ∆̄(γmin) with γmin ∈ [0, π/2[ given as the
unique solution to sin(γmin) = λcritical/λ2(L(aij)).

Proof: By Theorem III.2, the practically synchronized
state of the power network model (1)-(2) is locally exponen-

tially stable if and only if the practically-synchronized equi-
librium of the topological Kuramoto model (12) is locally
exponentially stable with P̃i = Pi − Diθ̇sync. A sufficient
condition for the latter to be true is given by condition
(22), as proved in [3, Theorem V.5]. Moreover, [3, Theorem
V.5] asserts that a practically synchronized solution is phase
cohesive in ∆̄(γmin) with γmin as stated above.

V. CONCLUSIONS

In this paper showed the equivalence of exponential syn-
chronization in a structure-preserving power network model,
exponential synchronization in a reduced order non-uniform
Kuramoto model, and exponential stability of a topological
Kuramoto model. This equivalence can be interpreted geo-
metrically as topological conjugacy, and, based on this equiv-
alence, we presented various results for phase, frequency, and
practical synchronization in the power network model.

Our results highlight the crucial role of the dissipation
terms, power inputs, and the network topology. The insights
gained in this paper may be beneficial develop new strategies
for coordinated controller design and controlled islanding in
a power network. The presented results are only a first step
and should be extended towards exact and non-local synchro-
nization conditions for more detailed power system models.

APPENDIX

Proof of Theorem III.1: To prove statement 1), we refor-
mulate the dynamics (6) as"

ẋ1

ẋ2

Mẋ3

#
= −

24D−1
1 0 0
0 λD−1

2 −(1− λ)In2
0 (1− λ)In2 D2

35
| {z }

,Wλ

"∇1H(x)
∇2H(x)
∇3H(x)

#
.

It follows from the Schur determinant formula [29] that
det(Wλ) = det(D−1

1 )(λ + (1 − λ)2) is positive for all
λ ∈ [0, 1]. Hence, Wλ is nonsingular for all λ ∈ [0, 1], and
the equilibria of (6) are given by ∇H(x) = 0.

To prove statement 2) we analyze the Jacobian of Hλ at
an equilibrium x∗ ∈ E given by

Jλ(x∗) =

24 D−1
1 0 0
0 λD−1

2 (λ− 1)M−1

0 (1− λ)M−1 M−1D2M
−1

35
| {z }

,Sλ

×

»
−In1+n2 0

0 −M

–
∇2H(x∗)| {z }

,S(x∗)

. (23)

Similar to the proof of statement 1), we see that det(Sλ) =
det(D−1

1 ) det(D−1
2 ) det(M−1D2M

−1)(λ+(1−λ)2). Thus,
Sλ is nonsingular for λ ∈ [0, 1], and the nullspace of Jλ(x∗)
is given by ker∇2H(x∗) (independently of λ ∈ [0, 1]).

To show that the stability properties of the equilibrium
x∗ ∈ E are independent of λ ∈ [0, 1], we prove that the
inertia of the Jacobian Jλ(x∗) depend only on S(x∗) and not
on λ ∈ [0, 1]. For the invariance of the inertia we appeal to
the main inertia theorem for positive semi-definite matrices
[28, Theorem 5]. Note that Jλ(x∗) and Jλ(x∗)T have the



same eigenvalues. Let A , Jλ(x∗)T and P , S(x∗), and
consider the matrix Q obtained by the Lyapunov equality as

Q =
1

2

“
AP + PAT

”
= P

24D−1
1 0 0
0 λD−1

2 0
0 0 M−1D2M

−1

35 P .

Note that Q is positive semidefinite for λ ≥ 0, and for λ 6= 0
the nullspace of Q coincides with the nullspace of P , i.e.,
kerQ = kerP . Hence, for λ ∈ ]0, 1] the assumptions of [28,
Theorem 5] are satisfied, and it follows that the non-zero
inertia of A = Jλ(x∗)T (restricted to image of A) correspond
to the non-zero inertia of P . Hence, the nonzero inertia of
Jλ(x∗) are independent of λ ∈ ]0, 1], and possible zero
eigenvalues correspond to kerP = ker∇2H(x∗). To handle
the case λ = 0 we invoke continuity arguments. Since the
eigenvalues of Jλ(x∗) are continuous functions of the matrix
elements, the inertia of J0(x∗) are the same as the inertia of
Jλ(x∗) for λ > 0 sufficiently small.

In summary, the inertia of Jλ(x∗) are given by the inertia
of P independent of λ ∈ [0, 1]. From Sylvester’s inertia the-
orem [28] and since blkdiag(In1+n2 ,M) is positive definite,
the inertia of P = blkdiag(In1+n2 ,M)(−∇2H(x∗)) are
again given by the inertia of −∇2H(x∗). In conclusion, the
inertia and the nullspace of Jλ(x∗) are given by the inertia
of −∇2H(x∗) and ker∇2H(x∗).

To prove statement 3) consider the positive definite square
root M1/2 of M . Inspired by [23], we apply the similarity
transformation z = Tx with T = blkdiag(In1 , In2 ,M

1/2).
In z-coordinates the dynamics (6) read as"

ż1

ż2

ż3

#
= −

24D−1
1 0 0
0 λD−1

2 −(1− λ)M−1/2

0 (1− λ)M−1/2 M−1/2D2M
−1/2

35∇V (z),

(24)
where V (z) , H(T−1z) is the potential in z-coordinates.
The derivative of V (z) along trajectories of (24) is given by

V̇ (z)=−∇V (z)T blkdiag(D−1
1 , λD−1

2 , M−1/2D2M
−1/2)∇V (z).

Thus, V (z(t)) is non-increasing along solutions of (24) and
its sublevel sets Ω̃c = {z ∈ TX : V (z) ≤ c} are pos-
itively invariant. Equivalently in x-coordinates, H̃(x(t)) =
H(x1(t), x2(t),M1/2x3(t)) is non-increasing along solu-
tions of (6) and Ωc = T−1 ◦ Ω̃c is positively invariant.

If additionally the sublevel sets Ωc are compact, then
every solution x(t) of the smooth dynamics (6) with initial
condition x(0) ∈ Ωc is forward-complete [27, Theorem 3.3].
The same properties can be asserted in z-coordinates. Fur-
thermore, the invariance principle [27, Theorem 4.4], applied
in z-coordinates, asserts that every solution z(t) with initial
condition z(0) in the compact and positively invariant set
Ω̃c = T ◦Ωc converges to the largest invariant set contained
in {z ∈ Ω̃c : ∇1V (z) = 0 , λ∇2V (z) = 0 , ∇3V (z) = 0},
i.e., the set where V̇ (z) = 0. Hence, for λ ∈ ]0, 1] the
positive limit sets of (24) are clearly given by T ◦ (Ωc ∩ E).
For λ = 0, the largest set contained in V̇ (z) = 0, which is
also invariant w.r.t. the dynamics (24), is obviously again the
set T ◦ (Ωc ∩ E). In original x-coordinates we conclude that
the positive limit set of the dynamics (6) is the set Ωc ∩ E .
This completes the proof of Theorem III.1. �
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