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Abstract— Future power networks will be characterized by
safe and reliable functionality against physical and cyber
attacks. This paper proposes a unified framework and advanced
monitoring procedures to detect and identify network compo-
nents malfunction or measurements corruption caused by an
omniscient adversary. We model a power system under cyber-
physical attack as a linear time-invariant descriptor system with
unknown inputs. Our attack model generalizes the prototypical
stealth, (dynamic) false-data injection and replay attacks. We
characterize the fundamental limitations of both static and
dynamic procedures for attack detection and identification.
Additionally, we design provably-correct (dynamic) detection
and identification procedures based on tools from geometric
control theory. Finally, we illustrate the effectiveness of our
method through a comparison with existing (static) detection
algorithms, and through a numerical study.

I. INTRODUCTION

Problem setup Recent studies and real-world incidents
have demonstrated the inability of the power grid to ensure
a reliable service in the presence of network failures and
possibly malignant actions [2], [3]. Besides failures and
attacks on the physical power grid infrastructure, the envi-
sioned future smart grid is also prone to cyber attacks on its
communication layer. In short, cyber-physical security is a
fundamental obstacle challenging the smart grid vision.

A classical mathematical model to describe the grid on
the transmission level is the so-called structure-preserving
power network model, which consists of the dynamic swing
equation for the generator rotor dynamics, and of the al-
gebraic load-flow equation for the power flow through the
network buses [4]. In this work, we consider the linearized
small signal version of the structure-preserving model, which
is composed by the linearized swing equation and the DC
power flow equation. The resulting linear continuous-time
descriptor model [5] of a power network has also been
studied for estimation and security purposes in [6]–[8].

From static to dynamic detection Existing approaches
to security and stability assessment are mainly based upon
static estimation techniques for the set of voltage angles and
magnitudes at all system buses, e.g., see [10]. Limitations
of these techniques have been often underlined, especially
when the network malfunction is intentionally caused by an
omniscient attacker [9], [11]. The development of security

This material is based in part upon work supported by NSF grants IIS-
0904501 and CPS-1135819.

Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo
are with the Center for Control, Dynamical Systems and
Computation, University of California at Santa Barbara,
{fabiopas,dorfler,bullo}@engineering.ucsb.edu

In the interest of space, we omit a proof of the results contained in this
paper, and we refer the interested reader to [1].

G G

G

G

G

bus 1

bus 2 bus 3

bus 4bus 5

bus 6

bus 7 bus 8

bus 9

bus 10bus 11

bus 12
bus 13 bus 14

Fig. 1. For the here represented IEEE 14 bus system, if the voltage angle of
one bus is measured exactly, then a cyber attack against the measurements
data is always detectable by our dynamic detection procedure. In contrary,
as shown in [9], a cyber attack may remain undetected by a static procedure
if it compromises as few as four measurements.

procedures that exploit the dynamics of the power network
is recognized [12] as an outstanding important problem. We
remark that the use of static state estimation and detection
algorithms has been adopted for many years for several
practical and technological reasons. First, because of the low
bandwidth of communication channels from the measuring
units to the network control centers, continuous measure-
ments were not available at the control centers, so that the
transient behavior of the network could not be captured.
Second, a sufficiently accurate dynamic model of the network
was difficult to obtain or tune, making the analysis of
the dynamics even harder. As of today, because of recent
advances in hardware technologies, e.g., the advent of Phasor
Measurement Units and large bandwidth communications,
and in identification techniques for power system parameters
[13], these two limitations can be overcome. Finally, the
dynamic estimation and detection problem was considered
much harder than the static counterpart. We address this
theoretic limitation by improving upon results presented
in [14], [15] for the security assessment of discrete time
dynamical networks.

Literature review on dynamic detection Dynamic secu-
rity has been approached via heuristics and expert systems,
e.g., see [16]. Shortcomings of these methods include relia-
bility and accuracy against unforeseen system anomalies, and
the absence of analytical performance guarantees. A different
approach relies on matching a discrete-time state transition
map to a series of past measurements via Kalman filtering,
e.g., see [17], [18] and the references therein. Typically, these
transition maps are based on heuristic models fitted to a



specific operating point [17]. Clearly, such a pseudo-model
poorly describes the complex power network dynamics and
suffers from shortcomings similar to those of expert systems
methods. In [18], the state transition map is chosen more
accurately as the linearized and Euler-discretized power
network dynamics. The local observability of the resulting
linear discrete-time system is investigated in [18], but in
the absence of unforeseen attacks. Finally, in [19] a graph-
theoretic framework is proposed to evaluate the impact of
cyber attacks on a smart grid and empirical results are given.

Recent approaches to dynamic security consider
continuous-time power system models and apply dynamic
techniques [6]–[8], [20]. While [20] adopts an overly
simplified model neglecting the algebraic load flow
equations, the references [6]–[8] use a more accurate
network descriptor model. In [7] different failure modes are
modeled as instances of a switched system and identified
using techniques from hybrid control. This approach, though
elegant, results in a severe combinatorial complexity in the
modeling of all possible attacks. In our earlier work [8],
under the assumption of generic network parameters, we
state necessary and sufficient conditions for identifiability
of attacks based on the network topology. Finally, in [6]
dynamical filters are designed to isolate certain predefined
failures of the network components. With respect to this
last work, we assume no a priori knowledge of the set
of compromised components and of their compromised
behavior. Our results generalize and include those of [6].

Contributions The contributions of this paper are four-
fold. First, we provide a unified modeling framework for
dynamic power networks subject to cyber-physical attacks.
For our model, we define the notions of detectability and
identifiability of an attack by its effect on output measure-
ments. Informed by the classic work on geometric control
theory [21], [22], our framework includes the deterministic
static detection problem considered in [9], [11], and the
prototypical stealth [23], (dynamic) false-data injection [24],
and replay attacks [25] as special cases. Second, we focus
on the descriptor model of a power system and we show the
fundamental limitations of static and dynamic detection and
identification procedures. Specifically, we show that static
detection procedures are unable to detect any attack affecting
the dynamics, and that attacks corrupting the measurements
can be easily designed to be undetectable. On the contrary,
we show that undetectability in a dynamic setting is much
harder to achieve for an attacker. Specifically, a cyber-
physical attack is undetectable if and only if the attackers’
input signal excites uniquely the zero dynamics of the
input/output system. As a complementary result, our work
[8] gives necessary and sufficient graph-theoretic conditions
for the absence of zero dynamics, and hence for the ab-
sence of undetectable attacks. Third, we propose a detection
and identification procedure based on geometrically-designed
residual filters. Under the assumption of attack identifiability,
our method correctly identifies the attacker set independently
of its strategy. From a system-theoretic perspective, correct
identification is implied by the absence of zero dynamics in

our proposed identification filters. Our design methodology
is applicable to linear systems with direct input to output
feedthrough, and it generalizes the construction presented in
[26]. Fourth and finally, we illustrate the potential impact of
our theoretical results on the standard IEEE 14 bus system
illustrated in Fig. 1. For this system it is known [9] that an
attack against the measurement data may remain undetected
by a static procedure if the attacker set compromises as
few as four measurements. We show here instead that such
an attack is always detectable by our dynamic detection
procedure provided that at least one bus voltage angle or
one generator rotor angle is measured exactly.

We conclude with two remarks on our contributions. First,
our results – the notions of detectability and identifiability,
the fundamental limitations of static versus dynamic monitor-
ing, and the geometric design of detection and identification
filters – are analogously and immediately applicable to
arbitrary index-one descriptor systems, thereby including any
linear system ẋ = Ax+Bu, y = Cx+Du, with attack signal
u. Second, although we treat here the noiseless case, it is well
known [27] that our deterministic detection filters are the
key ingredient, together with Kalman filtering and hypothesis
testing, in the design of statistical identification methods.

Organization Section II presents the descriptor system
model of a power network, our framework for the modeling
of cyber-physical attacks, and the detection and identification
problem. Section III states the fundamental limitations of
static and dynamic detection procedures. Section IV presents
the residual filters for dynamic detection and identification.
Section V contains the IEEE 14 bus system case study.

II. CYBER-PHYSICAL ATTACKS ON POWER NETWORKS

A. Structure-preserving power network model with cyber
and physical attacks

We consider the linear small-signal version of the clas-
sical structure-preserving power network model [4]. This
descriptor model consists of the dynamic linearized swing
equation and the algebraic DC power flow equation. A
detailed derivation from the nonlinear structure-preserving
power network model can be found, for instance, in [6], [8].

Consider a connected power network consisting of n gen-
erators {g1, . . . , gn}, their associated n generator terminal
buses {b1, . . . , bn}, and m load buses {bn+1, . . . , bn+m}.
The interconnection structure of the power network is en-
coded by a connected admittance-weighted graph. The gener-
ators gi and buses bi form the vertex set of this graph, and the
edges are given by the transmission lines {bi, bj} weighted
by the susceptance between buses bi and bj , as well as the
internal connections {gi, bi} weighted by the transient reac-
tance between each generator gi and its terminal bus bi. The
Laplacian matrix associated with the admittance-weighted
graph is the symmetric matrix

[
Lgg Lgl
Llg Lll

]
∈ R(n+m)×(n+m),

where the first n entries are associated with the genera-
tors and the last m entries correspond to the buses. The
differential-algebraic model of the power network is given
by the linear continuous-time descriptor system

Eẋ(t) = Ax(t) + P (t), (1)



where the state x = [δT ωT θT]T ∈ R2n+m consists of the
generator rotor angles δ ∈ Rn, the frequencies ω ∈ Rn,
and the bus voltage angles θ ∈ Rm. The input term P (t)
is due to known changes in mechanical input power to the
generators or real power demand at the loads. Furthermore,
the descriptor system matrices are

E =

I 0 0
0 M 0
0 0 0

 , A = −

 0 −I 0
Lgg Dg Lgl
Llg 0 Lll

 , (2)

where M and Dg are the diagonal matrices of the generator
inertia and damping coefficients. The dynamic and algebraic
equations of the linear descriptor system (1) are classically
referred to as the linearized swing equation and the DC
power flow equation, respectively. Notice that the initial
condition of system (1) needs to obey the algebraic constraint
Llgδ(0) + Lllθ(0) = Pθ(0), where Pθ(0) is the vector
containing the entries {2n+1, . . . , 2n+m} of P (0). Finally,
we assume the parameters of the power network descriptor
model (1) to be known, and we remark that they can
be either directly measured, or estimated through dynamic
identification techniques, see for example [13].

Throughout the paper, the assumption is made that a
combination of the state variables of the descriptor system
(1) is being continuously measured over time. Let C ∈ Rp×n

be the output matrix and let y(t) = Cx(t) denote the p-
dimensional measurements vector. Moreover, we allow for
the presence of unknown disturbances affecting the behavior
of the plant (1), which, besides reflecting the genuine failure
of network components, can be the effect of a cyber-physical
attack against the network. We classify these disturbances
into state attacks, if they show up in the measurements vector
after being integrated through the network dynamics, and
output attacks, if they corrupt directly the measurements
vector. The network dynamics in the presence of a cyber-
physical attack can then be written as1

Eẋ(t) = Ax(t) +
[
F 0

]︸ ︷︷ ︸
B

[
f(t)
`(t)

]
︸ ︷︷ ︸

u(t)

,

y(t) = Cx(t) +
[
0 L

]︸ ︷︷ ︸
D

[
f(t)
`(t)

]
︸ ︷︷ ︸

u(t)

.

(3)

The input signals f(t) and `(t) are referred to as state
and output attack modes, respectively. The attack modes are
assumed to be unknown and piece-wise continuous functions
of time of dimension 2n + m and p, respectively, and they
act through the full rank matrices F ∈ R(2n+m)×(2n+m) and
L ∈ Rp×p. For notational convenience, and without affecting
generality, we assume that each state and output variable can
be independently compromised by an attacker. Therefore,
we let F and L be the identity matrices of dimensions
2n + m and p. The attack mode t 7→ u(t) ∈ R2n+m+p

depends upon the specific attack profile. In the presence of

1Because of the linearity of (1), the known input P (t) can be neglected,
since it does not affect the detectability of unknown input attacks.

k ∈ N0, k ≤ 2n+m+p, attackers indexed by the attack set
K ⊆ {1, . . . , 2n+m+p}, all and only the entries K of u(t)
are nonzero over time. To underline this sparsity relation, we
will use uK(t) to denote the attack mode. Accordingly, the
pair (BK , DK), where BK and DK are the submatrices of
B and D with columns in K, is called attack signature.

The model (3) is very general, and it can capture the
occurrence of several concurrent contingencies in the power
network, which are caused either by components failure or
external attacks. For instance,

(i) a change in the mechanical power input to generator i
(resp. in the real power demand of load j) is described
by the attack signature (Bi, 0) (resp. (B2n+j , 0)), and
a non-zero attack mode un+i(t) (resp. u2n+j(t));

(ii) a line outage occurring on the line {r, s} is modeled
by the signature ([Br Bs], [0 0]) and a non-zero mode
[ur(t) us(t)]T, see [6]; and

(iii) the failure of sensor i, or the corruption of the i-th
measurement by an attacker is captured by the signa-
ture (0, D2n+m+i) and a non-zero mode u2n+m+i(t).

B. Notions of detectability and identifiability for attack sets
In this section we present the problem under investigation

and we recall some definitions. Observe that a cyber-physical
attack may remain undetected from the measurements if there
exists a normal operating condition of the network under
which the output would be the same as under the perturbation
due to the attacker. Let y(x0, u, t) be the output sequence
generated from the initial state x0 under the attack signal
u(t). Throughout the paper, let T ⊆ R≥0 denote the set
of instants at which attack detection and identification is
performed. In particular, we will later consider the cases of
discrete T = N0 and continuous time scales T = R.

Definition 1 (Undetectable attack set): For the linear
descriptor system (3), the attack set K is undetectable if there
exist initial conditions x1, x2 ∈ R2n+m, and an attack mode
uK(t) such that, for all t ∈ T , y(x1, uK , t) = y(x2, 0, t).

A more general concern than detection is identifiability of
attackers, i.e., the possibility to distinguish from measure-
ments between the action of two distinct attacks.

Definition 2 (Unidentifiable attack set): For the linear
descriptor system (3), the attack set K is unidentifiable if
there exists an attack set R, with |R| ≤ |K| and R 6= K,
initial conditions xK , xR ∈ R2n+m, and attack modes uK(t),
uR(t) such that, for all t ∈ T , y(xK , uK , t) = y(xR, uR, t).

Of course, an undetectable attack is also unidentifiable,
since it cannot be distinguished from the zero input. The
converse does not hold. The security problem we consider
in this paper is as follows.
Problem: (Attack detection and identification) For the
linear descriptor system (3), design an attack detection and
identification procedure.

Definitions 1 and 2 are immediately applicable to arbitrary
control systems subjects to external attacks. Before proposing
a solution to the Attack detection and identification Problem,
we motivate the use of a dynamic detection and identification
algorithm by characterizing the fundamental limitations of
static and dynamic procedures.



III. LIMITATIONS OF STATIC AND DYNAMIC PROCEDURES
FOR DETECTION AND IDENTIFICATION

The objective of this section is to show that some fun-
damental limitations of a static detection procedure can be
overcome by exploiting the network dynamics. We start by
deriving a reduced state space model for a power network,
which is convenient for illustration and analysis purposes.

A. Kron-reduced representation of a power network

For the system (3), consider the partitioned matrices
F = [ F T

δ F T
ω F T

θ ]T and C = [ Cδ Cω Cθ ] reflecting the state
x = [δT ωT θT]T. Since the network Laplacian matrix is
irreducible (due to connectivity), the descriptor system (3)
is of index one [6]. The submatrix Lll in (2) is invertible
and the bus voltage angles θ(t) can be expressed via the
generator rotor angles δ(t) and the state attack mode f(t) as

θ(t) = −L−1
ll Llgδ(t)− L−1

ll Fθf(t). (4)

The elimination of the algebraic variables θ(t) in the descrip-
tor system (3) leads to the state space system[

δ̇
ω̇

]
=

[
0 I

−M−1
(
Lgg − LglL−1

ll Llg
)

−M−1Dg

]
︸ ︷︷ ︸

Ã

[
δ
ω

]

+
[

Fδ 0
M−1Fω −M−1LglL−1

ll Fθ 0

]
︸ ︷︷ ︸

B̃

u , (5)

y(t) =
[
Cδ − CθL−1

ll Llg Cω

]︸ ︷︷ ︸
C̃

[
δ
ω

]
+

[
−CθL−1

ll Fθ L
]︸ ︷︷ ︸

D̃

u.

This reduction of the passive bus nodes is known as Kron
reduction in the literature on power networks and circuit
theory [28]. Hence, we refer to (5) as the Kron-reduced
system. Accordingly, for each attack set K, the attack
signature (BK , DK) is mapped to the corresponding sig-
nature (B̃K , D̃K) in the Kron-reduced system through the
transformation for the matrices B and D described in (5).
Clearly, for any state trajectory of the Kron-reduced (5), the
corresponding state trajectory of the (non-reduced) descriptor
power network model (3) can recovered by identity (4).

We point out the following subtle but important facts,
which are easily visible in the Kron-reduced system (4).
First, a state attack Fθf(t) on the buses affects directly the
output y(t), provided that CθL−1

ll Fθf(t) 6= 0. Second, for
a connected bus network, the lower block of Ã is a fully
populated Laplacian matrix, and L−1

ll and LglL−1
ll are both

positive matrices [28]. As a consequence, an attack on a
single bus affects the entire network and not only the locally
attacked node or its vicinity. Third and finally, the mapping
from the input signal u(t) and the initial condition x(0)
(subject to the constraint (4) evaluated at t = 0) to the
output signal y(t) of the descriptor system (3) coincides
with the corresponding input and initial state to output
map of the associated Kron-reduced system (5). Hence, the
definition of detectability (resp. identifiability) of an attack

set is analogous for the Kron-reduced system (5), and we
can directly state the following lemma.

Lemma 3.1: (Equivalence of detectability and identi-
fiability under Kron reduction): For the power network
descriptor system (3), the attack set K is detectable (resp.
identifiable) if and only if it is detectable (resp. identifiable)
for the associated Kron-reduced system (5).

Following Lemma 3.1, we study detectability and identifi-
ability of attacks against the power network descriptor model
(3) by analyzing the associated Kron-reduced system (5).

B. Fundamental limitations of a Static Detector
By Static Detector, or, with the terminology of [10],

Bad Data Detector, we denote an algorithm that uses the
network measurements to check for the presence of attacks
at some predefined instants of time, and without exploiting
any relation between measurements taken at different time
instants. By Definition 1, an attack is undetectable by a Static
Detector if and only if, for all time instants t in a countable
set T , there exists a vector ξ(t) such that y(t) = C̃ξ(t).
Without loss of generality, we set T = N0. In other words,
the Static Detector checks whether, at a particular time
instant t ∈ N0, the measured data is consistent with the
measurement equation, for example, the power flow equation
at a bus. Notice that our definition of Static Detector is
compatible with [9], where an attack is detected if and only
if the residual r(t) = y(t)− C̃[δ̂(t)T ω̂(t)T]T is nonzero for
some t ∈ N0, where [δ̂(t)T ω̂(t)T]T = C̃†y(t). If r(t) 6= 0,
then the attack is detected, and it is undetected otherwise.2

Given a vector v, let ‖v‖0 denote the number of its nonzero
components.

Theorem 3.2: (Static detectability of cyber-physical at-
tacks) For the power network descriptor system (3) and an
attack set K, the following two statements are equivalent:

(i) the attack set K is undetectable by a Static Detector;
(ii) there exists an attack mode uK(t) such that, for some

δ(t) and ω(t), at every t ∈ N0 it holds

C̃

[
δ(t)
ω(t)

]
+ D̃uK(t) = 0 , (6)

where C̃ and D̃ are as in (5).
Moreover, there exists an attack set K, with |K| = k ∈ N0,
undetectable by a Static Detector if and only if there exist
x ∈ R2n such that ‖Cx‖0 = k.

We highlight that a necessary and sufficient condition
for the equation (6) to be satisfied is that L`(t) ∈ Im(C)
at all times t ∈ N0, where `(t) is the vector of the last
p components of uK(t). Hence, statement (ii) in Theorem
3.2 implies that no state attack can be detected by a static
detection procedure, and that an undetectable output attack
exists if and only if Im(DK) ∩ Im(C) 6= {0}.

We now focus on the static identification problem. Fol-
lowing Definition 2, the following result can be asserted.

Theorem 3.3: (Static identification of cyber-physical at-
tacks) For the power network descriptor system (3) and an
attack set K, the following two statements are equivalent:

2Similar conclusion can be drawn for the case of noisy measurements.



(i) the attack set K is unidentifiable by a Static Detector;
(ii) there exists an attack set R, with |R| ≤ |K| and R 6=

K, and attack modes uK(t), uR(t), such that, for some
δ(t) and ω(t), at every t ∈ N0, it holds

C̃

[
δ(t)
ω(t)

]
+ D̃ (uK(t) + uR(t)) = 0 ,

where C̃ and D̃ are as in (5).
Moreover, there exists an attack set K, with |K| = k ∈ N0,
unidentifiable by a Static Detector if and only if there exists
an attack set K̄, with |K̄| ≤ 2k, which is undetectable by a
Static Detector.

Similar to the fundamental limitations of static detectabil-
ity in Theorem 3.2, Theorem 3.3 implies that, for instance,
state attacks cannot be identified and that an undetectable
output attack exists if and only if Im(DK̄) ∩ Im(C) 6= {0}.

C. Fundamental limitations of a Dynamic Detector
In the following we refer to a security system having

access to the continuous time measurements signal y(t),
t ∈ R≥0, as a Dynamic Detector. As opposed to a Static
Detector, a Dynamic Detector checks for the presence of
attacks at every instant of time t ∈ R≥0. By Definition 1,
an attack is undetectable by a Dynamic Detector if and only
if there exists a network initial state ξ(0) ∈ R2n such that
y(t) = C̃eÃtξ(0) for all time instants t ∈ R≥0. Intuitively, a
Dynamic Detector is harder to mislead than a Static Detector.

Theorem 3.4: (Dynamic detectability of cyber-physical
attacks) For the power network descriptor system (3) and an
attack set K, the following two statements are equivalent:

(i) the attack set K is undetectable by a Dynamic Detec-
tor;

(ii) there exists an attack mode uK(t) such that, for some
δ(0) and ω(0), at every t ∈ R≥0, it holds

C̃eÃt

[
δ(0)
ω(0)

]
+ C̃

∫ t

0

eÃ(t−τ)B̃uK(τ)dτ = −D̃uK(t),

(iii) there exist s ∈ C, g ∈ R|K|, and x ∈ R2n, with x 6= 0,
such that (sI − Ã)x− B̃Kg = 0 and C̃x + D̃Kg = 0,

where Ã, B̃, C̃, and D̃ are as in (5).
Moreover, there exists an attack set K, with |K| = k,
undetectable by a Dynamic Detector if and only if there exist
s ∈ C and x ∈ R2n+m such that ‖(sE−A)x‖0+‖Cx‖0 = k.

Some comments are in order. First, state attacks can be
detected in the dynamic case. Second, in order to mislead
a Dynamic Detector an attacker needs to inject a signal
which is consistent with the network dynamics at every
instant of time. Hence, as opposed to the static case, the
condition L`(t) ∈ Im(C) needs to be satisfied for every
t ∈ R≥0, and it is only necessary for the undetectability
of an output attack. Indeed, for instance, state attacks can be
detected even though they automatically satisfy the condition
0 = L`(t) ∈ Im(C). Third and finally, according to the last
statement of Theorem 3.4, the existence of invariant zeros 3

3For the system (Ã, B̃K , C̃, D̃K), the value s ∈ C is an invariant zero if
there exists x ∈ R2n, with x 6= 0, g ∈ R|K|, such that (sI−Ã)x−B̃Kg =
0 and C̃x + D̃Kg = 0. For a linear dynamical system, the existence of
invariant zeros is equivalent to the existence of zero dynamics [22].

for the Kron-reduced system (Ã, B̃K , C̃, D̃K) is equivalent
to the existence of an undetectable attack mode uK(t). As a
consequence, a dynamic detector performs better than a static
detector, while requiring, possibly, fewer measurements. A
related example is presented in Section V.

We now focus on the identification problem.
Theorem 3.5: (Dynamic identifiability of cyber-physical

attacks) For the power network descriptor system (3), the
following two statements are equivalent:

(i) the attack set K is unidentifiable by a Dynamic De-
tector;

(ii) there exists an attack set R, with |R| ≤ |K| and R 6=
K, and attack modes uK(t), uR(t), such that, for some
δ(0) and ω(0), at every t ∈ R≥0, it holds

C̃eÃt

[
δ(0)
ω(0)

]
+ C̃

∫ t

0

eÃ(t−τ)B̃ (uK(τ) + uR(τ)) dτ

= −D̃ (uK(t) + uR(t))

where Ã, B̃, C̃, and D̃ are as in (5).
Moreover, there exists an attack set K, with |K| = k ∈ N0,
unidentifiable by a Dynamic Detector if and only if there
exists an attack set K̄, with |K̄| ≤ 2k, which is undetectable
by a Dynamic Detector.

In other words, the existence of an unidentifiable attack
set of cardinality k is equivalent to the existence of invariant
zeros for the system (Ã, B̃K̄ , C̃, D̃K̄), for some attack set
K̄ with |K̄| ≤ 2k. A careful reader may notice that
condition (ii) in Theorem 3.4 is hard to verify because of its
combinatorial complexity: one needs to certify the absence
of invariant zeros for all possible distinct pairs of |K|-
dimensional attack sets. Then, a conservative verification of
condition (ii) requires

(
2n+m+p

2|K|
)

tests. In [8] we partially
address this complexity problem by presenting an intuitive
and easy to check graph-theoretic condition for a given
network topology and generic system parameters.

Remark 1: (Stealth, false-data injection, and replay
attacks) The following prototypical attacks can be modeled
and analyzed through our theoretical framework:

(i) stealth attacks, as defined in [23], correspond to output
attacks satisfying DKuK(t) ∈ Im(C);

(ii) (dynamic) false-data injection attacks, as defined in
[24], are output attacks rendering the unstable modes
(if any) of the system unobservable. These unobserv-
able modes are included in the invariant zeros set; and

(iii) replay attacks, as defined in [25], are state and output
attacks satisfying Im(C) ⊆ Im(DK), BK 6= 0.
The resulting system may have an infinite number of
invariant zeros: if the attacker knows the system model,
then it can cast very powerful undetectable attacks.

In [25], a monitoring signal (unknown to the attacker) is
injected into the system to detect replay attacks. It can be
shown that, if the attacker knows the system model, and if the
attack signal enters additively as in (3), then the attacker can
design undetectable attacks without knowing the monitoring
signal. Therefore, the fundamental limitations presented in
Section III are also valid for active detectors, which are
allowed to inject monitoring signals to reveal attacks. �



IV. DESIGN OF DYNAMIC DETECTION AND
IDENTIFICATION PROCEDURES

We now design the filters which constitute the basis of our
dynamic attack detection and identification procedure.

A. Detection of attacks
We start by considering the attack detection problem,

whose solvability condition is in Theorem 3.4. We propose
the following residual filter to detect cyber-physical attacks.

Theorem 4.1 (Attack detection filter): Consider the
power network descriptor system (3) and the associated
Kron-reduced system (5). Assume that the attack set is
detectable and that the network initial state x(0) is known.
Consider the detection filter

ẇ(t) = (Ã + GC̃)w(t)−Gy(t),

r(t) = C̃w(t)− y(t),
(7)

where w(0) = x(0), and G ∈ R2n×p is such that Ã + GC̃
is a Hurwitz matrix. Then r(t) = 0 at all times t ∈ R≥0 if
and only if u(t) = 0 at all times t ∈ R≥0.

In summary, the residual filter (7) guarantees the detection
of any detectable attack set. Further comments regarding the
detection filter (7) can be found at the end of this section.

B. Identification of attacks
We now focus on the attack identification problem, whose

solvability condition is in Theorem 3.5. Unlike the detection
case, the identification of the attack set K requires a combi-
natorial procedure, since, a priori, K is one of the

(
2n+m+p

|K|
)

possible attack sets. As key component of our identification
procedure, we propose a residual filter to determine whether
a predefined set coincides with the attack set.

We next introduce in a coordinate-free geometric way the
key elements of this residual filter based on the notion of
condition-invariant subspaces [22]. Let K be a k-dimensional
attack set, and let B̃K , D̃K be as defined right after the
Kron reduced model (5). Let [V T

K QT
K ]T ∈ Rp×p be an

orthonormal matrix such that

VK = Basis(Im(D̃K)), and QK = Basis(Im(D̃K)⊥),

and let

BZ = B̃K(VKD̃K)†, and B̄K = B̃K(I −DKD†
K). (8)

Define the subspace S∗ ⊆ R2n to be the smallest(
Ã− B̃K(VKD̃K)†VKC̃ , Ker(QKC̃)

)
-conditioned invariant

subspace containing Im(B̄K), and let JK be an output
injection matrix such that

(Ã− B̃K(VKD̃K)†VKC̃ + JKQKC̃)S∗ ⊆ S∗. (9)

Let PK be an orthonormal projection matrix onto the quo-
tient space R2n \ S∗, and let

AK = PK(Ã− B̃K(VKD̃K)†VKC̃ + JKQKC̃)PT
K . (10)

Finally, let HK and the unique MK be such that

Ker(HKQC̃) = S∗ + Ker(QC̃), and

HKQC̃ = MKPK .
(11)

Theorem 4.2 (Attack identification filter): Consider the
power network descriptor system (3) and the associated
Kron-reduced system (5). Assume that the attack set K is
identifiable and that the network initial state x(0) is known.
Consider the identification filter

ẇK(t) =(AK + GKMK)wK(t)
+

(
PKBZVK − (PKJK + GKHK)Q

)
y(t),

rK(t) =MKwK(t)−HKQy(t),
(12)

where wK(0) = PKx(0), and GK ∈ R2n×p is such that
AK + GKMK is a Hurwitz matrix. Then rK(t) = 0 at all
times t ∈ R≥0 if and only if K equals the attack set.

Note that the residual rK(t) is identically zero if the attack
set coincides with K, even if the attack input is nonzero.
For an attack set K, we refer to the signal rK(t) in the
filter (12) as the residual associated with K. A corollary
result of Theorem 4.2 is that, if only an upper bound on
the cardinality of the attack set is known, then the residual
rK(t) is nonzero if and only if the attack set is contained in
K. We now summarize our identification procedure, which
assumes the knowledge of the network initial condition and
of an upper bound k on the cardinality of the attack set K:

(i) design an identification filter for each possible subset
of {1, . . . , 2n + m + p} of cardinality k;

(ii) monitor the power network by running each identifi-
cation filter;

(iii) the attack set K coincides with the intersection of the
attack sets Z whose residual rZ(t) is identically zero.

Remark 2: (Detection and identification filters for un-
known initial condition) If the network initial state is not
available, then an arbitrary initial state w(0) ∈ R2n can
be chosen. Consequently, the convergence of the filters (7)
and (12) becomes asymptotic, and some attacks may remain
undetected or unidentified. For instance, if the eigenvalues
of the detection filter matrix have been assigned to have real
part smaller than c < 0, with c ∈ R, then, in the absence
of attacks, the residual r(t) exponentially converges to zero
with rate less than c. Hence, only inputs u(t) that vanish
faster or equal than e−ct can remain undetected by the filter
(7). Alternatively, the detection filter can be modified so as to
converge in a predefined finite time [29]. In this case, every
attack signal is detectable after a finite transient. �

Remark 3: (Detection and identification in the presence
of process and measurement noise) The detection and
identification filters here presented are a generalization to
dynamical systems with direct input to output feedthrough
of the devices presented in [26]. Additionally, our design
guarantees the absence of invariant zeros in the residual
system, so that every attack signal affect the corresponding
residual. Finally, if the network dynamics are affected by
noise, then an optimal noise rejection in the residual system
can be obtained by choosing the matrix G in (7) and GK in
(12) as the Kalman gain according to the noise statistics. �

V. A NUMERICAL STUDY

The effectiveness of our theoretic developments is here
demonstrated for the IEEE 14 bus system reported in Fig.



1. Let the IEEE 14 bus power network be modeled as a
descriptor model of the form (3), where the network matrix
A is as in [30]. Following [9], the measurement matrix C
consists of the real power injections at all buses, of the real
power flows of all branches, and of one rotor angle (or one
bus angle). We assume that an attacker can independently
compromise every measurement, except for the one referring
to the rotor angle, through an appropriate output attack.

Let k ∈ N0 be the cardinality of the attack set. From [9]
it is known that, for a Static Detector, an undetectable attack
exists if k ≥ 4. In other words, due to the sparsity pattern of
C, there exists a signal uK(t), with (the same) four nonzero
entries at all times, such that DuK(t) ∈ Im(C) at all times.
By Theorem 3.2 the attack set K remains undetected by a
Static Detector through the attack mode uK(t). On the other
hand, following Theorem 3.4, it can be verified that, for the
same output matrix C, and independent of the value of k,
there exists no undetectable (output) attack set.

VI. CONCLUSION

For a power network modeled via a linear time-invariant
descriptor system, we have analyzed the fundamental lim-
itations of static and dynamic attack detection and iden-
tification procedures. We have rigorously shown that a
dynamic detection and identification method exploits the
network dynamics and outperforms the static counterpart,
while requiring, possibly, fewer measurements. Additionally,
we have described a provably correct attack detection and
identification procedure based on geometrically designed
residuals filters, and we have illustrated its effectiveness
through an example of cyber-physical attack against the IEEE
14 bus system. As a complementary result, in our related
work [31], we develop a distributed framework for attack
detection in power networks.
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