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Cooperative Patrolling via Weighted Tours: Performance
Analysis and Distributed Algorithms

Fabio Pasqualetti, Joseph W. Durham, and Francesco Bullo

Abstract—This work focuses on the problem of patrolling an environ-
ment with a team of autonomous agents. Given a set of strategically
important locations (viewpoints) with different priorities, our patrolling
strategy consists of (i) constructing a tour through the viewpoints,
and (ii) driving the robots along the tour in a coordinated way. As
performance criteria, we consider the weighted refresh time, i.e., the
longest time interval between any two visits of a viewpoint, weighted
by the viewpoint’s priority. We consider the design of both optimal
trajectories and distributed control laws for the robots to converge to
optimal trajectories. First, we propose a patrolling strategy and we
characterize its performance as a function of the environment and the
viewpoints priorities. Second, we restrict our attention to the problem of
patrolling a non-intersecting tour, and we describe a team trajectory with
minimum weighted refresh time. Third, for the tour patrolling problem
and for two distinct communication scenarios, namely the Passing and
the Neighbor-Broadcast communication models, we develop distributed
algorithms to steer the robots towards a minimum weighted refresh time
team trajectory. Finally, we show the effectiveness and robustness of our
control algorithms via simulations and experiments.

I. INTRODUCTION

Coordinated teams of autonomous agents can effectively complete
tasks requiring repetitive execution, such as monitoring oil spills [1],
detecting forest fires [2], tracking border changes [3], and surveilling
an environment [4]. Surveillance of an environment requires that the
robots persistently travel around the area, and the challenge consists
in scheduling the robots trajectories to optimize a certain performance
criteria.
Related work. The problem of patrolling an environment with a team
of autonomous robots has recently received attention from scientists
interested in mobile robotics. In patrolling problems, it is a common
approach to associate a non-negative uncertainty value representing
some measure of interest with each point in the environment [5], [6].
This uncertainty value grows with time, unless the physical location
is covered by the sensor footprint of a robot. Additionally, a discrete
representation of the environment is typically obtained by selecting
a set of important viewpoints, and by creating a robotic roadmap
with the viewpoints as vertices. The robots are constrained to move
along this roadmap, and the performance of the team is measured
according to a frequency of visit criteria which reflects the amount
of uncertainty in the environment. In [7], two classes of patrolling
strategies, based respectively on space decomposition and traveling
salesperson tour computation, are presented and qualitatively com-
pared. In [4] and [8], an efficient and distributed solution to the
perimeter patrolling problem is proposed. In [9], the computational
complexity of the patrolling problem is studied in relation to the
roadmap representing the environment. Additionally, exact patrolling
algorithms, as well as constant factor approximations, are proposed
and analyzed. The possibility of storing information at important
locations in the environment is exploited in [10] to design minimalist
patrolling algorithms. Notice that in these last works the focus is
mainly on finding optimal trajectories and in scheduling the motion
of the robots. A different setup is considered in [11], [12], where
the robots are constrained to move along pre-specified tours, and the
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Fig. 1. This figure represents a part of the UCSB campus. For the surveillance
of the buildings in the map by a team of autonomous robots, a set of
35 important locations (viewpoints) has been identified, and a tour through
the viewpoints has been computed. The robots repeatedly patrol the tour to
guarantee complete and persistent surveillance of the buildings. We propose
the Equal-Time-Spacing trajectory, which minimizes the longest priority-
weighted time gap between any two visits of the same viewpoint.

goal is to control the robots velocities so as to optimize the patrolling
performance.
Our setup and approach We assume that the uncertainty growth of
the viewpoints is linear, with a possibly different rate (priority) for
each viewpoint, and that the uncertainty value becomes zero as soon
as the viewpoint is covered by the sensor footprint of a robot. For a
given set of connected viewpoints with priorities, we first construct
a minimum spanning tree through the viewpoints. Then, by means
of standard graph theory techniques, we compute a tour through the
viewpoints. Finally, we constrain the robots on the tour and compute
an optimal team trajectory. For optimality criteria, we consider the
weighted refresh time, which, loosely speaking, is the longest time
interval between any two visits of a viewpoint, weighted by the
corresponding viewpoint’s priority. The idea of moving the robots
along a tour of the viewpoints has been previously considered in [7].
Here we extend the results in [7], e.g., by considering viewpoints with
priorities, and by providing distributed control algorithms. This works
differs also from [11], [12] in the following ways. First, we focus
on the design of optimal team trajectories, as opposed to optimal
single-vehicle trajectories or suboptimal team trajectories. Second,
we consider a discrete set of viewpoints. Third, we consider real
valued priorities, instead of discretized ones. Finally, with respect to
[6], we consider multiple robots on a closed path, as opposed to a
single robot on an open path, and we consider different cost functions
and uncertainty models.
Contributions The main contributions of this work are as follows.
First, we introduce and formalize the concept of weighted refresh
time for a team trajectory (Section II). We remark that designing
team trajectories with minimum weighted refresh time is an NP-
hard optimization problem. We propose a computationally efficient
patrolling strategy, and we characterize its weighted refresh time
performance. Second, we state the patrolling optimization problem
of a weighted tour (Section III). For this problem, we show that a
minimum weighted refresh time team trajectory can be computed
by solving a convex,1 in fact linear, optimization problem. We
characterize a solution to this optimization problem, and we propose
a minimum refresh time team trajectory. Third, we develop and
characterize two distributed control algorithms to steer the robots

1Several solutions to this optimization problem may exist.
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towards a minimum weighted refresh time team trajectory (Section
IV). For the first algorithm, we assume that two robots communicate
only when they occupy the same location (Passing communication
model), and we allow for the presence of a leader or base station
to control the robots. For the second control algorithm, instead,
we assume that, at some times, each robot communicates with
its clockwise and counterclockwise neighbors (Neighbor-Broadcast
communication model). We characterize the convergence properties
of both algorithms. Finally, we validate our findings through a simu-
lation study and an experiment (Section V): we use the Player/Stage
simulation software to show the effectiveness and the robustness of
our second patrolling procedure in a campus environment, and we
conduct an experiment with real hardware in an indoor environment
with obstacles. The experiments confirm the robustness of the pro-
posed strategies against noise and unmodeled dynamics.

II. PROBLEM SETUP AND PRELIMINARY RESULTS

A. Robotic model and preliminary concepts

We are given a team of m > 0 identical robots, capable of sens-
ing, communicating, and moving in a path-connected environment
E ⊆ R2. Our communication model for distributed control will
be discussed in Section IV. Instead, we now discuss our combined
sensing and motion model.

Regarding sensing, we assume that the environment can be com-
pletely covered by simultaneously placing a robot at each of n > m
viewpoints in the configuration space. In other words, if m = n robots
were available and placed at the n viewpoints, then the union of the
sensor footprints of the robots would provide complete sensor cover-
age of the environment. We assume that each viewpoint is required for
complete sensor coverage. Since we assume that n > m, at least one
robot must visit multiple viewpoints for the entire environment to be
monitored over time. Additionally, we associate the positive priority
φα ∈ R>0 with the α-th viewpoint, and we let Φ = {φ1, . . . , φn}
denote the priority set. Let φmin = min{φ : φ ∈ Φ} and
φmax = max{φ : φ ∈ Φ}.

Regarding motion, we assume that the robots are holonomic, i.e.,
modeled as first order integrators, and move at most at unit speed.
We constrain the motion of the robots to the robotic roadmap G =
(V,E), where V = {v1, . . . , vn} denotes the set of viewpoints, and
where the undirected edge (vα, vβ) ∈ E denotes the possibility for
a robot to travel between vα and vβ . We associate a unique path
connecting any two neighbors in G, and we adopt the path length as
edge weight.2

A team trajectory X is an array of m continuous and piecewise-
differentiable trajectories x1(t), . . . , xm(t) defined by the motion
of the robots on the roadmap G, i.e., xi : [0,∞) 7→ G, for
i ∈ {1, . . . ,m}. We say that the viewpoint vα is visited at time
t by robot i if xi(t) = vα. Let A(α, i) and D(α, i) be, respectively,
the set of times at which robot ri arrives at and departs from the
viewpoint vα. Specifically, for a sufficiently small ε ∈ R>0, we
define

A(α, i) = {t ∈ [0,∞) : xi(t) = vα and xi(t− ε) 6= vα},
D(α, i) = {t ∈ [0,∞) : xi(t) = vα and xi(t+ ε) 6= vα}.

The (weighted) refresh time of a team trajectory X , which we denote
by RT(X), is the longest weighted time interval between any two

2We select these paths so that the set of path lengths, adopted as edge
weights, verify the triangle inequality. For example, the shortest paths between
viewpoints constitute a suitable choice.

consecutive visits of any viewpoint, i.e.,

RT(X) = max
{
φα
(
ta(α, td)− td

)
:

α ∈ {1, . . . , n}, td ∈ D(α, i) for any ri
}
, (1)

where ta(α, td) is the earliest arrival time by any robot at node α
after departure at time td:

ta(α, td) = min{t ∈ ∪mi=1A(α, i) : t ≥ td}.

It should be observed that the expression in (1) is undefined
if no viewpoint is visited by the robots. This situation is not of
interest, since we aim at designing trajectories that persistently visit
the viewpoints, that is team trajectories in which every viewpoint is
persistently visited in the interval [0,∞).

Problem 1: (Cooperative Patrolling) Given a set of viewpoints
with priorities, and a team of m ≥ 2 robots, design a persistent team
trajectory with minimum refresh time.

To conclude this section we remark that the cooperative patrolling
problem is, in general, computationally hard, even if all the priorities
have the same value [9]. Hence, we will not propose an optimal
solution to the Cooperative Patrolling problem (Problem 1), and we
will describe instead an efficient and distributed patrolling strategy
with performance guarantees.

B. Cyclic patrolling strategy and optimality bound

Our patrolling strategy consists of three steps. First, we construct
a minimum spanning tree of the roadmap G [13]. The sensor-
based construction of a minimum spanning tree can be achieved via
distributed computation, e.g., see [13], [14]. Second, we construct a
non-intersecting tour visiting the viewpoints by doubling the edges
of the computed minimum spanning tree. Third, we let the robots
continuously travel the tour in a coordinated way. In particular,
for a tour of length L, a team of m robots, and a set of initial
positions, define the Equal-Spacing trajectory to be such that (i)
the robots continuously travel the tour at maximum speed in the
same direction, and (ii) the distance between any two consecutive
robots is L/m. Notice that the refresh time of the Equal-Spacing
trajectory equals φmaxL/m. Following [7], we refer to the above
three steps patrolling strategy as weighted-cyclic strategy. Observe
that, for a given weighted tour, the Equal-Spacing trajectory may
not be a minimum refresh time team trajectory. We will discuss this
problem in Section III. The next theorem generalizes a result of [7]
from unweighted cyclic strategies to weighted cyclic strategies.

Theorem 2.1: (Optimality of weighted-cyclic strategy) Let G be
a robotic roadmap on the viewpoints V with priorities Φ. Let X(t)
be the team trajectory generated by the weighted-cyclic strategy on
G. Then,

RT(X)

RT∗
≤ 2(1 + γ)

φmax

φmin
,

where RT∗ denotes the minimum refresh time on G, and γ denotes
the ratio of the longest to the shortest edge of G.

Proof: We use a similar line of reasoning as in [7, Thoerem
2]. Let RT∗φmin

be the minimum refresh time when all the priorities
equal φmin. Notice that RT∗φmin

= φminRT∗1, where RT∗1 denotes the
minimum refresh time when all the priorities are unitary. Observe that
RT∗ ≥ φminRT∗1. On the other hand, it can be shown that there exists
a path cover of cardinality m for G of length at most RT∗1 [9]. Hence,
the length of a tour obtained by doubling the edges of a minimum
spanning tree is 2mRT∗1 + 2(m− 1)γw, where w denotes the length
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Fig. 2. The robots {r1, r2, r3} patrol the non-intersecting tour Γ with
viewpoints {v1, . . . , v5}. Robots move in counter-clockwise direction.

of the shortest edge. Consequently, RT(X) ≤ 2φmax(RT∗1 +γw). By
taking the ratio of the two bounds, we obtain

RT(X)

RT∗
≤ 2φmax(RT∗1 + γw)

φminRT∗1
≤ 2(1 + γ)

φmax

φmin
,

where the last inequality holds because RT∗1 ≥ w. Indeed, since we
assume m < n, at least one robot needs to travel one edge for all
the viewpoints to be visited.

Observe that, if γ and φmax/φmin are bounded by constants, then
the weighted-cyclic strategy is a constant factor approximation to the
Cooperative Patrolling problem (Problem 1). Moreover, the above
patrolling strategy improves upon the chain heuristic presented in [9,
Theorem VII.5]. In what follows we will not discuss the computation
of a minimum spanning tree, since solutions to this problem already
exist [13], [14]. Instead, we will focus on the problem of patrolling
a tour with minimum weighted refresh time.

Remark 1: (Tour with repeated viewpoints) Given a spanning
tree, a non-intersecting tour through the viewpoints is created as
follows: (i) compute a tour by doubling the edges, and (ii) add virtual
viewpoints with zero priority for each viewpoint appearing multiple
times along the tour. Notice that some viewpoints may be visited
several times along the tour. In this case neither the Equal-Spacing
trajectory nor the Equal-Time-Spacing trajectory in Section III may
achieve minimum weighted refresh time. However, the refresh time
we characterize for tours without repeated viewpoints is an upper
bound for the actual refresh time with repeated viewpoints, and the
bound in Theorem 2.1 is valid for both cases. In what follows we
consider only tours without repeated viewpoints.

C. Patrolling of a weighted tour

Motivated by the discussion in Section II-B, in the remainder of
the paper we focus on the following patrolling problem.

Problem 2: (Cooperative Tour Patrolling) Given a set of view-
points with priorities on a non-intersecting tour Γ, and a team of
m ≥ 2 robots moving on Γ in uniform direction, design a persistent
team trajectory with minimum refresh time.

Remark 2: (Single robot tour patrolling) If m = 1, then a
solution to the Cooperative Tour Patrolling problem (Problem 2)
consists of letting the robot move at maximum speed along the tour.
The refresh time of such a trajectory is φmaxL.

Without affecting generality, we label the robots clockwise ac-
cording to their initial position, and we let the robots move coun-
terclockwise on the tour Γ. A team trajectory is said to be order-
invariant if the ordering of the robots is constant over time. A Stop-
Go team trajectory is an order-invariant team trajectory in which each

robot moves at maximum speed, except, possibly, when its position
coincides with a viewpoint.

Definition 1: (Stop-Go team trajectory) A team trajectory is said
to be Stop-Go if it is order-invariant and, for each robot ri, it holds
ẋi(t) ∈ {0, 1} with xi(t) ∈ V whenever ẋi(t) = 0.

Lemma 2.2: (Optimality of Stop-Go team trajectories) For any
team trajectory X on a non-intersecting tour, there exists a Stop-Go
team trajectory X̃ satisfying RT(X̃) ≤ RT(X).

Proof: Define the permutation matrix P (t) so that its (i, j)-th
entry is 1 if, at time t, the i-th robot occupies the j-th position in
the team of robots, and it is 0 otherwise. The discontinuities of P (t)
coincide with the instants at which the ordering of the robots changes.
Let X̄(t) = P−1(t)X(t), and observe that RT(X̄(t)) = RT(X(t)).
Suppose that the speed of robot ri is not unitary along the edge e
of length `, and let ¯̀ be the travel time of ri along e. Notice that
(1) does not increase if the robot moves at unitary speed along e and
increases the waiting time at the endpoint of e by ¯̀− `.

In the next section we design Stop-Go team trajectories for the
Cooperative Tour Patrolling problem (Problem 2).

III. TEAM TRAJECTORIES WITH MINIMUM REFRESH TIME

A Stop-Go team trajectory with minimum weighted refresh time is
presented in this section. Notice that a Stop-Go team trajectory can be
entirely described by specifying the initial positions of the robots and
a sequence of waiting intervals for each robot at each viewpoint, i.e.,
the time intervals during which a robot stops at a viewpoint. Let xi(0)
denote the initial position on Γ of the i-th robot, and let δiα(k) be the
duration of the k-th waiting interval, with k ∈ N, of robot ri at the
viewpoint vα. For notational convenience, we partition the viewpoints
according to their priorities. In particular, let V = Vmax∪Vmin, where
Vmax contain the m viewpoints with highest priority, Vmax∩Vmin = ∅,
and, accordingly, Φ = Φmax ∪ Φmin. Assume that the viewpoints are
labeled such that φ1 = max{φ : φ ∈ Φmin}. Notice that, since
we focus on Stop-Go team trajectories, each viewpoint is visited by
robot ri+1 after being visited by robot ri (where rm+1 is r1). Also,
after visiting a viewpoint, each robot moves to the closest viewpoint
in counterclockwise direction at unit speed.

As a solution to the Cooperative Tour Patrolling (Problem 2),
we propose the Equal-Time-Spacing trajectory formally described in
Trajectory 1. We now give an informal description.
(Informal description) The Equal-Time-Spacing trajectory is a Stop-
Go team trajectory, where the waiting intervals at each viewpoint are
equal among the robots and constant in time. In other words, we have
δiα(k) = δjα(k+1) for every iteration k ∈ N, for every pair of robots
ri and rj , and for every viewpoint vα. Moreover, the viewpoints with
nonzero waiting intervals are contained in Vmax, and, being RT∗T the
minimum refresh time on the tour for the given configuration, the
initial position of robot ri is chosen such that xi(t) = xi+1(t +
RT∗T
φ1

). Notice that in the Equal-Time-Spacing trajectory the robots
are equally spaced in time along a common trajectory.

Theorem 3.1: (Optimality of Equal-Time-Spacing trajectories)
Given a set of viewpoints with priorities on a non-intersecting tour
of length L, and a team of m ≥ 2 robots, let Φmax denote the set of
m largest priorities. Then,

(i) the Equal-Time-Spacing trajectory X(t) in Trajectory 1 has
minimum refresh time, and

(ii) RT(X) = RT∗T =
L∑

φ∈Φmax
φ−1

.

In other words, Theorem 3.1 states that the Equal-Time-Spacing
trajectory is an optimal solution to the Cooperative Tour Patrolling
problem (Problem 2). Consider the weighted-cyclic patrolling strategy
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Trajectory 1: Equal-Time-Spacing trajectory
Input : Viewpoints V , Priorities Φmax and φ1, Tour length L;
Require : φ1 = max{φ : φ ∈ Φmin};
Output : A Stop-Go team trajectory as specified by δiα(k), xi(0);

1 RT∗T := L∑
φ∈Φmax φ

−1 ;

for each robot ri and iteration k do
for vα ∈ Vmin do

2 δiα(k) := 0;

for vα ∈ Vmax do
3 δiα(k) :=

(φα−φ1)
φαφ1

RT∗T;

4 x1(0) := v1;
5 for each robot ri do
6 xi(0) := x1((m+ 1− i) RT∗T /φ1);
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Fig. 3. This figure shows the Equal-Time-Spacing trajectory for a set of 5
viewpoints, with φ5 ≤ φ1 < φ4 < φ3 < φ2, and a team of 3 robots. Notice
that (i) the robots trajectories have the same shape, (ii) the team trajectory
is a periodic Stop-Go trajectory, and (iii) the robots trajectories are equally
spaced within the period of the team trajectory.

defined in Section II-B, and assume that the robots travel along the
Equal-Time-Spacing trajectory instead of along the Equal-Spacing
trajectory. Denote this new strategy as optimal weighted-cyclic strat-
egy. Then, the performance bound in Theorem 2.1 is also valid for
the optimal weighted-cyclic strategy, which, in fact, generates an
approximate solution to the Cooperative Patrolling problem (Problem
1). A proof of Theorem 3.1 is the Appendix.

Example 1: (Equal-Time-Spacing trajectory) Consider a tour of
5 viewpoints with priorities {φ1, . . . , φ5}, and a team of 3 robots.
Assume that φ5 ≤ φ1 < φ4 < φ3 < φ2. The Equal-Time-Spacing
trajectory for this configuration is in Fig. 3. Notice that the robots
do not stop at v1 and v5, while they stop for a certain time interval
at v2, v3, and v4.

Remark 3: (Equal-Time-Spacing and Equal-Spacing trajecto-
ries) From the discussion leading to Theorem 2.1, recall that the
refresh time of the Equal-Spacing trajectory equals φmaxL/m, and
notice that it grows linearly with φmax. On the other hand, recall
from Theorem 3.1 that the refresh time of the Equal-Time-Spacing
trajectory is L/

∑
φ∈Φmax

φ−1, and notice that it remains bounded as
long as there exists a finite priority in the set Φmax. We conclude that
Equal-Time-Spacing trajectories performs, in general, much better
than Equal-Spacing trajectories. Consequently, the bound in Theorem
2.1 is conservative for the optimal weighted-cyclic strategy (cf.
Fig. 4). Finally, Equal-Spacing and Equal-Time-Spacing trajectories
coincide when φmax = min{φ : φ ∈ Φmax}.

IV. DISTRIBUTED CONTROL ALGORITHMS

In this section we describe algorithms to equally space robots
in time along a shared trajectory using minimal communication.
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Fig. 4. Consider the configuration in Fig. 2 with L = 1, φ1 = 1, φ5 < 1, and
φ2 = φmax. For each value of φmax ∈ [1, 10, 20, . . . , 1000], we generate 100
priority sets by letting φ3 and φ4 be uniformly distributed within the interval
[1, φmax]. We plot the refresh time of the Equal-Time-Spacing trajectory and
the Equal-Spacing trajectory (φmax/3). The Equal-Time-Spacing trajectory
(blue dots) performs generally better than the Equal-Spacing trajectory (red
squares). Consequently, the bound in Theorem 2.1 is also valid for the optimal
weighted-cyclic strategy, and it is conservative for most priority sets.

Algorithm 2: Leader-Based control law (leader robot)
Input : Viewpoint vmax, Priorities Φmax and φ1, Tour length L;
Require : φ1 = max{φ : φ ∈ Φmin}, t := current time;

1 T∗ := L
φ1

∑
φ∈Φmax\{φmax} φ

−1 ;

while true do
2 Tlast := time of last departure of a robot from viewpoint vmax;

if robot arrives at viewpoint vmax then
3 stop robot at viewpoint vmax for max{0, T ∗ − (t− Tlast)};

We consider two different communication models: (i) the Passing
communication model, which assumes that two robots communicate
only when they occupy the same position,3 and (ii) the Neighbor-
Broadcast communication model, where sporadically robots i + 1
and i− 1 synchronously send their position on the shared trajectory
to robot i. Notice that, due to these communication constraints, a
control algorithm is needed to synchronize the robots along a desired
trajectory.

A. Passing communication model

For the Passing communication model, our approach to generating
the communication necessary for coordination is to use one robot
as a stationary leader at the vertex vmax with highest priority φmax.
The first robot to reach vmax will become the leader. When the other
robots pass vmax, the leader will communicate with them and take
control actions to generate the desired spacing. By keeping track
of the arrival times at vmax, the leader adjusts the waiting intervals
of other robots to enforce the desired spacing. We say that a robot
follows the Equal-Time-Spacing trajectory if it moves at maximum
speed and stops at the viewpoints as specified in Trajectory 1. Our
Leader-Based control law is in Algorithm 2 and Algorithm 3.

Lemma 4.1: (Leader-Based control performance) Given a set of
viewpoints with priorities on a non-intersecting tour of length L, and
a team of m ≥ 2 robots with Passing communication model, let Φmax

denote the set of m largest priorities. Let X(t) be the team trajectory
generated by the Leader-Based control law. Then,

RT(X(t ≥ t0)) = RT∗` =
L∑

φ∈Φmax\{φmax} φ
−1
,

3Although conservative, this assumption allows us to derive control and
communication laws implementable on robots with minimal capabilities. Any
additional communication could only improve the refresh time performance.
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Algorithm 3: Leader-Based control law (i-th robot)
Input : Viewpoint vmax, Priorities Φmax and φ1, Tour length L;
Require : φ1 = max{φ : φ ∈ Φmin}, t := current time;

1 compute the Equal-Time-Spacing trajectory with |Φmax| − 1 robots and
priority set Φmax \ {φmax};

2 follow the Equal-Time-Spacing trajectory unless differently instructed
by the leader when passing viewpoint vmax;

Algorithm 4: Stop-When-Ahead control law (i-th robot)
Input : Viewpoints V ; Priorities Φmax and φ1; Tour length L;

Gain q ∈ (0, 1/2); Period T = L+
∑n
α=1 δ

1
α(1);

Require : φ1 = max{φ : φ ∈ Φmin}; t := current time;

while true do
1 set τi(t) = max{τ : τ ≤ t, xi(τ) = v1};

if communication occurs then
2 τci := mod(τi+1(t)− τi(t), T )− mod(τi(t)− τi−1(t), T );
3 robot i stops for max{0, qτci };
4 set τi(t) := τi(t) + max{0, qτci };

i.e., the team trajectory X(t) restricted to the interval [t0,∞) has
refresh time RT∗` . Moreover,

t0 ≤ 2L+ 2
∑n

α=1
δ1
α(1),

where, for i = 1, . . . , n, δ1
i (1) is defined in Trajectory 1.

Proof: Notice that each robot completes one lap around Γ in time
T ∗ = L+

∑n
i=1 δ

1
i (1). Moreover, it takes at most time T ∗ after the

first communication for the leader to generate the correct spacing.
Then, within time 2T ∗, the trajectory generated by the Leader-
Based control law coincides with an Equal-Time-Spacing trajectory.
Observe now that, after time 2T ∗, the refresh time of the trajectory
generated by the Leader-Based control law equals the refresh time
of the Equal-Time-Spacing trajectory with m − 1 robots and high
priority set Φmax \ {φmax}. The statement follows from Theorem 3.1.

Notice that the refresh time of a team trajectory generated by the
Leader-Based control law is equivalent to the minimum refresh time
for m− 1 robots and high priorities Φmax \ {φmax}.

B. Neighbor-Broadcast communication model

We now consider the case of sporadic Neighbor-Broadcast com-
munications. Notice that in an Equal-Time-Spacing trajectory every
robot trajectory is T -periodic, with T = L +

∑n
α=1 δ

1
α(1). Let

τi(t) = max{τ : τ ≤ t, xi(τ) = v1}. We assume that,
upon communication, robot i knows the value τi−1(t) and τi+1(t).
Our Stop-When-Ahead control law is in Algorithm 4, where we
assume that each robot moves according to the Equal-Time-Spacing
trajectory, except when otherwise specified by the control law, that
robot i does not initiate any additional communication until its control
action is terminated (i.e., the wait time has elapsed), and that for each
pair of robots ri and rj , it holds τi(t) 6= τj(t) at all times.4

Lemma 4.2: (Stop-When-Ahead control performance): Given
a set of viewpoints with priorities on a non-intersecting tour of
length L, and a team of m ≥ 2 robots with Neighbor-Broadcast
communication model, let Φmax denote the set of m largest priorities.
Let each robot implement the Stop-When-Ahead control law, and let
X(t) be the resulting team trajectory. Assume the existence of a

4If two robots occupy the same location, then they first spread and then
implement the Stop-When-Ahead control law.

Rear caster

ComputerRangefinder

Drive wheel

Fig. 5. Erratic mobile robot with URG-04LX laser rangefinder.

duration ρ such that each robot communicates within the interval
[t, t+ ρ], for each time t. Then,

lim
t0→∞

RT(X(t ≥ t0)) = RT∗T =
L∑

φ∈Φmax
φ−1

,

i.e., the team trajectory X(t) asymptotically converges to a minimum
refresh time team trajectory.

Proof: Let τ(t) be the vector of τi(t), and notice that, the evolu-
tion of τ(t) is described by a consensus system τ(t+1) = P (t)τ(t).
Notice that P (t) is row-stochastic, and non-degenerate [15]. Then,
because of the existence of a duration ρ such that each robot
communicates within the interval [t, t+ρ], the vector τ converges to
the subspace spanned by the vector of all ones [15, Theorem 1.63].
Then, each control variable τ ci 0 converges to zero, and the statement
follows.

Observe that the Stop-When-Ahead control law generates a mini-
mum refresh time team trajectory.

V. SIMULATION AND EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our Stop-When-Ahead law
with real robots, we implemented it in version 2.1 of the open-source
Player/Stage robot software system [16]. This section describes a
simulation study and a hardware experiment. Our results show that
our Stop-When-Ahead law is effective with real robot motion and
noisy sensor data.

A. Simulation and experiment setup

Robot hardware: We use Erratic mobile robots from Videre
Design; see Fig. 5. The vehicle platform has a roughly square
footprint (40cm × 37cm), with two differential drive wheels and
a single rear caster. Each robot carries an on-board computer with
a 1.8Ghz Core 2 Duo processor, 1 GB of memory, and 802.11g
wireless communication. For navigation and localization, each robot
is equipped with a Hokuyo URG- 04LX laser rangefinder. The
rangefinder scans 683 points over 240◦ at 10Hz with a range of 5.6
meters. For simulations, the virtual robots are modeled off of our
hardware.

Localization: We use the amcl driver in Player which implements
Adaptive Monte-Carlo Localization [17]. The physical robots are
provided with a map of our lab with a 15cm resolution and told
their starting pose within the map. We set an initial pose standard
deviation of 0.9m in position and 12◦ in orientation, and request
updated localization based on 50 of the sensors range measurements
for each change of 2cm in robot position or 2◦ in orientation. We use
the most likely pose estimate output by amcl as the location of the
robot. We let simulated robots access perfect localization information.

Navigation: Each robot uses the snd driver in Player for the
Smooth Nearness Diagram navigation [18]. For the hardware, we
set the robot radius parameter to 22cm, obstacle avoidance distance
to 0.5m, and maximum speed to 0.2m/s. For our simulation, we set
the maximum speed to 5m/s. We let a robot achieve its target location
when it is within 10cm of the target.
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Fig. 6. For the environment in Fig. 1, this plot shows the trajectories of 5
robots as obtained from the Stop-When-Ahead control algorithm. The control
algorithm becomes active after the robots have completed one lap, and it steers
the robots towards an Equal-Time-Spacing trajectory. Notice that, as specified
in Trajectory 1, the waiting intervals at some viewpoints are nonzero.
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Fig. 7. For the team trajectory in Fig. 6, this figure shows the time intervals,
weighted by the corresponding priority, during which the viewpoints in Φmax
are not visited. The largest of these values corresponds to the refresh time
of the team trajectory. The dashed line identifies the minimum refresh time
predicted by Theorem 3.1. The Stop-When-Ahead control algorithm steers the
robots towards an almost-minimum refresh time team trajectory. The difference
from the predicted refresh time is due to nonholonomic robot motion.

B. A simulation of tour patrolling

In this section we simulate the Stop-When-Ahead control algorithm
in a campus environment. The purpose of this simulation is twofold:
(i) to illustrate the effectiveness of the control law in coordinating
the robots towards the desired trajectory, and (ii) to show that the
control law is robust to modeling uncertainties and the dimension of
the problem.

The environment used for this simulation is a part of the UCSB
campus and it is depicted in Fig. 1. For this environment, we create a
tour through 35 viewpoints, and we consider a team of 5 robots. The
largest 5 priorities are {1, 1.04, 1.09, 1.19, 1.31}, φ1 equals 1, and
the tour length is 1848 m. The robot trajectories obtained through the
Stop-When-Ahead control law are reported in Fig. 6. Fig. 7 shows
the refresh time of the viewpoints with highest priority. Observe that
the refresh time achieved by the control algorithm is slightly larger
than the value predicted in Theorem 3.1. This discrepancy is due
to the fact that, unlike the ideal model in Section II, the simulated
robots are non-holonomic and subject to motion constraints. The
Stop-When-Ahead control law achieves satisfactory performance also
in this scenario.

Fig. 8. An indoor environment with 3 robots and a tour with 5 viewpoints.
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Fig. 9. For the environment in Fig. 8, this figure depicts the trajectories of 3
robots as obtained from the Stop-When-Ahead control algorithm. The control
algorithm starts at time 250 and steers the robots towards an Equal-Time-
Spacing trajectory. Because of motion and localization uncertainty and of the
presence of obstacles, the robots do not always move at maximum speed.

C. An experiment of tour patrolling

In this section we present the results of a patrolling experiment. The
goal of this experiment is to show that the Stop-When-Ahead control
law is effective with real robots and sensors moving through an indoor
environment. The map in Fig. 8 is of our lab and for this experiment
we used our team of 3 Erratic robots. A set of 6 viewpoints is
chosen as in Fig. 8, and a tour through the viewpoints is computed.
The priorites set is {1, 1.05, 1, 1, 1, 1.08}, and the tour length is
18.5 m. The robots implement the Stop-When-Ahead control law
while traveling the tour. The robots trajectories and the refresh time
of the viewpoints are reported in Fig. 9 and Fig. 10, respectively. The
control law achieves satisfactory performance even in the presence
of motion and localization uncertainty.

VI. CONCLUSION

The problem of patrolling a set of weighted viewpoints to minimize
their weighted refresh time has been considered. The proposed ap-
proach consists of (i) creating a tour through the viewpoints by means
of graph-theoretic techniques, and (ii) instructing the robots to travel
according to an Equal-Time-Spacing trajectory. Performance bounds
for the proposed patrolling strategy have been proven. Additionally,
distributed control algorithms have been designed for the robots to
self-organize along our proposed trajectory. Finally, our results are
validated through simulations and experiments.
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Fig. 10. For the team trajectory in Fig. 9, this figure shows the time intervals,
weighted by the corresponding priority, during which the viewpoints are not
visited. The dashed line identifies the theoretical bound predicted by Theorem
3.1. The difference between the actual and the predicted refresh time is due
to motion uncertainty, localization uncertainty, and the presence of obstacles.

APPENDIX

In this section, we derive a proof of Theorem 3.1. Notice that
RT(X) = max{RT1,RT2}, where RT1 = RT(X) with td ∈
{∪m1 D(α, i) : D(α, i) < A(1, i)}, and RT2 = RT(X) with
td ∈ T2 = {∪m1 D(α, i) : D(α, i) ≥ A(1, i)}. We first
show that the Equal-Time-Spacing trajectory minimizes the cost
RT2, and then that, for the same solution, RT1 = RT2. Hence, the
Equal-Time-Spacing trajectory is a solution to the Cooperative Tour
Patrolling problem (Problem 2). We now introduce the necessary
notation. For robot ri, let Amin(i) = min{t : t ∈ A(1, i)}
and Amin = [Amin(1) . . .Amin(m)]T. The time interval between any
two consecutive visits of a viewpoint can be written as a function
of the arrival times Amin and of the waiting intervals δiα(k) at the
viewpoints. Let ∆i

α(k) be the time gap (weighted by φα) between
the k-th departure from vα of robot ri and the subsequent arrival at
vα of robot ri+1. For instance, for k = 1 and α = 1 (cf. Fig. 11),

∆1
1(1)/φ1 = Amin(2)−Amin(1)− δ1

1(1),

∆2
1(1)/φ1 = Amin(3)−Amin(2)− δ2

1(1),

...

∆m
1 (1)/φ1 = L+Amin(1) +

n∑
j=1

δ1
j (1)−Amin(m)− δm1 (1).

Analogously, we have (cf. Fig. 11)

∆1
2(1)

φ2
= Amin(2) + δ2

1(1)−Amin(1)− δ1
1(1)− δ1

2(1),

∆2
2(1)

φ2
= Amin(3) + δ3

1(1)−Amin(2)− δ2
1(1)− δ2

2(1),

...

∆m
2 (1)

φ2
= L+Amin(1) +

n∑
j=1

δ1
j (1) +

n∑
j=1

δ1
j (2)−Amin(m)

−
n∑
j=1

δmj (1)− δm1 (2).

We now derive a more compact expression for these time gaps. Let
Im be the m×m identity matrix, 0m the m×m zero matrix, and
Bm the m ×m matrix of zeros with a single 1 in the bottom left
corner. Let Dm = Bm − Im, and let Zm be the m ×m circulant
matrix described by the vector [−1 1 0 . . . 0].
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from v1 (m)

Time (s)

Fig. 11. For the configuration in Fig. 2, the figure shows a team trajectory
and the time intervals during which the viewpoints are not visited. The refresh
time of a viewpoint corresponds to the longest time interval during which it
is not visited, weighted by its priority. The refresh time of the team trajectory
is the largest among the refresh times of the viewpoints.

Let ei be the i-th column of Im, and let ∆α(k) =
[∆1

α(k) . . . ∆m
α (k)]T. It can be verified that



∆1(1)
...

∆n(1)
∆1(2)

...
∆n(2)

...


︸ ︷︷ ︸

∆

=



φ1Lem
...

φnLem
φ1Lem

...
φnLem

...


︸ ︷︷ ︸

b

+DM



Amin

δ1
1(1)

...
δm1 (1)
δ1
2(1)

...
δm2 (1)

...
δ1
1(2)

...


︸ ︷︷ ︸

δ

, (A-1)

where

M=



Zm Dm Bm · · · Bm 0m · · · 0m · · ·

Zm Zm Dm Bm
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . .
. . .

. . . 0m
. . .

Zm Zm Zm Zm Dm Bm
. . . Bm

. . .
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .


,

(A-2)

D = blk-diag(φ1Im, . . . , φnIm, φ1Im, . . . , φnIm, . . . ). (A-3)

Lemma 6.1: (Equivalent optimization problems) Given a set of
viewpoints with priorities on a non-intersecting tour of length L and
a team of m ≥ 2 robots, a team trajectory with minimum cost RT2

is computed by solving the minimization

min
δ
‖b+DMδ‖∞,

subject to: δ � 0, b+DMδ � 0

0 = Amin(1) ≤ · · · ≤ Amin(m),

(A-4)

where b, D, and M are as in (A-1), (A-2), and (A-3), and � denotes
componentwise inequality.

Proof: The vector δ, with δ � 0, b + DMδ � 0, describes a
Stop-Go trajectory (t ∈ T2), and ‖b+Mδ‖∞ denotes its refresh time
RT2. The statement follows from Lemma 2.2.

From Lemma 6.1, a minimum refresh time (RT2) team trajectory
can be computed by solving a linear optimization problem. The vector
δ contains the robots arrivals at v1 and the waiting intervals at each
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viewpoint, and it describes a Stop-Go team trajectory (t ∈ T2).
Consider the following result.

Lemma 6.2: (Empty waiting set) Let m = n− 1, and let D and
M be defined as in (A-1). Then, for all i ∈ {1, . . . ,m},

C = {δ : DMδ ≺ 0, δi1(k) ≥ 0, k ∈ N} = ∅.

Proof: Let the matrix N be such that Nδ ≥ 0 is equivalent
to δi1(k) ≥ 0, for all i ∈ {1, . . . ,m} and for all iterations k. In
particular, the column corresponding to δi1(k) in the matrix N , for
each robot ri and iteration k, has only one nonzero entry equal to
1. Recall from [19, Motzkin’s Theorem] that the set C is empty if
and only if there exists y1 � 0, with y1 6= 0, and y2 � 0 such that
y1DM − y2N = 0. Let y1 = [0 eTm . . . eT1 0 . . . ]D−1, where 0
denotes here an m-dimensional zero vector. It can be verified that
(y1DM)j = 1 if j = (m+ 1)2, and (y1DM)j = 0 otherwise. Let
(y2)j = 1 if j = m + 1, and (y2)j = 0 otherwise. The statement
follows from Motzkin’s Theorem since y1DM − y2N = 0.

Proof of Theorem 3.1: Let Vmin = ∅, V = Vmax, and |V | = n = m+
1. Let δ∗ be the vector of waiting intervals and arrival times defined in
Trajectory 1. Note that the specification of the robots initial positions
implies the specification of the arrival times Amin. Suppose that δ∗ is
not an optimal solution to the optimization problem (A-4), and let δ
be a minimizer of (A-4). Then, ‖b+DMδ‖∞ < ‖b+DMδ∗‖∞. It
can be verified that the entries of b+DMδ∗ indexed by Vmax are all
equal to each other. Also, b+DMδ � 0, b+DMδ∗ � 0. Hence,

DM(δ − δ∗) ≺ 0. (A-5)

Notice that, since δi1(k)∗ = 0 and δi1(k) ≥ 0 due to the constraint
in (A-4), it follows that δi1(k) − δi1(k)∗ ≥ 0. Because of Lemma
6.2, the inequalities (A-5) with the constraint δi1(k) − δi1(k)∗ ≥ 0
are infeasible. Due to convexity, we conclude that δ∗ is a global
minimizer of (A-4) with Vmin = ∅.

Let Vmin 6= ∅, and observe that, because of Lemma 2.2, the
weighted refresh time for the set of viewpoints Vmax∪Vmin cannot be
smaller than the weighted refresh time for the set of viewpoints Vmax.
Then, the vector δ∗ defined in Trajectory 1 is a global minimizer of
the optimization problem (A-4).

We now characterize the performance of Trajectory 1. Notice that
xi(t) = xi+1(t +

RT∗T
φ1

). Hence, the viewpoint vα is not visited for

an interval of length RT∗T
φ1
− δα, where δα is the waiting interval at

the viewpoint vα. We have

RT∗T
φ1
− δα =

RT∗T
φ1
− RT∗T(φα − φ1)

φαφ1
=

RT∗T
φα

.

From (1), we have RT(X) = maxα φα
RT∗T
φα

= RT∗T. Note that

∆m
1 (1)

φ1
= L+Amin(1) +

∑n

α=1
δ1
α(1)−Amin(m)− δm1 (1),

where ∆m
1 (1) = RT∗T, δm1 (1) = 0, and

Amin(1)−Amin(m) = −(m− 1) RT∗T /φ1,∑n

α=1
δ1
α(1) = mRT∗T /φ1 −

∑
φ∈Φmax

RT∗T φ
−1.

Hence, RT∗T = L∑
φ∈Φmax φ

−1 . Finally, for the Equal-Time-Spacing
trajectory, it holds RT1 =RT2 =RT∗T =RT(X).
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